Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Engineered Bacteria: General Overview as Therapeutic Agent and a Novel Drug Delivery System

Author(s): Prashant L. Patil*, Shivani K. Gharat, Kisan R. Jadhav and Vilasrao J. Kadam

Volume 24, Issue 11, 2023

Published on: 17 January, 2023

Page: [1351 - 1364] Pages: 14

DOI: 10.2174/1389201024666221220113517

Price: $65

conference banner
Abstract

Bacterial engineering modifies bacteria's genomic sequence using genetic engineering tools. These engineered bacteria can produce modified proteins, peptides, nucleic acids, and other biomolecules that can be used to treat various medical conditions. Engineered bacteria can target diseased tissues or organs, detect specific biomarkers in the diseased environment, and even induce specific conditions. Furthermore, a meticulously designed intracellular metabolic pathway can activate or inhibit the expression of related genes, synthesise biologically active therapeutic molecules, and precisely deliver drug payloads to diseased tissues or organs. Lactococcus (L. lactis), Salmonella (S. typhi), and E. coli (E. coli Nissle) are the most studied engineered microorganisms used as drug carriers. These have been used in vaccines to treat multifactorial diseases such as cancer, autoimmune diseases, metabolic diseases, and inflammatory conditions. Other promising strains include Bifidobacterium animalis, Listeria monocytogenes, Staphylococcus epidermidis, Staphylococcus lugdunensis, and Clostridium sporogenes. Despite the low reported risk, toxic effects associated with bacterial cells, limiting their efficacy and rapid clearance due to immune responses stimulated by high bacterial concentrations, remain major drawbacks. As a result, a better and more effective method of drug delivery must be developed by combining bacterial-based therapies with other available treatments, and more research in this area is also needed.

Graphical Abstract

[1]
Novel drug delivery systems: An overview. International Journal of Pharmaceutical Sciences And Research, 2013. Available from: https://ijpsr.com/bft-article/novel-drug-delivery-systems-an-overview/
[2]
Lundberg, J.O.; Weitzberg, E.; Cole, J.A.; Benjamin, N. Nitrate, bacteria and human health. Nat. Rev. Microbiol., 2004, 2(7), 593-602.
[http://dx.doi.org/10.1038/nrmicro929] [PMID: 15197394]
[3]
Tanna, T.; Ramachanderan, R.; Platt, R.J. Engineered bacteria to report gut function: Technologies and implementation. Curr. Opin. Microbiol., 2021, 59, 24-33.
[http://dx.doi.org/10.1016/j.mib.2020.07.014] [PMID: 32828048]
[4]
van der Meer, J.R.; Belkin, S. Where microbiology meets microengineering: Design and applications of reporter bacteria. Nat. Rev. Microbiol., 2010, 8(7), 511-522.
[http://dx.doi.org/10.1038/nrmicro2392] [PMID: 20514043]
[5]
Hosseinidoust, Z.; Mostaghaci, B.; Yasa, O.; Park, B.W.; Singh, A.V.; Sitti, M. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv. Drug Deliv. Rev., 2016, 106(Pt A), 27-44.
[http://dx.doi.org/10.1016/j.addr.2016.09.007] [PMID: 27641944]
[6]
Shende, P.; Basarkar, V. Recent trends and advances in microbe-based drug delivery systems. Daru, 2019, 27(2), 799-809.
[http://dx.doi.org/10.1007/s40199-019-00291-2] [PMID: 31376116]
[7]
Kärenlampi, S.O.; von Wright, A.J. Genetically modified microorganisms. In: Encyclopedia of Food and Health; Caballero, B.; Finglas, P.M.; Toldrá, F., Eds.; Academic Press: Oxford, 2016; pp. 211-216.https://www.sciencedirect.com/science/article/pii/B9780123849472003561
[http://dx.doi.org/10.1016/B978-0-12-384947-2.00356-1]
[8]
Melo, E.O.; Canavessi, A.M.O.; Franco, M.M.; Rumpf, R. Animal transgenesis: State of the art and applications. J. Appl. Genet., 2007, 48(1), 47-61.
[http://dx.doi.org/10.1007/BF03194657] [PMID: 17272861]
[9]
Huang, C.J.; Lin, H.; Yang, X. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J. Ind. Microbiol. Biotechnol., 2012, 39(3), 383-399.
[http://dx.doi.org/10.1007/s10295-011-1082-9] [PMID: 22252444]
[10]
Eiteman, M.A.; Altman, E. Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol., 2006, 24(11), 530-536.
[http://dx.doi.org/10.1016/j.tibtech.2006.09.001] [PMID: 16971006]
[11]
Plavec, T.V.; Berlec, A. Engineering of lactic acid bacteria for delivery of therapeutic proteins and peptides. Appl. Microbiol. Biotechnol., 2019, 103(5), 2053-2066.
[http://dx.doi.org/10.1007/s00253-019-09628-y] [PMID: 30656391]
[12]
Becker, K.; Hu, Y.; Biller-Andorno, N. Infectious diseases – A global challenge. Int. J. Med. Microbiol., 2006, 296(4-5), 179-185.
[http://dx.doi.org/10.1016/j.ijmm.2005.12.015] [PMID: 16446113]
[13]
Morens, D.M.; Folkers, G.K.; Fauci, A.S. The challenge of emerging and re-emerging infectious diseases. Nature, 2004, 430(6996), 242-249.
[http://dx.doi.org/10.1038/nature02759] [PMID: 15241422]
[14]
John, T.J.; Dandona, L.; Sharma, V.P.; Kakkar, M. Continuing challenge of infectious diseases in India. Lancet, 2011, 377(9761), 252-269.
[http://dx.doi.org/10.1016/S0140-6736(10)61265-2] [PMID: 21227500]
[15]
Pastan, I.; Hassan, R.; FitzGerald, D.J.; Kreitman, R.J. Immunotoxin treatment of cancer. Annu. Rev. Med., 2007, 58(1), 221-237.
[http://dx.doi.org/10.1146/annurev.med.58.070605.115320] [PMID: 17059365]
[16]
Bernardes, N.; Chakrabarty, A.M.; Fialho, A.M. Engineering of bacterial strains and their products for cancer therapy. Appl. Microbiol. Biotechnol., 2013, 97(12), 5189-5199.
[http://dx.doi.org/10.1007/s00253-013-4926-6] [PMID: 23644748]
[17]
Weldon, J.E.; Pastan, I. A guide to taming a toxin - recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treat-ment of cancer. FEBS J., 2011, 278(23), 4683-4700.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08182.x] [PMID: 21585657]
[18]
Xu, Y.F.; Zhu, L.P.; Hu, B.; Fu, G.F.; Zhang, H.Y.; Wang, J.J.; Xu, G.X. A new expression plasmid in Bifidobacterium longum as a deliv-ery system of endostatin for cancer gene therapy. Cancer Gene Ther., 2007, 14(2), 151-157.
[http://dx.doi.org/10.1038/sj.cgt.7701003] [PMID: 17068487]
[19]
Hwang, I.Y.; Koh, E.; Wong, A.; March, J.C.; Bentley, W.E.; Lee, Y.S.; Chang, M.W. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun., 2017, 8(1), 15028.
[http://dx.doi.org/10.1038/ncomms15028] [PMID: 28398304]
[20]
Piñero-Lambea, C.; Ruano-Gallego, D.; Fernández, L.Á. Engineered bacteria as therapeutic agents. Curr. Opin. Biotechnol., 2015, 35, 94-102.
[http://dx.doi.org/10.1016/j.copbio.2015.05.004] [PMID: 26070111]
[21]
Theys, J.; Barbé, S.; Landuyt, W.; Nuyts, S.; Mellaert, L.; Wouters, B.; Anné, J.; Lambin, P. Tumor-specific gene delivery using genetical-ly engineered bacteria. Curr. Gene Ther., 2003, 3(3), 207-221.
[http://dx.doi.org/10.2174/1566523034578357] [PMID: 12762480]
[22]
Huang, X.; Pan, J.; Xu, F.; Shao, B.; Wang, Y.; Guo, X.; Zhou, S. Bacteria-based cancer immunotherapy. Adv. Sci., 2021, 8(7)2003572
[http://dx.doi.org/10.1002/advs.202003572] [PMID: 33854892]
[23]
Szatraj, K.; Szczepankowska, A.K.; Chmielewska-Jeznach, M. Lactic acid bacteria - promising vaccine vectors: Possibilities, limitations, doubts. J. Appl. Microbiol., 2017, 123(2), 325-339.
[http://dx.doi.org/10.1111/jam.13446] [PMID: 28295939]
[24]
Lubitz, P.; Mayr, U.B.; Lubitz, W. Applications of bacterial ghosts in biomedicine.Pharmaceutical Biotechnology; Guzmán, CA.; Feuerstein, GZ., Eds.; Springer: New York, NY, 2009.
[http://dx.doi.org/10.1007/978-1-4419-1132-2_12]
[25]
Rabea, S.; Salem-Bekhit, M.M.; Alanazi, F.K.; Yassin, A.S.; Moneib, N.A.; Hashem, A.E.M. A novel protocol for bacterial ghosts’ prepa-ration using tween 80. Saudi Pharm. J., 2018, 26(2), 232-237.
[http://dx.doi.org/10.1016/j.jsps.2017.12.006] [PMID: 30166921]
[26]
Afkhami-Poustchi, A.; Matin, M.M. Use of bacterial ghosts as novel drug delivery systems to improve cancer treatment. Cancer Press, 2016, 2(1), 8.
[http://dx.doi.org/10.15562/tcp.11]
[27]
Mayr, U.B.; Walcher, P.; Azimpour, C.; Riedmann, E.; Haller, C.; Lubitz, W. Bacterial ghosts as antigen delivery vehicles. Adv. Drug Deliv. Rev., 2005, 57(9), 1381-1391.
[http://dx.doi.org/10.1016/j.addr.2005.01.027] [PMID: 15878634]
[28]
Szostak, M.P.; Hensel, A.; Eko, F.O.; Klein, R.; Auer, T.; Mader, H.; Haslberger, A.; Bunka, S.; Wanner, G.; Lubitz, W. Bacterial ghosts: Non-living candidate vaccines. J. Biotechnol., 1996, 44(1-3), 161-170.
[http://dx.doi.org/10.1016/0168-1656(95)00123-9] [PMID: 8717400]
[29]
Langemann, T.; Koller, V.J.; Muhammad, A.; Kudela, P.; Mayr, U.B.; Lubitz, W. The bacterial ghost platform system. Bioeng. Bugs, 2010, 1(5), 326-336.
[http://dx.doi.org/10.4161/bbug.1.5.12540] [PMID: 21326832]
[30]
Market, A.; Zillig, W. Studies on the lysis of Escherichia coli C by bacteriophage φX174. Virology, 1965, 25(1), 88-97.
[31]
Jalava, K.; Hensel, A.; Szostak, M.; Resch, S.; Lubitz, W. Bacterial ghosts as vaccine candidates for veterinary applications. J. Control. Release, 2002, 85(1-3), 17-25.
[http://dx.doi.org/10.1016/S0168-3659(02)00267-5] [PMID: 12480307]
[32]
Jechlinger, W.; Szostak, M.P.; Witte, A.; Lubitz, W. Altered temperature induction sensitivity of the lambda pR/cI857 system for controlled gene E expression in Escherichia coli. FEMS Microbiol. Lett., 1999, 173(2), 347-352.
[http://dx.doi.org/10.1111/j.1574-6968.1999.tb13524.x] [PMID: 10227165]
[33]
Witte, A.; Wanner, G.; Bläsi, U.; Halfmann, G.; Szostak, M.; Lubitz, W. Endogenous transmembrane tunnel formation mediated by phi X174 lysis protein E. Journal of Bacteriology, 1990. Available from: https://journals.asm.org/doi/abs/10.1128/jb.172.7.4109-4114.1990 [cited 2022 Jan 16].
[34]
Taddese, R.; Belzer, C.; Aalvink, S.; de Jonge, M.I.; Nagtegaal, I.D.; Dutilh, B.E.; Boleij, A. Production of inactivated gram-positive and gram-negative species with preserved cellular morphology and integrity. J. Microbiol. Methods, 2021, 184106208
[http://dx.doi.org/10.1016/j.mimet.2021.106208] [PMID: 33766606]
[35]
Wu, X.; Ju, X.; Du, L.; Yuan, J.; Wang, L.; He, R.; Chen, Z. Production of bacterial ghosts from gram-positive pathogen Listeria mono-cytogenes. Foodborne Pathog. Dis., 2017, 14(1), 1-7.
[http://dx.doi.org/10.1089/fpd.2016.2184] [PMID: 27982711]
[36]
Nagarajan, V; Oh, S; Park, H; Koo, J; Choi, C; Kim, S Generation of a novel Staphylococcus aureus ghost vaccine and its immunogenicity against virulent challenge in rats. Infection and Immunity, 2015, 83(IAI), 00009-000015.
[37]
Witte, A.; Bläsi, U.; Halfmann, G.; Szostak, M.; Wanner, G.; Lubitz, W. PhiX174 protein E-mediated lysis of Escherichia coli. Biochimie, 1990, 72(2-3), 191-200.
[http://dx.doi.org/10.1016/0300-9084(90)90145-7] [PMID: 2143087]
[38]
Witte, A.; Wanner, G.; Sulzner, M.; Lubitz, W. Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Arch. Microbiol., 1992, 157(4), 381-388.
[http://dx.doi.org/10.1007/BF00248685] [PMID: 1534215]
[39]
Witte, A.; Brand, E.; Schrot, G.; Lubitz, W. Pathway of PHIX174 protein E mediated lysis of Escherichia coli. In: Bacterial Growth and Lysis: Metabolism and Structure of the Bacterial Sacculus; de Pedro, M.A.; Höltje, J.V.; Löffelhardt, W., Eds.; Springer US: Boston, MA, 1993; pp. 277-283. Available from: https://doi.org/10.1007/978-1-4757-9359-8_33 [cited 2022 Jan 16].
[40]
Schön, P.; Schrot, G.; Wanner, G.; Lubitz, W.; Witte, A. Two-stage model for integration of the lysis protein E of ΦX174 into the cell envelope of Escherichia coli. FEMS Microbiol. Rev., 1995, 17(1-2), 207-212.
[http://dx.doi.org/10.1111/j.1574-6976.1995.tb00203.x] [PMID: 7669347]
[41]
Cells As Experimental Models - The Cell - NCBI Bookshelf. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9917/ [cited 2022 Jan 15].
[42]
Jobé, A.M.; Herwig, C.; Surzyn, M.; Walker, B.; Marison, I.; von Stockar, U. Generally applicable fed-batch culture concept based on the detection of metabolic state by on-line balancing. Biotechnol. Bioeng., 2003, 82(6), 627-639.
[http://dx.doi.org/10.1002/bit.10610] [PMID: 12673762]
[43]
Chen, C.; Snedecor, B.; Nishihara, J.C.; Joly, J.C.; McFarland, N.; Andersen, D.C.; Battersby, J.E.; Champion, K.M. High-level accumula-tion of a recombinant antibody fragment in the periplasm ofEscherichia coli requires a triple-mutant (degP prc spr) host strain. Biotechnol. Bioeng., 2004, 85(5), 463-474.
[http://dx.doi.org/10.1002/bit.20014] [PMID: 14760686]
[44]
Clutterbuck, E.; Shields, J.G.; Gordon, J.; Smith, S.H.; Boyd, A.; Callard, R.E.; Campbell, H.D.; Young, I.G.; Sanderson, C.J. Recombinant human interleukin 5 is an eosinophil differentiation factor but has no activity in standard human B cell growth factor assays. Eur. J. Immunol., 1987, 17(12), 1743-1750.
[http://dx.doi.org/10.1002/eji.1830171210] [PMID: 3500861]
[45]
Wong, M.S.; Wu, S.; Causey, T.B.; Bennett, G.N.; San, K.Y. Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production. Metab. Eng., 2008, 10(2), 97-108.
[http://dx.doi.org/10.1016/j.ymben.2007.10.003] [PMID: 18164227]
[46]
Caparon, M.H.; Rust, K.J.; Hunter, A.K.; McLaughlin, J.K.; Thomas, K.E.; Herberg, J.T.; Shell, R.E.; Lanter, P.B.; Bishop, B.F.; Dufield, R.L.; Wang, X.; Ho, S.V. Integrated solution to purification challenges in the manufacture of a soluble recombinant protein in E. coli. Biotechnol. Bioeng., 2010, 105(2), 239-249.
[http://dx.doi.org/10.1002/bit.22542] [PMID: 19777583]
[47]
Mücke, M.; Ostendorp, R.; Leonhartsberger, S.E. coli secretion technologies enable production of high yields of active human antibody fragments. Bio Pro. Int., 2009, 7, 12-16.
[48]
Sedighi, M; Zahedi Bialvaei, A; Hamblin, MR; Ohadi, E; Asadi, A; Halajzadeh, M Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med., 2019, 2014, cam4.2148..
[49]
Cano-Garrido, O.; Seras-Franzoso, J.; Garcia-Fruitós, E. Lactic acid bacteria: Reviewing the potential of a promising delivery live vector for biomedical purposes. Microb. Cell Fact., 2015, 14(1), 137.
[http://dx.doi.org/10.1186/s12934-015-0313-6] [PMID: 26377321]
[50]
Huibregtse, I.L.; Snoeck, V.; de Creus, A.; Braat, H.; de Jong, E.C.; van Deventer, S.J.H.; Rottiers, P. Induction of ovalbumin-specific tolerance by oral administration of Lactococcus lactis secreting ovalbumin. Gastroenterology, 2007, 133(2), 517-528.
[http://dx.doi.org/10.1053/j.gastro.2007.04.073] [PMID: 17681173]
[51]
Li, Y.; Li, X.; Liu, H.; Zhuang, S.; Yang, J.; Zhang, F. Intranasal immunization with recombinant Lactococci carrying human papilloma-virus E7 protein and mouse interleukin-12 DNA induces E7-specific antitumor effects in C57BL/6 mice. Oncol. Lett., 2014, 7(2), 576-582.
[http://dx.doi.org/10.3892/ol.2013.1743] [PMID: 24396491]
[52]
Baradaran, A.; Yusoff, K.; Shafee, N.; Rahim, R.A. Newcastle disease virus hemagglutinin neuraminidase as a potential cancer targeting agent. J. Cancer, 2016, 7(4), 462-466.
[http://dx.doi.org/10.7150/jca.13566] [PMID: 26918060]
[53]
Arora, T.; Wegmann, U.; Bobhate, A.; Lee, Y.S.; Greiner, T.U.; Drucker, D.J.; Narbad, A.; Bäckhed, F. Microbially produced glucagon-like peptide 1 improves glucose tolerance in mice. Mol. Metab., 2016, 5(8), 725-730.
[http://dx.doi.org/10.1016/j.molmet.2016.06.006] [PMID: 27656410]
[54]
Lin, Y.; Krogh-Andersen, K.; Pelletier, J.; Marcotte, H.; Östenson, C.G.; Hammarström, L. Oral delivery of pentameric glucagon-like pep-tide-1 by recombinant lactobacillus in diabetic rats. PLoS One, 2016, 11(9)e0162733
[http://dx.doi.org/10.1371/journal.pone.0162733] [PMID: 27610615]
[55]
Kasarełło, K.; Szczepankowska, A.; Kwiatkowska-Patzer, B.; Lipkowski, A.W.; Gadamski, R.; Sulejczak, D.; Łachwa, M.; Biały, M.; Bar-dowski, J. Effect of recombinant Lactococcus lactis producing myelin peptides on neuroimmunological changes in rats with experimental allergic encephalomyelitis. Folia Neuropathol., 2016, 3(3), 249-258.
[http://dx.doi.org/10.5114/fn.2016.62534] [PMID: 27764517]
[56]
Berlec, A.; Ravnikar, M.; Štrukelj, B. Lactic acid bacteria as oral delivery systems for biomolecules. Pharmazie, 2012, 67(11), 891-898.
[PMID: 23210237]
[57]
Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell, 2014, 157(1), 121-141.
[http://dx.doi.org/10.1016/j.cell.2014.03.011] [PMID: 24679531]
[58]
Bone, R.C. Toward an epidemiology and natural history of SIRS (systemic inflammatory response syndrome). JAMA, 1992, 268(24), 3452-3455.
[http://dx.doi.org/10.1001/jama.1992.03490240060037] [PMID: 1460735]
[59]
Dinarello, C.A.; Gelfand, J.A.; Wolff, S.M. Anticytokine strategies in the treatment of the systemic inflammatory response syndrome. JAMA, 1993, 269(14), 1829-1835.
[http://dx.doi.org/10.1001/jama.1993.03500140081040] [PMID: 8459516]
[60]
Fox, M.E.; Lemmon, M.J.; Mauchline, M.L.; Davis, T.O.; Giaccia, A.J.; Minton, N.P.; Brown, J.M. Anaerobic bacteria as a delivery sys-tem for cancer gene therapy: In vitro activation of 5-fluoro-cytosine by genetically engineered clostridia. Gene Ther., 1996, 3(2), 173-178.
[PMID: 8867865]
[61]
Moese, J.R.; Moese, G. Oncolysis by clostridia. I. Activity of clostridium butyricum (M-55) and other nonpathogenic clostridia against the ehrlich carcinoma. Cancer Res., 1964, 24(2 Part 1), 212-216.
[PMID: 14115686]
[62]
Pawelek, J.M.; Low, K.B.; Bermudes, D. Bacteria as tumour-targeting vectors. Lancet Oncol., 2003, 4(9), 548-556.
[http://dx.doi.org/10.1016/S1470-2045(03)01194-X] [PMID: 12965276]
[63]
Claesen, J.; Fischbach, M.A. Synthetic microbes as drug delivery systems. ACS Synth. Biol., 2015, 4(4), 358-364.
[http://dx.doi.org/10.1021/sb500258b] [PMID: 25079685]
[64]
What Is Cancer? - National Cancer Institute. 2007. Available from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer
[65]
Types of Cancer Treatment - National Cancer Institute. 2017. Available from: https://www.cancer.gov/about-cancer/treatment/types
[66]
Sieow, B.F.L.; Wun, K.S.; Yong, W.P.; Hwang, I.Y.; Chang, M.W. Tweak to treat: Reprograming bacteria for cancer treatment. Trends Cancer, 2021, 7(5), 447-464.
[http://dx.doi.org/10.1016/j.trecan.2020.11.004] [PMID: 33303401]
[67]
Patyar, S.; Joshi, R.; Byrav, D.S.P.; Prakash, A.; Medhi, B.; Das, B.K. Bacteria in cancer therapy: A novel experimental strategy. J. Biomed. Sci., 2010, 17(1), 21.
[http://dx.doi.org/10.1186/1423-0127-17-21] [PMID: 20331869]
[68]
Forbes, N.S. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer, 2010, 10(11), 785-794.
[http://dx.doi.org/10.1038/nrc2934] [PMID: 20944664]
[69]
Nallar, S.C.; Xu, D.Q.; Kalvakolanu, D.V. Bacteria and genetically modified bacteria as cancer therapeutics: Current advances and chal-lenges. Cytokine, 2017, 89, 160-172.
[http://dx.doi.org/10.1016/j.cyto.2016.01.002] [PMID: 26778055]
[70]
Wang, K.; Kievit, F.M.; Zhang, M. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies. Pharmacol. Res., 2016, 114, 56-66.
[http://dx.doi.org/10.1016/j.phrs.2016.10.016] [PMID: 27771464]
[71]
Jiang, S.N.; Phan, T.X.; Nam, T.K.; Nguyen, V.H.; Kim, H.S.; Bom, H.S.; Choy, H.E.; Hong, Y.; Min, J.J. Inhibition of tumor growth and metastasis by a combination of Escherichia coli-mediated cytolytic therapy and radiotherapy. Mol. Ther., 2010, 18(3), 635-642.
[http://dx.doi.org/10.1038/mt.2009.295] [PMID: 20051939]
[72]
Leventhal, D.S.; Sokolovska, A.; Li, N.; Plescia, C.; Kolodziej, S.A.; Gallant, C.W.; Christmas, R.; Gao, J.R.; James, M.J.; Abin-Fuentes, A.; Momin, M.; Bergeron, C.; Fisher, A.; Miller, P.F.; West, K.A.; Lora, J.M. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat. Commun., 2020, 11(1), 2739.
[http://dx.doi.org/10.1038/s41467-020-16602-0] [PMID: 32483165]
[73]
Darvin, P.; Toor, S.M.; Sasidharan Nair, V.; Elkord, E. Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp. Mol. Med., 2018, 50(12), 1-11.
[http://dx.doi.org/10.1038/s12276-018-0191-1] [PMID: 30546008]
[74]
Xu, J.; Saklatvala, R.; Mittal, S.; Deshmukh, S.; Procopio, A. Recent progress of potentiating immune checkpoint blockade with external stimuli-an industry perspective. Adv. Sci., 2020, 7(8)1903394
[http://dx.doi.org/10.1002/advs.201903394] [PMID: 32328428]
[75]
Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med., 2018, 378(2), 158-168.
[http://dx.doi.org/10.1056/NEJMra1703481] [PMID: 29320654]
[76]
Gurbatri, C.R.; Lia, I.; Vincent, R.; Coker, C.; Castro, S.; Treuting, P.M. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Science Translational Medicine, 2020. Available from: https://www.science.org/doi/abs/10.1126/ scitranslmed.aax0876.
[http://dx.doi.org/10.1126/scitranslmed.aax0876]
[77]
Fu, J.; Kanne, D.B.; Leong, M.; Glickman, L.H.; McWhirter, S.M.; Lemmens, E. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Science Translational Medicine, 2015. Available from: https://www.science.org/doi/abs/10.1126/scitranslmed.aaa4306 [cited 2022 Jan 19].
[78]
Larkin, B.; Ilyukha, V.; Sorokin, M.; Buzdin, A.; Vannier, E.; Poltorak, A. Cutting edge: Activation of sting in T cells induces type I IFN responses and cell death. J. Immunol., 2017, 199(2), 397-402.
[http://dx.doi.org/10.4049/jimmunol.1601999] [PMID: 28615418]
[79]
Sivick, K.E.; Desbien, A.L.; Glickman, L.H.; Reiner, G.L.; Corrales, L.; Surh, N.H.; Hudson, T.E.; Vu, U.T.; Francica, B.J.; Banda, T.; Katibah, G.E.; Kanne, D.B.; Leong, J.J.; Metchette, K.; Bruml, J.R.; Ndubaku, C.O.; McKenna, J.M.; Feng, Y.; Zheng, L.; Bender, S.L.; Cho, C.Y.; Leong, M.L.; van Elsas, A.; Dubensky, T.W., Jr; McWhirter, S.M. Magnitude of therapeutic sting activation determines CD8+ T cell-mediated anti-tumor immunity. Cell Rep., 2019, 29(3), 785-789.
[http://dx.doi.org/10.1016/j.celrep.2019.09.089] [PMID: 31618645]
[80]
Kitada, T.; DiAndreth, B.; Teague, B.; Weiss, R. Programming gene and engineered-cell therapies with synthetic biology. Science, 2018. Available from: https://www.science.org/doi/abs/10.1126/science.aad1067 [cited 2022 Jan 19].
[http://dx.doi.org/10.1126/science.aad1067]
[81]
Bashor, C.J.; Collins, J.J. Understanding biological regulation through synthetic biology. Annu. Rev. Biophys., 2018, 47(1), 399-423.
[http://dx.doi.org/10.1146/annurev-biophys-070816-033903] [PMID: 29547341]
[82]
Loeffler, M.; Le’Negrate, G.; Krajewska, M.; Reed, J.C. Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proc. Natl. Acad. Sci. USA, 2007, 104(31), 12879-12883.
[http://dx.doi.org/10.1073/pnas.0701959104] [PMID: 17652173]
[83]
Loeffler, M.; Le’Negrate, G.; Krajewska, M.; Reed, J.C. IL-18-producing Salmonella inhibit tumor growth. Cancer Gene Ther., 2008, 15(12), 787-794.
[http://dx.doi.org/10.1038/cgt.2008.48] [PMID: 18654612]
[84]
Diaz, L.A., Jr; Cheong, I.; Foss, C.A.; Zhang, X.; Peters, B.A.; Agrawal, N.; Bettegowda, C.; Karim, B.; Liu, G.; Khan, K.; Huang, X.; Kohli, M.; Dang, L.H.; Hwang, P.; Vogelstein, A.; Garrett-Mayer, E.; Kobrin, B.; Pomper, M.; Zhou, S.; Kinzler, K.W.; Vogelstein, B.; Huso, D.L. Pharmacologic and toxicologic evaluation of C. novyi-NT spores. Toxicol. Sci., 2005, 88(2), 562-575.
[http://dx.doi.org/10.1093/toxsci/kfi316] [PMID: 16162850]
[85]
Lambin, P.; Theys, J.; Landuyt, W.; Rijken, P.; van der Kogel, A.; van der Schueren, E.; Hodgkiss, R.; Fowler, J.; Nuyts, S.; de Bruijn, E.; Van Mellaert, L.; Anné, J. Colonisation of Clostridiumin the body is restricted to hypoxic and necrotic areas of tumours. Anaerobe, 1998, 4(4), 183-188.
[http://dx.doi.org/10.1006/anae.1998.0161] [PMID: 16887640]
[86]
Zhou, S.; Gravekamp, C.; Bermudes, D.; Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer, 2018, 18(12), 727-743.
[http://dx.doi.org/10.1038/s41568-018-0070-z] [PMID: 30405213]
[87]
Nettelbeck, D.M.; Jérôme, V.; Müller, R. Gene therapy: Designer promoters for tumour targeting. Trends Genet., 2000, 16(4), 174-181.
[http://dx.doi.org/10.1016/S0168-9525(99)01950-2] [PMID: 10729833]
[88]
Dang, L.H.; Bettegowda, C.; Huso, D.L.; Kinzler, K.W.; Vogelstein, B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc. Natl. Acad. Sci., 2001, 98(26), 15155-15160.
[http://dx.doi.org/10.1073/pnas.251543698] [PMID: 11724950]
[89]
Rong, L.; Lei, Q.; Zhang, X.Z. Engineering living bacteria for cancer therapy. ACS Appl. Bio Mater., 2020, 3(12), 8136-8145.
[http://dx.doi.org/10.1021/acsabm.0c01286] [PMID: 35019596]
[90]
Low, K.B.; Ittensohn, M.; Le, T.; Platt, J.; Sodi, S.; Amoss, M.; Ash, O.; Carmichael, E.; Chakraborty, A.; Fischer, J.; Lin, S.L.; Luo, X.; Miller, S.I.; Zheng, L.; King, I.; Pawelek, J.M.; Bermudes, D. Lipid a mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nat. Biotechnol., 1999, 17(1), 37-41.
[http://dx.doi.org/10.1038/5205] [PMID: 9920266]
[91]
Hayashi, K.; Zhao, M.; Yamauchi, K.; Yamamoto, N.; Tsuchiya, H.; Tomita, K.; Hoffman, R.M. Cancer metastasis directly eradicated by targeted therapy with a modified Salmonella typhimurium. J. Cell. Biochem., 2009, 106(6), 992-998.
[http://dx.doi.org/10.1002/jcb.22078] [PMID: 19199339]
[92]
Xiao, X.; Jin, R.; Li, J.; Bei, Y.; Wei, T. The antitumor effect of suicide gene therapy using Bifidobacterium infantis-mediated herpes sim-plex virus thymidine kinase/ganciclovir in a nude mice model of renal cell carcinoma. Urology, 2014, 84(4), 982.e15-982.e20.
[http://dx.doi.org/10.1016/j.urology.2014.05.020] [PMID: 25123427]
[93]
Ganai, S.; Arenas, R.B.; Forbes, N.S. Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. Br. J. Cancer, 2009, 101(10), 1683-1691.
[http://dx.doi.org/10.1038/sj.bjc.6605403] [PMID: 19861961]
[94]
Hu, B.; Kou, L.; Li, C.; Zhu, L.P.; Fan, Y.R.; Wu, Z.W.; Wang, J.J.; Xu, G.X. Bifidobacterium longum as a delivery system of TRAIL and endostatin cooperates with chemotherapeutic drugs to inhibit hypoxic tumor growth. Cancer Gene Ther., 2009, 16(8), 655-663.
[http://dx.doi.org/10.1038/cgt.2009.7] [PMID: 19229287]
[95]
Cheong, I.; Huang, X.; Bettegowda, C.; Luis, A.; Diaz, J.; Kinzler, K.W.; Zhou, S. A bacterial protein enhances the release and efficacy of liposomal cancer drugs. Science, 2006. Available from: https://www.science.org/doi/abs/10.1126/science.1130651 [cited 2022 Jan 21].
[http://dx.doi.org/10.1126/science.1130651]
[96]
Trump, D.L. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium: Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, Xu M, Penman S, Hoffman RM, AntiCancer, San Diego, CA. Urologic Oncology: Seminars and Orig-inal Investigations., 2005, 23(5), 380.
[97]
Lim, D.; Soo Kim, K.; Kim, H.J.; Ko, K.C.; Song, J.J.; Hyun Choi, J.; Shin, M.; Min, J.J.; Jeong, J.H.; Choy, H.E. Anti-tumor activity of an immunotoxin (TGFα-PE38) delivered by attenuated Salmonella typhimurium. Oncotarget, 2017, 8(23), 37550-37560.
[http://dx.doi.org/10.18632/oncotarget.17197] [PMID: 28473665]
[98]
Pedrolli, D.B.; Ribeiro, N.V.; Squizato, P.N.; de Jesus, V.N.; Cozetto, D.A.; Tuma, R.B.; Gracindo, A.; Cesar, M.B.; Freire, P.J.C.; da Cos-ta, A.F.M.; Lins, M.R.C.R.; Correa, G.G.; Cerri, M.O. Engineering microbial living therapeutics: The synthetic biology toolbox. Trends Biotechnol., 2019, 37(1), 100-115.
[http://dx.doi.org/10.1016/j.tibtech.2018.09.005] [PMID: 30318171]
[99]
Camacho, E.M.; Mesa-Pereira, B.; Medina, C.; Flores, A.; Santero, E. Engineering Salmonella as intracellular factory for effective killing of tumour cells. Sci. Rep., 2016, 6(1), 30591.
[http://dx.doi.org/10.1038/srep30591] [PMID: 27464652]
[100]
Titball, R.W.; Naylor, C.E.; Basak, A.K. The clostridium perfringensα-toxin. Anaerobe, 1999, 5(2), 51-64.
[http://dx.doi.org/10.1006/anae.1999.0191] [PMID: 16887662]
[101]
Plomp, M.; McCaffery, J.M.; Cheong, I.; Huang, X.; Bettegowda, C.; Kinzler, K.W. Spore coat architecture of clostridium novyi NT spores. Journal of Bacteriology, 2007. Available from: https://journals.asm.org/doi/abs/10.1128/JB.00757-0710.1128/JB.00757-07
[102]
Cunningham, C.; Nemunaitis, J. A phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL-017. version: April 9, 2001. Hum. Gene Ther., 2001, 12(12), 1594-1596.
[PMID: 11529249]
[103]
Chang, C.H.; Cheng, W.J.; Chen, S.Y.; Kao, M.C.; Chiang, C.J.; Chao, Y.P. Engineering of Escherichia coli for targeted delivery of transgenes to HER2/neu-positive tumor cells. Biotechnol. Bioeng., 2011, 108(7), 1662-1672.
[http://dx.doi.org/10.1002/bit.23095] [PMID: 21337329]
[104]
Zhang, S.; Chen, Y.; Wang, J.; Tang, F.; Miao, T.; Li, M. Role of nontoxigenic Clostridium novyi in solid tumor therapy. Rev. Med. Microbiol., 2014, 25(3), 71-76.
[http://dx.doi.org/10.1097/MRM.0000000000000005]
[105]
Guimarães, V.; Innocentin, S.; Chatel, J.M.; Lefèvre, F.; Langella, P.; Azevedo, V.; Miyoshi, A. A new plasmid vector for DNA delivery using lactococci. Genet. Vaccines Ther., 2009, 7(1), 4.
[http://dx.doi.org/10.1186/1479-0556-7-4] [PMID: 19208231]
[106]
Xavier, R.J.; Podolsky, D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature, 2007, 448(7152), 427-434.
[http://dx.doi.org/10.1038/nature06005] [PMID: 17653185]
[107]
Martín, R.; Miquel, S.; Ulmer, J.; Kechaou, N.; Langella, P.; Bermúdez-Humarán, L.G. Role of commensal and probiotic bacteria in human health: A focus on inflammatory bowel disease. Microb. Cell Fact., 2013, 12(1), 71.
[http://dx.doi.org/10.1186/1475-2859-12-71] [PMID: 23876056]
[108]
Steidler, L.; Hans, W.; Schotte, L.; Neirynck, S.; Obermeier, F.; Falk, W. Treatment of murine colitis by lactococcus lactis secreting inter-leukin-10. Science, 2000. Available from: https://www.science.org/doi/abs/10.1126/science.289.5483.1352
[http://dx.doi.org/10.1126/science.289.5483.1352]
[109]
Braat, H.; Rottiers, P.; Hommes, D.W.; Huyghebaert, N.; Remaut, E.; Remon, J.P.; van Deventer, S.J.H.; Neirynck, S.; Peppelenbosch, M.P.; Steidler, L. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin. Gastroenterol. Hepatol., 2006, 4(6), 754-759.
[http://dx.doi.org/10.1016/j.cgh.2006.03.028] [PMID: 16716759]
[110]
Muyldermans, S. Nanobodies: Natural single-domain antibodies. Annu. Rev. Biochem., 2013, 82(1), 775-797.
[http://dx.doi.org/10.1146/annurev-biochem-063011-092449] [PMID: 23495938]
[111]
Vandenbroucke, K.; de Haard, H.; Beirnaert, E.; Dreier, T.; Lauwereys, M.; Huyck, L.; Van Huysse, J.; Demetter, P.; Steidler, L.; Remaut, E.; Cuvelier, C.; Rottiers, P. Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol., 2010, 3(1), 49-56.
[http://dx.doi.org/10.1038/mi.2009.116] [PMID: 19794409]
[112]
Caluwaerts, S.; Vandenbroucke, K.; Steidler, L.; Neirynck, S.; Vanhoenacker, P.; Corveleyn, S.; Watkins, B.; Sonis, S.; Coulie, B.; Rotti-ers, P. AG013, a mouth rinse formulation of Lactococcus lactis secreting human trefoil factor 1, provides a safe and efficacious therapeu-tic tool for treating oral mucositis. Oral Oncol., 2010, 46(7), 564-570.
[http://dx.doi.org/10.1016/j.oraloncology.2010.04.008] [PMID: 20542722]
[113]
Riglar, D.T.; Giessen, T.W.; Baym, M.; Kerns, S.J.; Niederhuber, M.J.; Bronson, R.T.; Kotula, J.W.; Gerber, G.K.; Way, J.C.; Silver, P.A. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol., 2017, 35(7), 653-658.
[http://dx.doi.org/10.1038/nbt.3879] [PMID: 28553941]
[114]
Chen, Z.; Guo, L.; Zhang, Y.; Walzem, R.L.; Pendergast, J.S.; Printz, R.L.; Morris, L.C.; Matafonova, E.; Stien, X.; Kang, L.; Coulon, D.; McGuinness, O.P.; Niswender, K.D.; Davies, S.S. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J. Clin. Invest., 2014, 124(8), 3391-3406.
[http://dx.doi.org/10.1172/JCI72517] [PMID: 24960158]
[115]
The beneficial effects of genetically engineered Escherichia colinissle 1917 in obese C57BL/6J mice. International Journal of Obesity, 1917. Available from: https://www.nature.com/articles/s41366-022-01073-8
[116]
Duan, F.F.; Liu, J.H.; March, J.C. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes, 2015, 64(5), 1794-1803.
[http://dx.doi.org/10.2337/db14-0635] [PMID: 25626737]
[117]
Álvarez, B.; Fernández, L.Á. Sustainable therapies by engineered bacteria. Microb. Biotechnol., 2017, 10(5), 1057-1061.
[http://dx.doi.org/10.1111/1751-7915.12778] [PMID: 28696008]
[118]
Wang, L.; Chen, T.; Wang, H.; Wu, X.; Cao, Q.; Wen, K.; Deng, K.Y.; Xin, H. Engineered bacteria of MG1363-pMG36e-GLP-1 attenuated obesity-induced by high fat diet in mice. Front. Cell. Infect. Microbiol., 2021, 11595575https://www.frontiersin.org/arti-cle/10.3389/fcimb.2021.595575
[http://dx.doi.org/10.3389/fcimb.2021.595575] [PMID: 33732656]
[119]
Bai, L.; Gao, M.; Cheng, X.; Kang, G.; Cao, X.; Huang, H. Engineered butyrate-producing bacteria prevents high fat diet-induced obesity in mice. Microb. Cell Fact., 2020, 19(1), 94.
[http://dx.doi.org/10.1186/s12934-020-01350-z] [PMID: 32334588]
[120]
Hwang, I.Y.; Koh, E.; Kim, H.R.; Yew, W.S.; Chang, M.W. Reprogrammable microbial cell-based therapeutics against antibiotic-resistant bacteria. Drug Resist. Updat., 2016, 27, 59-71.
[http://dx.doi.org/10.1016/j.drup.2016.06.002] [PMID: 27449598]
[121]
Goh, Y.L.; He, H.; March, J.C. Engineering commensal bacteria for prophylaxis against infection. Curr. Opin. Biotechnol., 2012, 23(6), 924-930.
[http://dx.doi.org/10.1016/j.copbio.2012.03.004] [PMID: 22459613]
[122]
Hillman, J.D.; Brooks, T.A.; Michalek, S.M.; Harmon, C.C.; Snoep, J.L.; van der Weijden, C.C. Construction and characterization of an effector strain of streptococcus mutans for replacement therapy of dental caries. Infection and Immunity, 2000. Available from: https://journals.asm.org/doi/abs/10.1128/IAI. 68.2.543-549.2000
[http://dx.doi.org/10.1128/IAI.68.2.543-549.2000]
[123]
Chen, H.L.; Lai, Y.W.; Chen, C.S.; Chu, T.W.; Lin, W.; Yen, C.C.; Lin, M.F.; Tu, M.Y.; Chen, C.M. Probiotic Lactobacillus casei express-ing human lactoferrin elevates antibacterial activity in the gastrointestinal tract. Biometals, 2010, 23(3), 543-554.
[http://dx.doi.org/10.1007/s10534-010-9298-0] [PMID: 20148305]
[124]
Li, Z.; Wang, Y.; Liu, J.; Rawding, P.; Bu, J.; Hong, S.; Hu, Q. Chemically and biologically engineered bacteria‐based delivery systems for emerging diagnosis and advanced therapy. Adv. Mater., 2021, 33(38)2102580
[http://dx.doi.org/10.1002/adma.202102580] [PMID: 34347325]
[125]
Pant, N.; Hultberg, A.; Zhao, Y.; Svensson, L.; Pan-Hammarström, Q.; Johansen, K.; Pouwels, P.H.; Ruggeri, F.M.; Hermans, P.; Frenken, L.; Borén, T.; Marcotte, H.; Hammarström, L. Lactobacilli expressing variable domain of llama heavy-chain antibody fragments (lacto-bodies) confer protection against rotavirus-induced diarrhea. J. Infect. Dis., 2006, 194(11), 1580-1588.
[http://dx.doi.org/10.1086/508747] [PMID: 17083044]
[126]
Álvarez, B.; Krogh-Andersen, K.; Tellgren-Roth, C.; Martínez, N.; Günaydın, G.; Lin, Y. An exopolysaccharide-deficient mutant of lacto-bacillus rhamnosus gg efficiently displays a protective llama antibody fragment against rotavirus on its surface. Applied and Environmental Microbiology, 2015. Available from: https://journals.asm.org/doi/abs/10.1128/AEM.00945-1510.1128/AEM.00945-15
[127]
Lagenaur, L.A.; Sanders-Beer, B.E.; Brichacek, B.; Pal, R.; Liu, X.; Liu, Y.; Yu, R.; Venzon, D.; Lee, P.P.; Hamer, D.H. Prevention of vaginal SHIV transmission in macaques by a live recombinant Lactobacillus. Mucosal Immunol., 2011, 4(6), 648-657.
[http://dx.doi.org/10.1038/mi.2011.30] [PMID: 21734653]
[128]
Liu, X.; Lagenaur, L.A.; Simpson, D.A.; Essenmacher, K.P.; Frazier-Parker, C.L.; Liu, Y. Engineered vaginal lactobacillus strain for mu-cosal delivery of the human immunodeficiency virus inhibitor cyanovirin-N. Antimicrobial Agents and Chemotherapy, 2006. Available from: https://journals.asm.org/doi/abs/10.1128/AAC.00493-0610.1128/AAC.00493-06
[129]
Volzing, K.; Borrero, J.; Sadowsky, M.J.; Kaznessis, Y.N. Antimicrobial peptides targeting Gram-negative pathogens, produced and deliv-ered by lactic acid bacteria. ACS Synth. Biol., 2013, 2(11), 643-650.
[http://dx.doi.org/10.1021/sb4000367] [PMID: 23808914]
[130]
Din, M.O.; Danino, T.; Prindle, A.; Skalak, M.; Selimkhanov, J.; Allen, K.; Julio, E.; Atolia, E.; Tsimring, L.S.; Bhatia, S.N.; Hasty, J. Syn-chronized cycles of bacterial lysis for in vivo delivery. Nature, 2016, 536(7614), 81-85.
[http://dx.doi.org/10.1038/nature18930] [PMID: 27437587]
[131]
Wang, Z.; Yu, Q.; Gao, J.; Yang, Q. Mucosal and systemic immune responses induced by recombinant Lactobacillus spp. expressing the hemagglutinin of the avian influenza virus H5N1. Clinical and Vaccine Immunology, 2011. Available from: https://journals.asm.org/doi/abs/10.1128/CVI.05618-11
[132]
Chowdhury, M.Y.E.; Li, R.; Kim, J.H.; Park, M.E.; Kim, T.H.; Pathinayake, P.; Weeratunga, P.; Song, M.K.; Son, H.Y.; Hong, S.P.; Sung, M.H.; Lee, J.S.; Kim, C.J. Mucosal vaccination with recombinant Lactobacillus casei-displayed CTA1-conjugated consensus matrix pro-tein-2 (sM2) induces broad protection against divergent influenza subtypes in BALB/c mice. PLoS One, 2014, 9(4)e94051
[http://dx.doi.org/10.1371/journal.pone.0094051] [PMID: 24714362]
[133]
Daniel, C.; Titecat, M.; Poiret, S.; Cayet, D.; Boutillier, D.; Simonet, M.; Sirard, J.C.; Lemaître, N.; Sebbane, F. Characterization of the pro-tective immune response to Yersinia pseudotuberculosis infection in mice vaccinated with an LcrV-secreting strain of Lactococcus lactis. Vaccine, 2016, 34(47), 5762-5767.
[http://dx.doi.org/10.1016/j.vaccine.2016.09.060] [PMID: 27742220]
[134]
Yagnik, B.; Sharma, D.; Padh, H.; Desai, P. Immunization with r- Lactococcus lactis expressing outer membrane protein A of Shigella dysenteriae type-1: Evaluation of oral and intranasal route of administration. J. Appl. Microbiol., 2017, 122(2), 493-505.
[http://dx.doi.org/10.1111/jam.13353] [PMID: 27860045]
[135]
Reese, K.A.; Lupfer, C.; Johnson, R.C.; Mitev, G.M.; Mullen, V.M.; Geller, B.L.; Pastey, M. A novel lactococcal vaccine expressing a peptide from the M2 antigen of H5N2 highly pathogenic avian influenza a virus prolongs survival of vaccinated chickens. Vet. Med. Int., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/316926] [PMID: 23766929]
[136]
Parlane, N.A.; Grage, K.; Lee, J.W.; Buddle, B.M.; Denis, M.; Rehm, B.H.A. Production of a particulate hepatitis C vaccine candidate by an engineered Lactococcus lactis strain. Applied and Environmental Microbiology, 2011. Available from: https://jour-nals.asm.org/doi/abs/10.1128/AEM.06420-11
[137]
Hancock, B.M.; McGuire, K.L.; Tsuji, S.; Reil, K.; Hernandez, V.; Giacalone, M.J.; Godbey, W.T. A single intravesical instillation of VAX014 inhibits orthotopic superficial bladder tumor implantation to increase survival. Anticancer Res., 2016, 36(12), 6243-6248.
[http://dx.doi.org/10.21873/anticanres.11218] [PMID: 27919942]
[138]
de Groot, P.; Nikolic, T.; Pellegrini, S.; Sordi, V.; Imangaliyev, S.; Rampanelli, E.; Hanssen, N.; Attaye, I.; Bakker, G.; Duinkerken, G.; Joosten, A.; Prodan, A.; Levin, E.; Levels, H.; Potter van Loon, B.; van Bon, A.; Brouwer, C.; van Dam, S.; Simsek, S.; van Raalte, D.; Stam, F.; Gerdes, V.; Hoogma, R.; Diekman, M.; Gerding, M.; Rustemeijer, C.; de Bakker, B.; Hoekstra, J.; Zwinderman, A.; Bergman, J.; Holleman, F.; Piemonti, L.; De Vos, W.; Roep, B.; Nieuwdorp, M. Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial. Gut, 2021, 70(1), 92-105.
[http://dx.doi.org/10.1136/gutjnl-2020-322630] [PMID: 33106354]
[139]
Kurtz, C.B.; Millet, Y.A.; Puurunen, M.K.; Perreault, M.; Charbonneau, M.R.; Isabella, V.M. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dosedependent exposure in healthy humans. Science Translational Medicine, 2019. Available from: https://www.science.org/doi/abs/10.1126/scitranslmed.aau7975
[140]
Begnini, K.R.; Buss, J.H.; Collares, T.; Seixas, F.K. Recombinant Mycobacterium bovis BCG for immunotherapy in nonmuscle invasive bladder cancer. Appl. Microbiol. Biotechnol., 2015, 99(9), 3741-3754.
[http://dx.doi.org/10.1007/s00253-015-6495-3] [PMID: 25794874]
[141]
Llosa, M.; Schröder, G.; Dehio, C. New perspectives into bacterial DNA transfer to human cells. Trends Microbiol., 2012, 20(8), 355-359.
[http://dx.doi.org/10.1016/j.tim.2012.05.008] [PMID: 22748513]
[142]
Malmgren, R.A.; Flanigan, C.C. Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration. Cancer Res., 1955, 15(7), 473-478.
[PMID: 13240693]
[143]
Chan, C.T.Y.; Lee, J.W.; Cameron, D.E.; Bashor, C.J.; Collins, J.J. ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial con-tainment. Nat. Chem. Biol., 2016, 12(2), 82-86.
[http://dx.doi.org/10.1038/nchembio.1979] [PMID: 26641934]
[144]
Shepherd, E.S.; DeLoache, W.C.; Pruss, K.M.; Whitaker, W.R.; Sonnenburg, J.L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature, 2018, 557(7705), 434-438.
[http://dx.doi.org/10.1038/s41586-018-0092-4] [PMID: 29743671]
[145]
Chien, T.; Jones, D.R.; Danino, T. Engineered bacterial production of volatile methyl salicylate. ACS Synth. Biol., 2021, 10(1), 204-208.
[http://dx.doi.org/10.1021/acssynbio.0c00497] [PMID: 33331760]
[146]
Reardon-Robinson, M.E.; Ton-That, H. Disulfide-bond-forming pathways in gram-positive bacteria. Journal of Bacteriology, 2015. Available from: https://journals.asm.org/doi/abs/10.1128/JB.00769-15.
[147]
Petrof, E.O.; Claud, E.C.; Gloor, G.B.; Allen-Vercoe, E. Microbial ecosystems therapeutics: A new paradigm in medicine? Benef. Microbes, 2013, 4(1), 53-65.
[http://dx.doi.org/10.3920/BM2012.0039] [PMID: 23257018]
[148]
Reardon, S. Microbiome therapy gains market traction. Nature, 2014, 509(7500), 269-270.
[http://dx.doi.org/10.1038/509269a] [PMID: 24828169]
[149]
Hood, L.; Heath, J.R.; Phelps, M.E.; Lin, B. Systems biology and new technologies enable predictive and preventative medicine. Science, 2004. Available from: https://www.science.org/doi/abs/10.1126/science.1104635
[http://dx.doi.org/10.1126/science.1104635]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy