Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Acid-sensing Ion Channels: Implications for Intervertebral Disc Degeneration

Author(s): Rui Ran, Yi Wu and Hai-hong Zhang*

Volume 24, Issue 11, 2023

Published on: 06 January, 2023

Page: [1343 - 1350] Pages: 8

DOI: 10.2174/1389201024666221209163234

Price: $65

Abstract

Intervertebral disc degeneration (IDD) is the leading cause of lower back pain and seriously affects the quality of life of patients. The intervertebral disc (IVD) is an environment of hypoxia, ischemia, acidity, and hypertonicity. Matrix acidity potentially negatively affects gene expression, activity, proliferation, and apoptosis of IVD cells. Acid-sensing ion channels (ASICs) are a group of proton-gated ion channels that play important roles in physiological and pathological conditions. The distribution of ASICs in the nucleus pulposus (NP), annulus fibrosus, cartilage endplate, and nucleus pulposus mesenchymal stem cells (NP-MSCs), as well as the special functions of ASIC1a and ASIC3, show that ASICs play an important role in IDD. In this review, we comprehensively discuss the roles of ASICs in the development and basic pathology of IDD and their potential relevance as therapeutic targets. A deeper understanding of the roles of ASICs in these processes may provide novel therapeutic targets for IDD prevention and treatment.

Next »
Graphical Abstract

[1]
Chen, S.; Luo, M.; Kou, H.; Shang, G.; Ji, Y.; Liu, H. A review of gene therapy delivery systems for intervertebral disc degeneration. Curr. Pharm. Biotechnol., 2020, 21(3), 194-205.
[http://dx.doi.org/10.2174/1389201020666191024171618] [PMID: 31749423]
[2]
Li, Z.; Yu, X.; Shen, J.; Chan, M.T.V.; Wu, W.K.K. MicroRNA in intervertebral disc degeneration. Cell Prolif., 2015, 48(3), 278-283.
[http://dx.doi.org/10.1111/cpr.12180] [PMID: 25736871]
[3]
Li, H.; Cui, Q.; Dong, Z.; Zhang, J.; Li, H.; Zhao, L. Downregulation of miR-27b is involved in loss of type II collagen by directly target-ing matrix metalloproteinase 13 (MMP13) in human intervertebral disc degeneration. Spine, 2016, 41(3), E116-E123.
[http://dx.doi.org/10.1097/BRS.0000000000001139] [PMID: 26583473]
[4]
Yu, X.; Li, Z.; Shen, J.; Wu, W.K.K.; Liang, J.; Weng, X.; Qiu, G. MicroRNA-10b promotes nucleus pulposus cell proliferation through RhoC-Akt pathway by targeting HOXD10 in intervetebral disc degeneration. PLoS One, 2013, 8(12)e83080
[http://dx.doi.org/10.1371/journal.pone.0083080] [PMID: 24376640]
[5]
Le Maitre, C.L.; Pockert, A.; Buttle, D.J.; Freemont, A.J.; Hoyland, J.A. Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem. Soc. Trans., 2007, 35(4), 652-655.
[http://dx.doi.org/10.1042/BST0350652] [PMID: 17635113]
[6]
Yuan, F.L.; Wang, H.R.; Zhao, M.D.; Yuan, W.; Cao, L.; Duan, P.G.; Jiang, Y.Q.; Li, X.L.; Dong, J. Ovarian cancer G protein-coupled receptor 1 is involved in acid-induced apoptosis of endplate chondrocytes in intervertebral discs. J. Bone Miner. Res., 2014, 29(1), 67-77.
[http://dx.doi.org/10.1002/jbmr.2030] [PMID: 23821474]
[7]
Vadalà, G.; Ambrosio, L.; Russo, F.; Papalia, R.; Denaro, V. Interaction between mesenchymal stem cells and intervertebral disc microen-vironment: From cell therapy to tissue engineering. Stem Cells Int., 2019, 2019, 1-15.
[http://dx.doi.org/10.1155/2019/2376172] [PMID: 32587618]
[8]
Urban, J.P.G.; Smith, S.; Fairbank, J.C.T. Nutrition of the intervertebral disc. Spine, 2004, 29(23), 2700-2709.
[http://dx.doi.org/10.1097/01.brs.0000146499.97948.52] [PMID: 15564919]
[9]
Risbud, M.V.; Guttapalli, A.; Stokes, D.G.; Hawkins, D.; Danielson, K.G.; Schaer, T.P.; Albert, T.J.; Shapiro, I.M. Nucleus pulposus cells express HIF-1α under normoxic culture conditions: A metabolic adaptation to the intervertebral disc microenvironment. J. Cell. Biochem., 2006, 98(1), 152-159.
[http://dx.doi.org/10.1002/jcb.20765] [PMID: 16408279]
[10]
Sivan, S.S.; Wachtel, E.; Roughley, P. Structure, function, aging and turnover of aggrecan in the intervertebral disc. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(10), 3181-3189.
[http://dx.doi.org/10.1016/j.bbagen.2014.07.013] [PMID: 25065289]
[11]
Bartels, E.M.; Fairbank, J.C.T.; Winlove, C.P.; Urban, J.P.G. Oxygen and lactate concentrations measured in vivo in the intervertebral discs of patients with scoliosis and back pain. Spine, 1998, 23(1), 1-7.
[http://dx.doi.org/10.1097/00007632-199801010-00001] [PMID: 9460145]
[12]
Huang, Y.C.; Leung, V.Y.L.; Lu, W.W.; Luk, K.D.K. The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc. Spine J., 2013, 13(3), 352-362.
[http://dx.doi.org/10.1016/j.spinee.2012.12.005] [PMID: 23340343]
[13]
Gonzales, E.B.; Sumien, N. Acidity and acid-sensing ion channels in the normal and alzheimer’s disease brain. J. Alzheimers Dis., 2017, 57(4), 1137-1144.
[http://dx.doi.org/10.3233/JAD-161131] [PMID: 28211811]
[14]
Xu, S.; Liu, C.; Ma, Y.; Ji, H.L.; Li, X. Potential roles of amiloride-sensitive sodium channels in cancer development. BioMed Res. Int., 2016, 2016, 1-6.
[http://dx.doi.org/10.1155/2016/2190216] [PMID: 27403419]
[15]
Wu, X.; Ren, G.; Zhou, R.; Ge, J.; Chen, F.H. The role of Ca2+ in acid-sensing ion channel 1a-mediated chondrocyte pyroptosis in rat adjuvant arthritis. Lab. Invest., 2019, 99(4), 499-513.
[http://dx.doi.org/10.1038/s41374-018-0135-3] [PMID: 30487596]
[16]
Uchiyama, Y.; Cheng, C.C.; Danielson, K.G.; Mochida, J.; Albert, T.J.; Shapiro, I.M.; Risbud, M.V. Expression of acid-sensing ion chan-nel 3 (ASIC3) in nucleus pulposus cells of the intervertebral disc is regulated by p75NTR and ERK signaling. J. Bone Miner. Res., 2007, 22(12), 1996-2006.
[http://dx.doi.org/10.1359/jbmr.070805] [PMID: 17696763]
[17]
Wemmie, J.A.; Price, M.P.; Welsh, M.J. Acid-sensing ion channels: Advances, questions and therapeutic opportunities. Trends Neurosci., 2006, 29(10), 578-586.
[http://dx.doi.org/10.1016/j.tins.2006.06.014] [PMID: 16891000]
[18]
Sun, X.; Zhao, D.; Li, Y.L.; Sun, Y.; Lei, X.H.; Zhang, J.N.; Wu, M.M.; Li, R.Y.; Zhao, Z.F.; Zhang, Z.R.; Jiang, C.L. Regulation of ASIC1 by Ca2+/calmodulin-dependent protein kinase II in human glioblastoma multiforme. Oncol. Rep., 2013, 30(6), 2852-2858.
[http://dx.doi.org/10.3892/or.2013.2777] [PMID: 24100685]
[19]
Berridge, M.J.; Bootman, M.D.; Roderick, H.L. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol., 2003, 4(7), 517-529.
[http://dx.doi.org/10.1038/nrm1155] [PMID: 12838335]
[20]
Zhou, R.; Wu, X.; Wang, Z.; Ge, J.; Chen, F. Interleukin-6 enhances acid-induced apoptosis via upregulating acid-sensing ion channel 1a expression and function in rat articular chondrocytes. Int. Immunopharmacol., 2015, 29(2), 748-760.
[http://dx.doi.org/10.1016/j.intimp.2015.08.044] [PMID: 26359543]
[21]
Li, X.; Xu, R.S.; Jiang, D.L.; He, X.L.; Jin, C.; Lu, W.G.; Su, Q.; Yuan, F.L. Acid-sensing ion channel 1a is involved in acid-induced oste-oclastogenesis by regulating activation of the transcription factor NFATc1. FEBS Lett., 2013, 587(19), 3236-3242.
[http://dx.doi.org/10.1016/j.febslet.2013.08.017] [PMID: 23994523]
[22]
Sun, X.; Cao, Y.B.; Hu, L.F.; Yang, Y.P.; Li, J.; Wang, F.; Liu, C.F. ASICs mediate the modulatory effect by paeoniflorin on α-synuclein autophagic degradation. Brain Res., 2011, 1396, 77-87.
[http://dx.doi.org/10.1016/j.brainres.2011.04.011] [PMID: 21529788]
[23]
Saugstad, J.A.; Roberts, J.A.; Dong, J.; Zeitouni, S.; Evans, R.J. Analysis of the membrane topology of the acid-sensing ion channel 2a. J. Biol. Chem., 2004, 279(53), 55514-55519.
[http://dx.doi.org/10.1074/jbc.M411849200] [PMID: 15504740]
[24]
Jasti, J.; Furukawa, H.; Gonzales, E.B.; Gouaux, E. Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature, 2007, 449(7160), 316-323.
[http://dx.doi.org/10.1038/nature06163] [PMID: 17882215]
[25]
Gonzales, E.B.; Kawate, T.; Gouaux, E. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature, 2009, 460(7255), 599-604.
[http://dx.doi.org/10.1038/nature08218] [PMID: 19641589]
[26]
Kellenberger, S.; Schild, L. International union of basic and clinical pharmacology. XCI. structure, function, and pharmacology of acid-sensing ion channels and the epithelial Na+ channel. Pharmacol. Rev., 2015, 67(1), 1-35.
[http://dx.doi.org/10.1124/pr.114.009225] [PMID: 25287517]
[27]
Gründer, S.; Pusch, M. Biophysical properties of acid-sensing ion channels (ASICs). Neuropharmacology, 2015, 94, 9-18.
[http://dx.doi.org/10.1016/j.neuropharm.2014.12.016] [PMID: 25585135]
[28]
Sherwood, T.W.; Frey, E.N.; Askwith, C.C. Structure and activity of the acid-sensing ion channels. Am. J. Physiol. Cell Physiol., 2012, 303(7), C699-C710.
[http://dx.doi.org/10.1152/ajpcell.00188.2012] [PMID: 22843794]
[29]
Ruan, N.; Tribble, J.; Peterson, A.M.; Jiang, Q.; Wang, J.Q.; Chu, X.P. Acid-sensing ion channels and mechanosensation. Int. J. Mol. Sci., 2021, 22(9), 4810.
[http://dx.doi.org/10.3390/ijms22094810] [PMID: 34062742]
[30]
Li, M.; Inoue, K.; Branigan, D.; Kratzer, E.; Hansen, J.C.; Chen, J.W.; Simon, R.P.; Xiong, Z.G. Acid-sensing ion channels in acidosis-induced injury of human brain neurons. J. Cereb. Blood Flow Metab., 2010, 30(6), 1247-1260.
[http://dx.doi.org/10.1038/jcbfm.2010.30] [PMID: 20216553]
[31]
Wemmie, J.A.; Taugher, R.J.; Kreple, C.J. Acid-sensing ion channels in pain and disease. Nat. Rev. Neurosci., 2013, 14(7), 461-471.
[http://dx.doi.org/10.1038/nrn3529] [PMID: 23783197]
[32]
Kweon, H.J.; Kim, D.I.; Bae, Y.; Park, J.Y.; Suh, B.C. Acid-sensing ion channel 2a (ASIC2a) promotes surface trafficking of ASIC2b via heteromeric assembly. Sci. Rep., 2016, 6(1), 30684.
[http://dx.doi.org/10.1038/srep30684] [PMID: 27477936]
[33]
Chen, X.; Polleichtner, G.; Kadurin, I.; Gründer, S. Zebrafish acid-sensing ion channel (ASIC) 4, characterization of homo- and heter-omeric channels, and identification of regions important for activation by H+. J. Biol. Chem., 2007, 282(42), 30406-30413.
[http://dx.doi.org/10.1074/jbc.M702229200] [PMID: 17686779]
[34]
Gong, W.; Kolker, S.J.; Usachev, Y.; Walder, R.Y.; Boyle, D.L.; Firestein, G.S.; Sluka, K.A. Acid-sensing ion channel 3 decreases phos-phorylation of extracellular signal-regulated kinases and induces synoviocyte cell death by increasing intracellular calcium. Arthritis Res. Ther., 2014, 16(3), R121.
[http://dx.doi.org/10.1186/ar4577] [PMID: 24923411]
[35]
Sluka, K.A.; Rasmussen, L.A.; Edgar, M.M.; O’Donnell, J.M.; Walder, R.Y.; Kolker, S.J.; Boyle, D.L.; Firestein, G.S. Acid-sensing ion channel 3 deficiency increases inflammation but decreases pain behavior in murine arthritis. Arthritis Rheum., 2013, 65(5), 1194-1202.
[http://dx.doi.org/10.1002/art.37862] [PMID: 23335302]
[36]
Jahr, H.; van Driel, M.; van Osch, G.J.V.M.; Weinans, H.; van Leeuwen, J.P.T.M. Identification of acid-sensing ion channels in bone. Biochem. Biophys. Res. Commun., 2005, 337(1), 349-354.
[http://dx.doi.org/10.1016/j.bbrc.2005.09.054] [PMID: 16185661]
[37]
Uchiyama, Y.; Guttapalli, A.; Gajghate, S.; Mochida, J.; Shapiro, I.M.; Risbud, M.V. SMAD3 functions as a transcriptional repressor of acid-sensing ion channel 3 (ASIC3) in nucleus pulposus cells of the intervertebral disc. J. Bone Miner. Res., 2008, 23(10), 1619-1628.
[http://dx.doi.org/10.1359/jbmr.080502] [PMID: 18466073]
[38]
Cuesta, A.; del Valle, M.E.; García-Suárez, O.; Viña, E.; Cabo, R.; Vázquez, G.; Cobo, J.L.; Murcia, A.; Alvarez-Vega, M.; García-Cosamalón, J.; Vega, J.A. Acid-sensing ion channels in healthy and degenerated human intervertebral disc. Connect. Tissue Res., 2014, 55(3), 197-204.
[http://dx.doi.org/10.3109/03008207.2014.884083] [PMID: 24432912]
[39]
Cai, F.; Wang, F.; Hong, X.; Xie, X.H.; Shi, R.; Xie, Z.Y.; Wu, X.T. Acid-sensing ion channel 1a regulates the survival of nucleus pulpo-sus cells in the acidic environment of degenerated intervertebral discs. Iran. J. Basic Med. Sci., 2016, 19(8), 812-820.
[PMID: 27746861]
[40]
Sun, X.; Jin, J.; Zhang, J.G.; Qi, L.; Braun, F.K.; Zhang, X.D.; Xu, F. Expression of acid-sensing ion channels in nucleus pulposus cells of the human intervertebral disk is regulated by non-steroid anti-inflammatory drugs. Acta Biochim. Biophys. Sin., 2014, 46(9), 774-781.
[http://dx.doi.org/10.1093/abbs/gmu067] [PMID: 25079679]
[41]
Cuesta, A.; Viña, E.; Cabo, R.; Vázquez, G.; Cobo, R.; García-Suárez, O.; García-Cosamalón, J.; Vega, J.A. Acid-sensing ion channel 2 (ASIC 2) and trkb interrelationships within the intervertebral disc. Int. J. Clin. Exp. Pathol., 2015, 8(9), 10305-10314.
[PMID: 26617738]
[42]
Li, X.; Wu, F.R.; Xu, R.S.; Hu, W.; Jiang, D.L.; Ji, C.; Chen, F.H.; Yuan, F.L. Acid-sensing ion channel 1a-mediated calcium influx regu-lates apoptosis of endplate chondrocytes in intervertebral discs. Expert Opin. Ther. Targets, 2014, 18(1), 1-14.
[http://dx.doi.org/10.1517/14728222.2014.859248] [PMID: 24261866]
[43]
Yuan, F.L.; Zhao, M.D.; Jiang, D.L.; Jin, C.; Liu, H.F.; Xu, M.H.; Hu, W.; Li, X. Involvement of acid-sensing ion channel 1a in matrix metabolism of endplate chondrocytes under extracellular acidic conditions through NF-κB transcriptional activity. Cell Stress Chaperones, 2016, 21(1), 97-104.
[http://dx.doi.org/10.1007/s12192-015-0643-7] [PMID: 26384841]
[44]
Gilbert, H.T.J.; Hodson, N.; Baird, P.; Richardson, S.M.; Hoyland, J.A. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel-3 as a potential therapeutic target. Sci. Rep., 2016, 6(1), 37360.
[http://dx.doi.org/10.1038/srep37360] [PMID: 27853274]
[45]
Wang, D.; Zhu, H.; Cheng, W.; Lin, S.; Shao, R.; Pan, H. Effects of hypoxia and ASIC3 on nucleus pulposus cells: From cell behavior to molecular mechanism. Biomed. Pharmacother., 2019, 117109061
[http://dx.doi.org/10.1016/j.biopha.2019.109061] [PMID: 31202172]
[46]
Wang, D.; Pan, H.; Zhu, H.; Zhu, L.; He, Y.J.; Wang, J.; Jia, G.Y. Upregulation of nuclear factor-κB and acid sensing ion channel 3 in dorsal root ganglion following application of nucleus pulposus onto the nerve root in rats. Mol. Med. Rep., 2017, 16(4), 4309-4314.
[http://dx.doi.org/10.3892/mmr.2017.7094] [PMID: 28765874]
[47]
Navone, S.E.; Marfia, G.; Canzi, L.; Ciusani, E.; Canazza, A.; Visintini, S.; Campanella, R.; Parati, E.A. Expression of neural and neu-rotrophic markers in nucleus pulposus cells isolated from degenerated intervertebral disc. J. Orthop. Res., 2012, 30(9), 1470-1477.
[http://dx.doi.org/10.1002/jor.22098] [PMID: 22374745]
[48]
Zhao, K.; An, R.; Xiang, Q.; Li, G.; Wang, K.; Song, Y.; Liao, Z.; Li, S.; Hua, W.; Feng, X.; Wu, X.; Zhang, Y.; Das, A.; Yang, C. Acid-sensing ion channels regulate nucleus pulposus cell inflammation and pyroptosis via the NLRP3 inflammasome in intervertebral disc de-generation. Cell Prolif., 2021, 54(1)e12941
[http://dx.doi.org/10.1111/cpr.12941] [PMID: 33111436]
[49]
Han, B.; Wang, H.; Li, H.; Tao, Y.; Liang, C.; Li, F.; Chen, G.; Chen, Q. Nucleus pulposus mesenchymal stem cells in acidic conditions mimicking degenerative intervertebral discs give better performance than adipose tissue-derived mesenchymal stem cells. Cells Tissues Organs, 2014, 199(5-6), 342-352.
[http://dx.doi.org/10.1159/000369452] [PMID: 25661884]
[50]
Wang, S.Z.; Rui, Y.F.; Lu, J.; Wang, C. Cell and molecular biology of intervertebral disc degeneration: Current understanding and implica-tions for potential therapeutic strategies. Cell Prolif., 2014, 47(5), 381-390.
[http://dx.doi.org/10.1111/cpr.12121] [PMID: 25112472]
[51]
Yu, G.M.; Liu, D.; Yuan, N.; Liu, B.H. Dual role of acid-sensing ion channels 3 in rheumatoid arthritis: Destruction or protection? Immunopharmacol. Immunotoxicol., 2018, 40(4), 273-277.
[http://dx.doi.org/10.1080/08923973.2018.1485156] [PMID: 30035658]
[52]
Walker, M.H.; Anderson, D.G. Molecular basis of intervertebral disc degeneration. Spine J., 2004, 4(6)(Suppl.), S158-S166.
[http://dx.doi.org/10.1016/j.spinee.2004.07.010] [PMID: 15541661]
[53]
Luo, L.; Jian, X.; Sun, H.; Qin, J.; Wang, Y.; Zhang, J.; Shen, Z.; Yang, D.; Li, C.; Zhao, P.; Liu, M.; Tian, Z.; Zhou, Y. Cartilage endplate stem cells inhibit intervertebral disc degeneration by releasing exosomes to nucleus pulposus cells to activate Akt/autophagy. Stem Cells, 2021, 39(4), 467-481.
[http://dx.doi.org/10.1002/stem.3322] [PMID: 33459443]
[54]
Lakstins, K.; Arnold, L.; Gunsch, G.; Flanigan, D.; Khan, S.; Gadde, N.; Jones, B.; Agarwal, G.; Purmessur, D. Characterization of the human intervertebral disc cartilage endplate at the molecular, cell, and tissue levels. J. Orthop. Res., 2021, 39(9), 1898-1907.
[http://dx.doi.org/10.1002/jor.24854] [PMID: 32915471]
[55]
Yingjun, G.; Xun, Q. Acid-sensing ion channels under hypoxia. Channels, 2013, 7(4), 231-237.
[http://dx.doi.org/10.4161/chan.25223] [PMID: 23764948]
[56]
Molladavoodi, S.; McMorran, J.; Gregory, D. Mechanobiology of annulus fibrosus and nucleus pulposus cells in intervertebral discs. Cell Tissue Res., 2020, 379(3), 429-444.
[http://dx.doi.org/10.1007/s00441-019-03136-1] [PMID: 31844969]
[57]
Priyadarshani, P.; Li, Y.; Yao, L. Advances in biological therapy for nucleus pulposus regeneration. Osteoarthritis Cartilage, 2016, 24(2), 206-212.
[http://dx.doi.org/10.1016/j.joca.2015.08.014] [PMID: 26342641]
[58]
Hughes, S.P.F.; Freemont, A.J.; Hukins, D.W.L.; McGregor, A.H.; Roberts, S. The pathogenesis of degeneration of the intervertebral disc and emerging therapies in the management of back pain. J. Bone Joint Surg. Br., 2012, 94-B(10), 1298-1304.
[http://dx.doi.org/10.1302/0301-620X.94B10.28986] [PMID: 23015552]
[59]
Blanco, J.F.; Graciani, I.F.; Sanchez-Guijo, F.M.; Muntión, S.; Hernandez-Campo, P.; Santamaria, C.; Carrancio, S.; Barbado, M.V.; Cruz, G.; Gutierrez-Cosío, S.; Herrero, C.; San Miguel, J.F.; Briñon, J.G.; del Cañizo, M.C. Isolation and characterization of mesenchymal stro-mal cells from human degenerated nucleus pulposus: comparison with bone marrow mesenchymal stromal cells from the same subjects. Spine, 2010, 35(26), 2259-2265.
[http://dx.doi.org/10.1097/BRS.0b013e3181cb8828] [PMID: 20622750]
[60]
Sakai, D.; Andersson, G.B.J. Stem cell therapy for intervertebral disc regeneration: Obstacles and solutions. Nat. Rev. Rheumatol., 2015, 11(4), 243-256.
[http://dx.doi.org/10.1038/nrrheum.2015.13] [PMID: 25708497]
[61]
Sakai, D.; Nakamura, Y.; Nakai, T.; Mishima, T.; Kato, S.; Grad, S.; Alini, M.; Risbud, M.V.; Chan, D.; Cheah, K.S.E.; Yamamura, K.; Masuda, K.; Okano, H.; Ando, K.; Mochida, J. Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the inter-vertebral disc. Nat. Commun., 2012, 3(1), 1264.
[http://dx.doi.org/10.1038/ncomms2226] [PMID: 23232394]
[62]
Liu, J.; Tao, H.; Wang, H.; Dong, F.; Zhang, R.; Li, J.; Ge, P.; Song, P.; Zhang, H.; Xu, P.; Liu, X.; Shen, C. Biological behavior of human nucleus pulposus mesenchymal stem cells in response to changes in the acidic environment during intervertebral disc degeneration. Stem Cells Dev., 2017, 26(12), 901-911.
[http://dx.doi.org/10.1089/scd.2016.0314] [PMID: 28298159]
[63]
Ding, J.; Zhang, R.; Li, H.; Ji, Q.; Cheng, X.; Thorne, R.F.; Hondermarck, H.; Liu, X.; Shen, C. ASIC1 and ASIC3 mediate cellular senes-cence of human nucleus pulposus mesenchymal stem cells during intervertebral disc degeneration. Aging, 2021, 13(7), 10703-10723.
[http://dx.doi.org/10.18632/aging.202850] [PMID: 33824228]
[64]
Illien-Jünger, S.; Pattappa, G.; Peroglio, M.; Benneker, L.M.; Stoddart, M.J.; Sakai, D.; Mochida, J.; Grad, S.; Alini, M. Homing of mesen-chymal stem cells in induced degenerative intervertebral discs in a whole organ culture system. Spine, 2012, 37(22), 1865-1873.
[http://dx.doi.org/10.1097/BRS.0b013e3182544a8a] [PMID: 22433498]
[65]
Swain, S.M.; Parameswaran, S.; Sahu, G.; Verma, R.S.; Bera, A.K. Proton-gated ion channels in mouse bone marrow stromal cells. Stem Cell Res., 2012, 9(2), 59-68.
[http://dx.doi.org/10.1016/j.scr.2012.04.005] [PMID: 22677706]
[66]
Gansau, J.; Buckley, C.T. Priming as a strategy to overcome detrimental pH effects on cells for intervertebral disc regeneration. Eur. Cell. Mater., 2021, 41, 153-169.
[http://dx.doi.org/10.22203/eCM.v041a11] [PMID: 33565057]
[67]
Cai, F.; Hong, X.; Tang, X.; Liu, N.C.; Wang, F.; Zhu, L.; Xie, X.H.; Xie, Z.Y.; Wu, X.T. ASIC1a activation induces calcium-dependent apoptosis of BMSCs under conditions that mimic the acidic microenvironment of the degenerated intervertebral disc. Biosci. Rep., 2019, 39(11)BSR20192708
[http://dx.doi.org/10.1042/BSR20192708] [PMID: 31696219]
[68]
Vullo, S.; Kellenberger, S. A molecular view of the function and pharmacology of acid-sensing ion channels. Pharmacol. Res., 2020, 154104166
[http://dx.doi.org/10.1016/j.phrs.2019.02.005] [PMID: 30731197]
[69]
Cristofori-Armstrong, B.; Rash, L.D. Acid-sensing ion channel (ASIC) structure and function: Insights from spider, snake and sea anem-one venoms. Neuropharmacology, 2017, 127, 173-184.
[http://dx.doi.org/10.1016/j.neuropharm.2017.04.042] [PMID: 28457973]
[70]
Joeres, N.; Augustinowski, K.; Neuhof, A.; Assmann, M.; Gründer, S. Functional and pharmacological characterization of two different ASIC1a/2a heteromers reveals their sensitivity to the spider toxin PcTx1. Sci. Rep., 2016, 6(1), 27647.
[http://dx.doi.org/10.1038/srep27647] [PMID: 27277303]
[71]
Diochot, S.; Baron, A.; Rash, L.D.; Deval, E.; Escoubas, P.; Scarzello, S.; Salinas, M.; Lazdunski, M. A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO J., 2004, 23(7), 1516-1525.
[http://dx.doi.org/10.1038/sj.emboj.7600177] [PMID: 15044953]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy