Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

New Niflumic Acid Derivatives as EGFR Inhibitors: Design, Synthesis, In silico Studies, and Anti-proliferative Assessment

Author(s): Yahya S. Yaseen*, Ammar A.R. Mahmood, Ali H. Abbas, Wurood A. Shihab and Lubna H. Tahtamouni

Volume 19, Issue 5, 2023

Published on: 17 January, 2023

Page: [445 - 459] Pages: 15

DOI: 10.2174/1573406419666221219144804

Price: $65

conference banner
Abstract

Background: 1,3,4-oxadizole and pyrazole derivatives are very important scaffolds for medicinal chemistry. A literature survey revealed that they possess a wide spectrum of biological activities including anti-inflammatory and antitumor effects.

Objectives: To describe the synthesis and evaluation of two classes of new niflumic acid (NF) derivatives, the 1,3,4-oxadizole derivatives (compounds 3 and (4A-E) and pyrazole derivatives (compounds 5 and 6), as EGFR tyrosine kinase inhibitors in silico and in vitro.

Methods: The designed compounds were synthesized using conventional organic synthesis methods. The antitumor activities of the new NF derivatives against HepG2 hepatocellular carcinoma and A549 non-small cell lung cancer cell lines were assessed in vitro via MTT assay, flow cytometry, RT-PCR, as well as via molecular docking studies.

Results: The cytotoxicity results indicated that the newly synthesized NF derivatives were cytotoxic against the two cancer cell lines, with compound 6 being the most cytotoxic, achieving the lowest IC50 concentration. Furthermore, compound 6 targeted EGFR tyrosine kinase leading to cell cycle arrest at the G2/M cell cycle phase and induction of apoptosis. The in vitro biological investigation results matched those of the molecular docking analysis. In conclusion, the new NF derivatives, specifically compound 6, exhibited favorable pharmacokinetic features and are promising EGFR tyrosine kinase inhibitors.

Conclusion: A series of niflumic acid derivatives (3, 4A-E, 5, and 6) were successfully created, and FT-IR, 1H, 13CNMR, and HRMS were used to confirm their chemical structures. According to molecular docking studies, compounds 3, 5, and 6 have the highest docking scores (ΔG), and most tested compounds have a good pharmacokinetic profile. Results of compound 6 in vitro antitumor activities showed that it is a promising EGFR tyrosine kinase inhibitor.

Graphical Abstract

[1]
Wu, S.; Zhu, W.; Thompson, P.; Hannun, Y.A. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat. Commun., 2018, 9(1), 3490.
[http://dx.doi.org/10.1038/s41467-018-05467-z] [PMID: 30154431]
[2]
Safwat, G.M.; Hassanin, K.M.A.; Mohammed, E.T.; Ahmed, E.K.; Abdel Rheim, M.R.; Ameen, M.A.; Abdel-Aziz, M.; Gouda, A.M.; Peluso, I.; Almeer, R.; Abdel-Daim, M.M.; Abdel-Wahab, A. Synthesis, anticancer assessment, and molecular docking of novel chalcone-thienopyrimidine derivatives in HepG2 and MCF-7 cell lines. Oxid. Med. Cell. Longev., 2021, 2021, 1-27.
[http://dx.doi.org/10.1155/2021/4759821] [PMID: 35003514]
[3]
Mohi El-Deen, E.M.; Anwar, M.M.; Abd El-Gwaad, A.A.; Karam, E.A.; El-Ashrey, M.K.; Kassab, R.R. Design and synthesis of some novel pyridothienopyrimidine derivatives and their biological evaluation as antimicrobial and anticancer agents targeting EGFR enzyme. Arab. J. Chem., 2022, 15(4), 103751.
[http://dx.doi.org/10.1016/j.arabjc.2022.103751]
[4]
Oak, C.H.; Wilson, D.; Lee, H.J.; Lim, H.J.; Park, E.K. Potential molecular approaches for the early diagnosis of lung cancer. (Review). Mol. Med. Rep., 2012, 6(5), 931-936.
[http://dx.doi.org/10.3892/mmr.2012.1042] [PMID: 22923136]
[5]
Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[6]
Ball, S.; Ghosh, R.K.; Wongsaengsak, S.; Bandyopadhyay, D.; Ghosh, G.C.; Aronow, W.S.; Fonarow, G.C.; Lenihan, D.J.; Bhatt, D.L. Cardiovascular toxicities of immune checkpoint inhibitors: JACC review topic of the week. J. Am. Coll. Cardiol., 2019, 74(13), 1714-1727.
[http://dx.doi.org/10.1016/j.jacc.2019.07.079] [PMID: 31558256]
[7]
Lowe, S.W.; Lin, A.W. Apoptosis in cancer. Carcinogenesis, 2000, 21(3), 485-495.
[http://dx.doi.org/10.1093/carcin/21.3.485] [PMID: 10688869]
[8]
Le, Y.; Gan, Y.; Fu, Y.; Liu, J.; Li, W.; Zou, X.; Zhou, Z.; Wang, Z.; Ouyang, G.; Yan, L. Design, synthesis and in vitro biological evaluation of quinazolinone derivatives as EGFR inhibitors for antitumor treatment. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 555-564.
[http://dx.doi.org/10.1080/14756366.2020.1715389] [PMID: 31967481]
[9]
Barker, A.J.; Gibson, K.H.; Grundy, W.; Godfrey, A.A.; Barlow, J.J.; Healy, M.P.; Woodburn, J.R.; Ashton, S.E.; Curry, B.J.; Scarlett, L.; Henthorn, L.; Richards, L. Studies leading to the identification of ZD1839 (iressa™): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg. Med. Chem. Lett., 2001, 11(14), 1911-1914.
[http://dx.doi.org/10.1016/S0960-894X(01)00344-4] [PMID: 11459659]
[10]
Higgins, B.; Kolinsky, K.; Smith, M.; Beck, G.; Rashed, M.; Adames, V.; Linn, M.; Wheeldon, E.; Gand, L.; Birnboeck, H.; Hoffmann, G. Antitumor activity of erlotinib (OSI-774, Tarceva) alone or in combination in human non-small cell lung cancer tumor xenograft models. Anticancer Drugs, 2004, 15(5), 503-512.
[http://dx.doi.org/10.1097/01.cad.0000127664.66472.60] [PMID: 15166626]
[11]
Abourehab, M.A.S.; Alqahtani, A.M.; Youssif, B.G.M.; Gouda, A.M. Globally approved EGFR inhibitors: Insights into their syntheses, target kinases, biological activities, receptor interactions, and metabolism. Molecules, 2021, 26(21), 6677.
[http://dx.doi.org/10.3390/molecules26216677] [PMID: 34771085]
[12]
Sondhi, S.; Singhl, N.; Johar, M.; Reddy, B.S.; Lown, J. Heterocyclic compounds as inflammation inhibitors. Curr. Med. Chem., 2002, 9(10), 1045-1074.
[http://dx.doi.org/10.2174/0929867024606678] [PMID: 12733983]
[13]
Cocco, M.T.; Congiu, C.; Onnis, V.; Morelli, M.; Felipo, V.; Cauli, O. Synthesis of new 2-arylamino-6-trifluoromethylpyridine-3-carboxylic acid derivatives and investigation of their analgesic activity. Bioorg. Med. Chem., 2004, 12(15), 4169-4177.
[http://dx.doi.org/10.1016/j.bmc.2004.05.025] [PMID: 15246093]
[14]
Luo, S.; Huang, G.; Wang, Z.; Wan, Z.; Chen, H.; Liao, D.; Chen, C.; Li, H.; Li, B.; Chen, L.; Huang, Z.; He, Z. Niflumic acid exhibits anti-tumor activity in nasopharyngeal carcinoma cells through affecting the expression of ERK1/2 and the activity of MMP2 and MMP9. Int. J. Clin. Exp. Pathol., 2015, 8(9), 9990-10001.
[PMID: 26617707]
[15]
Caglar, S.; Altay, A.; Kuzucu, M.; Caglar, B. In vitro anticancer activity of novel Co(II) and Ni(II) complexes of non-steroidal anti-inflammatory drug niflumic acid against human breast adenocarcinoma MCF-7 Cells. Cell Biochem. Biophys., 2021, 79(4), 729-746.
[http://dx.doi.org/10.1007/s12013-021-00984-z] [PMID: 33914261]
[16]
Yahya, S.; Muthana, S.; Ammar, A.; Maysam, A.; Nada, N. Design, synthesis and evaluation of new diclofenac derivative more selective COX2 inhibitor. Int. J. Sci. Res., 2018, 7, 1394-1401.
[17]
Alsaad, H.; Kubba, A.; Tahtamouni, L.H.; Hamzah, A.H. Synthesis, docking study, and structure activity relationship of novel anti-tumor 1, 2, 4 triazole derivatives incorporating 2-(2, 3- dimethyl aminobenzoic acid) moiety. Pharmacia, 2022, 69(2), 415-428.
[http://dx.doi.org/10.3897/pharmacia.69.e83158]
[18]
Yaseen, Y.S.; Farhan, M.S.; Salih, S.J. Synthesis and evaluation of new diclofenac acid having 2-azetidinone. Pharma Chem., 2017, 9, 44-49.
[19]
Yaseen, Y.; Kubba, A.; Shihab, W.; Tahtamouni, L. Synthesis, docking study, and structure-activity relationship of novel niflumic acid derivatives acting as anticancer agents by inhibiting VEGFR or EGFR tyrosine kinase activities. Pharmacia, 2022, 69(3), 595-614.
[http://dx.doi.org/10.3897/pharmacia.69.e86504]
[20]
Abbas, A.H.; Mahmood, A.A.R.; Tahtamouni, L.H.; Al-Mazaydeh, Z.A.; Rammaha, M.S.; Alsoubani, F.; Al-bayati, R.I. A novel derivative of picolinic acid induces endoplasmic reticulum stress-mediated apoptosis in human non-small cell lung cancer cells: synthesis, docking study, and anticancer activity. Pharmacia, 2021, 68(3), 679-692.
[http://dx.doi.org/10.3897/pharmacia.68.e70654]
[21]
Abbas, A.H.; Mahmood, A.A.R.; Tahtamouni, L.H.; Al-Mazaydeh, Z.A.; Rammaha, M.S.; Alsoubani, F.; Al-bayati, R.I. New picolinic acid derivatives: Synthesis, docking study and anti-EGFR kinase inhibitory effect. Mater. Today, 2021.
[22]
Samir, A.H. Synthesis, Characterization and Antimicrobial Activity of New 2-Phenylquinoline-4 (3H)-one Derivatives. Synthesis, 2017, 118, C17.
[23]
Zeid, I.F.; Mohamed, N.A.; Khalifa, N.M.; Kassem, E.M.; Nossier, E.S.; Salman, A.A.; Al-Omar, M.A. PI3K inhibitors of novel hydrazide analogues linked 2-pyridinyl quinazolone scaffold as anticancer agents. J. Chem., 2019, 2019, Article ID:. , 6321573.
[24]
Hmood, K.S.; Mahmood Kubba, A.A.R.; Al-bayati, R.I.; Saleh, A. MSynthesis, and anti-tumor evaluation of some new flurbiprofen derivatives against MCF-7 and WRL-68 cell lines. Indones. J. Pharm., 2021, 32, 17-34.
[25]
El-Adl, K.; Sakr, H.M.; Yousef, R.G.; Mehany, A.B.M.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M.; ElSohly, M.A.; Abulkhair, H.S.; Eissa, I.H. Discovery of new quinoxaline-2(1H)-one-based anticancer agents targeting VEGFR-2 as inhibitors: Design, synthesis, and anti-proliferative evaluation. Bioorg. Chem., 2021, 114, 105105.
[http://dx.doi.org/10.1016/j.bioorg.2021.105105] [PMID: 34175720]
[26]
Salih, M.M.; Saleh, A.M.; Hamad, A.S.; Al-Janabi, A.S. Synthesis, spectroscopic, anti-bacterial activity, molecular docking, ADMET, toxicity and DNA binding studies of divalent metal complexes of pyrazole-3-one azo ligand. J. Mol. Struct., 2022, 1264, 133252.
[http://dx.doi.org/10.1016/j.molstruc.2022.133252]
[27]
Hmood, K.S.; Kubba, A.A.R. Synthesis, docking study and in vitro anticancer evaluation of new derivatives of 2-(1-(2-flouro-[1, 1-biphenyl]-4-yl) ethyl)-6-(substituted phenyl) imidazole [2, 1-B][1, 3, 4] thiadiazole derived from flurbiprofen. System. Rev. Pharm, 2021, 12, 1745-1762.
[28]
Sana, S.; Reddy, V.G.; Bhandari, S.; Reddy, T.S.; Tokala, R.; Sakla, A.P.; Bhargava, S.K.; Shankaraiah, N. Exploration of carbamide derived pyrimidine-thioindole conjugates as potential VEGFR-2 inhibitors with anti-angiogenesis effect. Eur. J. Med. Chem., 2020, 200, 112457.
[http://dx.doi.org/10.1016/j.ejmech.2020.112457] [PMID: 32422489]
[29]
Herrera-Calderon, O.; Saleh, A. M.; Yepes-Perez, A. F.; Aljarba, N. H.; Alkahtani, S.; Batiha, G. E.; Benali, T. Computational study of the phytochemical constituents from Uncaria tomentosa stem bark against SARS-CoV-2 omicron spike protein. J. Chem., 2022, 2022
[http://dx.doi.org/10.1155/2022/8539918]
[30]
Eissa, I.H.; Alesawy, M.S.; Saleh, A.M.; Elkaeed, E.B.; Alsfouk, B.A.; El-Attar, A.A.M.M.; Metwaly, A.M. Ligand and structure-based in silico determination of the most promising SARS-CoV-2 nsp16-nsp10 2′-o-Methyltransferase complex inhibitors among 3009 FDA approved drugs. Molecules, 2022, 27(7), 2287.
[http://dx.doi.org/10.3390/molecules27072287] [PMID: 35408684]
[31]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[32]
Nunez, R. DNA measurement and cell cycle analysis by flow cytometry. Curr. Issues Mol. Biol., 2001, 3(3), 67-70.
[PMID: 11488413]
[33]
Darzynkiewicz, Z.; Zhao, H. Analysis of cell cycle by flow cytometry. eLS (Encyclopedia of Life Sciences); John Wiley & Sons Ltd, Chicheste , 2014.
[34]
Zhang, X.; Wang, Q.; Xu, Y.; Wang, B.; Jia, C.; Wang, L.; Sun, H.; Zhao, H.; Wang, Z.; Zou, Q.; Sun, S.; Zhang, L. lncRNA PCAT19 negatively regulates p53 in non small cell lung cancer. Oncol. Lett., 2019, 18(6), 6795-6800.
[http://dx.doi.org/10.3892/ol.2019.11041] [PMID: 31819778]
[35]
Jiang, X.; Liu, Y.; Zhang, G.; Lin, S.; Wu, J.; Yan, X.; Ma, M. Aloe-emodin induces breast tumor cell apoptosis through upregulation of miR-15a/miR-16-1 that suppresses BCL2; Evid. Based Complementary Altern. Med., 2020, Article ID: 3108298. http://dx.doi.org/10.1155/2020/5108298
[36]
Khodapasand, E.; Jafarzadeh, N.; Farrokhi, F.; Kamalidehghan, B.; Houshmand, M. Is Bax/Bcl-2 ratio considered as a prognostic marker with age and tumor location in colorectal cancer? Iran. Biomed. J., 2015, 19(2), 69-75.
[PMID: 25864810]
[37]
Peluffo, M.C.; Young, K.A.; Stouffer, R.L. Dynamic expression of caspase-2, -3, -8, and -9 proteins and enzyme activity, but not messenger ribonucleic acid, in the monkey corpus luteum during the menstrual cycle. J. Clin. Endocrinol. Metab., 2005, 90(4), 2327-2335.
[http://dx.doi.org/10.1210/jc.2004-2214] [PMID: 15671090]
[38]
Seidel, T.; Wieder, O.; Garon, A.; Langer, T. Applications of the pharmacophore concept in natural product inspired drug design. Mol. Inform., 2020, 39(11), 2000059.
[http://dx.doi.org/10.1002/minf.202000059] [PMID: 32578959]
[39]
Kim, K.H.; Kim, N.D.; Seong, B.L. Pharmacophore-based virtual screening: A review of recent applications. Expert Opin. Drug Discov., 2010, 5(3), 205-222.
[http://dx.doi.org/10.1517/17460441003592072] [PMID: 22823018]
[40]
El-Nahass, M.M.; Kamel, M.A.; El-deeb, A.F.; Atta, A.A.; Huthaily, S.Y. Ab initio HF, DFT and experimental (FT-IR) investigation of vibrational spectroscopy of P-N,N-dimethylaminobenzyli-denemalononitrile (DBM). Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 79(3), 443-450.
[http://dx.doi.org/10.1016/j.saa.2011.02.055] [PMID: 21514212]
[41]
Mathammal, R.; Jayamani, N.; Geetha, N. Molecular structure, NMR, HOMO, LUMO, and vibrational analysis of O-anisic acid and anisic acid based on DFT calculations. J. Spectrosc., 2013, 2013, 171735.
[42]
Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol., 2018, 12(1), 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy