Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

In-Silico Prediction of Novel Fused Quinazoline Based Topoisomerase Inhibitors as Anticancer Agents

Author(s): Mukesh Kumar Kumawat, Ramandeep Kaur and Kapil Kumar*

Volume 19, Issue 5, 2023

Published on: 03 November, 2022

Page: [431 - 444] Pages: 32

DOI: 10.2174/1573406418666221012161111

Price: $65

conference banner
Abstract

Background: The prospective uses of tryptanthrin and its analogues in cancer chemotherapy are well known, and they are also predicated on their capacity to reverse drug resistance in cancer therapy.

Objective: The current project entails developing a novel hybrid analogue that includes modifying the tryptanthrin molecule at the C-6 carbonyl position and is expected to exhibit substantial anticancer action.

Methods: In the ATPase domain of human topoisomerase II, a series of 162 substituted Schiff base analogues of tryptanthrin were developed, and molecular docking experiments were done using Gold 5.1 software interfaced with Hermes 1.6.2. (PDB ID: 1ZXM).

Results: Most of the compounds were found to have Goldscore above 100 and formed interactions with the residues like ASN91, ALA92, ASN95, ARG98, ASN120, ILE125, ILE141, PHE142, SER149, THR215, and ILE217. Compound RK-149 had highest Goldscore of 132.59, forming an interaction with ASN91 but had a lesser Goldscore as compared to the standard drug etoposide and had a better score than tryptanthrin.

Conclusion: The nitrogen in the imine bond of the proposed compounds is responsible for significant interactions, demonstrating their anticancer potential.

Graphical Abstract

[1]
Honda, G.; Tosirisuk, V.; Tabata, M. Isolation of an antidermatophytic, tryptanthrin, from indigo plants, Polygonum tinctorium and Isatis tinctoria. Planta Med., 1980, 38(3), 275-276.
[http://dx.doi.org/10.1055/s-2008-1074877] [PMID: 7367492]
[2]
Li, Q.; Jin, J.; Chong, M.; Song, Z. Studies on the antifungal constituent of Qing Dai. [Isatis indigotica] Zhongcaoyao, 1983, 14, 440-441.
[3]
Hashimoto, T.; Aga, H.; Chaen, H.; Fukuda, S.; Kurimoto, M. Isolation and identification of anti-Helicobacter pylori compounds from Polygonum tinctorium Lour. Proceeding, 1999, 53, 27-31.
[4]
George, V.; Koshy, A.; Singh, O.; Nayar, M.; Pushpangadan, P. Tryptanthrin from Wrightia tinctoria. Fitoterapia, 1996, 67, 553-554.
[5]
Sen, A.; Mahato, S.; Dutta, N.; Couroupitine, A. A new alkaloid from Couroupita guianensis. Tetrahedron Lett., 1974, 15, 609-610.
[http://dx.doi.org/10.1016/S0040-4039(01)82284-X]
[6]
Bergman, J.; Lindström, J.O.; Tilstam, U. The structure and properties of some indolic constituents in Couroupita guianensis aubl. Tetrahedron, 1985, 41(14), 2879-2881.
[http://dx.doi.org/10.1016/S0040-4020(01)96609-8]
[7]
Jao, C.W.; Lin, W.C.; Wu, Y.T.; Wu, P.L. Isolation, structure elucidation, and synthesis of cytotoxic tryptanthrin analogues from Phaius mishmensis. J. Nat. Prod., 2008, 71(7), 1275-1279.
[http://dx.doi.org/10.1021/np800064w] [PMID: 18507473]
[8]
Hosoe, T.; Nozawa, K.; Kawahara, N.; Fukushima, K.; Nishimura, K.; Miyaji, M.; Kawai, K. Isolation of a new potent cytotoxic pigment along with indigotin from the pathogenic basidiomycetous fungus Schizophyllum commune. Mycopathologia, 1999, 146(1), 9-12.
[http://dx.doi.org/10.1023/A:1007082619328] [PMID: 10721515]
[9]
Tucker, A.M.; Grundt, P. The chemistry of tryptanthrin and its derivatives. ARKIVOC, 2012, 2012(1), 546-569.
[http://dx.doi.org/10.3998/ark.5550190.0013.113]
[10]
Shaaban, M.; Maskey, R.P.; Wagner, D.I.; Laatsch, H. Pharacine, a natural p-cyclophane and other indole derivatives from Cytophaga sp. strain AM13.1. J. Nat. Prod., 2002, 65(11), 1660-1663.
[http://dx.doi.org/10.1021/np020019a] [PMID: 12444694]
[11]
Rasmussen, L.E.L.; Lee, T.D.; Daves, G.D., Jr; Schmidt, M.J. Female-to-male sex pheromones of low volatility in the Asian elephant, Elephas maximus. J. Chem. Ecol., 1993, 19(10), 2115-2128.
[http://dx.doi.org/10.1007/BF00979651] [PMID: 24248563]
[12]
Caspers, B.; Franke, S.; Voigt, C.C. The wing-sac odour of male greater sac-winged bats Saccopteryx bilineata [Emballonuridae] as a composite trait: Seasonal and individual differences. In: Chemical Signals in Vertebrates; Hurst, J.L.; Beynon, R.J.; Roberts, S.C.; Wyatt, T.D., Eds.; Springer: New York, NY, 2008; pp. 151-160.
[13]
Honda, G.; Tabata, M.; Tsuda, M. The antimicrobial specificity of tryptanthrin. Planta Med., 1979, 37(10), 172-174.
[http://dx.doi.org/10.1055/s-0028-1097320] [PMID: 515225]
[14]
Bhattacharjee, A.; Skanchy, D.J.; Jennings, B.; Hudson, T.H.; Brendle, J.J.; Werbovetz, K.A. Analysis of stereoelectronic properties, mechanism of action and pharmacophore of synthetic indolo[2,1-b]quinazoline-6,12-dione derivatives in relation to antileishmanial activity using quantum chemical, cyclic voltammetry and 3-D-QSAR CATALYST procedures. Bioorg. Med. Chem., 2002, 10(6), 1979-1989.
[http://dx.doi.org/10.1016/S0968-0896(02)00013-5] [PMID: 11937358]
[15]
Motoki, T.; Takami, Y.; Yagi, Y.; Tai, A.; Yamamoto, I.; Gohda, E. Inhibition of hepatocyte growth factor induction in human dermal fibroblasts by tryptanthrin. Biol. Pharm. Bull., 2005, 28(2), 260-266.
[http://dx.doi.org/10.1248/bpb.28.260] [PMID: 15684480]
[16]
Moon, S.Y.; Lee, J.H.; Choi, H.Y.; Cho, I.J.; Kim, S.C.; Kim, Y.W. Tryptanthrin protects hepatocytes against oxidative stress via activation of the extracellular signal-regulated kinase/NF-E2-related factor 2 pathway. Biol. Pharm. Bull., 2014, 37(10), 1633-1640.
[http://dx.doi.org/10.1248/bpb.b14-00363] [PMID: 25273386]
[17]
Iwaki, K.; Ohashi, E.; Arai, N.; Kohno, K.; Ushio, S.; Taniguchi, M.; Fukuda, S. Tryptanthrin inhibits Th2 development, and IgE-mediated degranulation and IL-4 production by rat basophilic leukemia RBL-2H3 cells. J. Ethnopharmacol., 2011, 134(2), 450-459.
[http://dx.doi.org/10.1016/j.jep.2010.12.041] [PMID: 21216280]
[18]
Takei, Y.; Kunikata, T.; Aga, M.; Inoue, S.; Ushio, S.; Iwaki, K.; Ikeda, M.; Kurimoto, M. Tryptanthrin inhibits interferon-γ production by Peyer’s patch lymphocytes derived from mice that had been orally administered staphylococcal enterotoxin. Biol. Pharm. Bull., 2003, 26(3), 365-367.
[http://dx.doi.org/10.1248/bpb.26.365] [PMID: 12612449]
[19]
Micallef, M.J.; Iwaki, K.; Ishihara, T.; Ushio, S.; Aga, M.; Kunikata, T.; Koya, M.S.; Kimoto, T.; Ikeda, M.; Kurimoto, M. The natural plant product tryptanthrin ameliorates dextran sodium sulfate-induced colitis in mice. Int. Immunopharmacol., 2002, 2(4), 565-578.
[http://dx.doi.org/10.1016/S1567-5769(01)00206-5] [PMID: 11962735]
[20]
Danz, H.; Stoyanova, S.; Wippich, P.; Brattström, A.; Hamburger, M. Identification and isolation of the cyclooxygenase-2 inhibitory principle in Isatis tinctoria. Planta Med., 2001, 67(5), 411-416.
[http://dx.doi.org/10.1055/s-2001-15805] [PMID: 11488453]
[21]
Sharma, V.M.; Prasanna, P.; Adi, S.K.V.; Renuka, B.; Laxman, R.C.V.; Sunil, K.G.; Narasimhulu, C.P.; Aravind, B.P.; Puranik, R.C.; Subramanyam, D.; Venkateswarlu, A.; Rajagopal, S.; Kumar, K.B.S.; Rao, C.S.; Mamidi, N.V.S.R.; Deevi, D.S.; Ajaykumar, R.; Rajagopalan, R. Novel indolo[2,1-b]quinazoline analogues as cytostatic agents: Synthesis, biological evaluation and structure–activity relationship. Bioorg. Med. Chem. Lett., 2002, 12(17), 2303-2307.
[http://dx.doi.org/10.1016/S0960-894X(02)00431-6] [PMID: 12161121]
[22]
Kimoto, T.; Hino, K.; Koya, M.S.; Yamamoto, Y.; Takeuchi, M.; Nishizaki, Y.; Micallef, M.J.; Ushio, S.; Iwaki, K.; Ikeda, M.; Kurimoto, M. Cell differentiation and apoptosis of monocytic and promyelocytic leukemia cells (U-937 and HL-60) by tryptanthrin, an active ingredient of Polygonum tinctorium Lour. Pathol. Int., 2001, 51(5), 315-325.
[http://dx.doi.org/10.1046/j.1440-1827.2001.01204.x] [PMID: 11422788]
[23]
Koya, M.S.; Kimoto, T.; Micallef, M.J.; Hino, K.; Taniguchi, M.; Ushio, S.; Iwaki, K.; Ikeda, M.; Kurimoto, M. Prevention of azoxymethane-induced intestinal tumors by a crude ethyl acetate-extract and tryptanthrin extracted from Polygonum tinctorium Lour. Anticancer Res., 2001, 21(5), 3295-3300.
[PMID: 11848486]
[24]
Zhu, X.; Zhang, X.; Ma, G.; Yan, J.; Wang, H.; Yang, Q. Transport characteristics of tryptanthrin and its inhibitory effect on P-gp and MRP2 in Caco-2 cells. J. Pharm. Pharm. Sci., 2011, 14(3), 325-335.
[http://dx.doi.org/10.18433/J3501W] [PMID: 21824448]
[25]
De Souza, M.V.N. Promising drugs against tuberculosis. Recent Patents Anti-Infect. Drug Disc., 2006, 1(1), 33-44.
[http://dx.doi.org/10.2174/157489106775244163] [PMID: 18221132]
[26]
Bandekar, P.P.; Roopnarine, K.A.; Parekh, V.J.; Mitchell, T.R.; Novak, M.J.; Sinden, R.R. Antimicrobial activity of tryptanthrins in Escherichia coli. J. Med. Chem., 2010, 53(9), 3558-3565.
[http://dx.doi.org/10.1021/jm901847f] [PMID: 20373766]
[27]
Terryn, R.J., III; German, H.W.; Kummerer, T.M.; Sinden, R.R.; Baum, J.C.; Novak, M.J. Novel computational study on π-stacking to understand mechanistic interactions of Tryptanthrin analogues with DNA. Toxicol. Mech. Methods, 2014, 24(1), 73-79.
[http://dx.doi.org/10.3109/15376516.2013.859194] [PMID: 24156546]
[28]
Seya, K.; Yamaya, A.; Kamachi, S.; Murakami, M.; Kitahara, H.; Kawakami, J.; Okumura, K.; Murakami, M.; Motomura, S.; Furukawa, K.I. 8-Methyltryptanthrin-induced differentiation of P19CL6 embryonal carcinoma cells into spontaneously beating cardiomyocyte-like cells. J. Nat. Prod., 2014, 77(6), 1413-1419.
[http://dx.doi.org/10.1021/np500108r] [PMID: 24885014]
[29]
Takemura, M.; Sato, K.; Nishio, M.; Akiyama, T.; Umekawa, H.; Yoshida, S. Nucleolar protein B23.1 binds to retinoblastoma protein and synergistically stimulates DNA polymerase α activity. J. Biochem., 1999, 125(5), 904-909.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022367] [PMID: 10220582]
[30]
Koska, J.; Spassov, V.Z.; Maynard, A.J.; Yan, L.; Austin, N.; Flook, P.K.; Venkatachalam, C.M. Fully automated molecular mechanics based induced fit protein-ligand docking method. J. Chem. Inf. Model., 2008, 48(10), 1965-1973.
[http://dx.doi.org/10.1021/ci800081s] [PMID: 18816046]
[31]
Krovat, E.; Steindl, T.; Langer, T. Recent advances in docking and scoring. Curr. Computeraided Drug Des., 2005, 1(1), 93-102.
[http://dx.doi.org/10.2174/1573409052952314]
[32]
Liang, J.L.; Park, S.E.; Kwon, Y.; Jahng, Y. Synthesis of benzo-annulated tryptanthrins and their biological properties. Bioorg. Med. Chem., 2012, 20(16), 4962-4967.
[http://dx.doi.org/10.1016/j.bmc.2012.06.034] [PMID: 22819942]
[33]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[34]
Kaur, G.; Cholia, R.P.; Joshi, G.; Amrutkar, S.M.; Kalra, S.; Mantha, A.K.; Banerjee, U.C.; Kumar, R. Anticancer activity of dihydropyrazolo[1,5- c]quinazolines against rat C6 glioma cells via inhibition of topoisomerase II. Arch. Pharm., 2018, 351(6)1800023
[http://dx.doi.org/10.1002/ardp.201800023] [PMID: 29737542]
[35]
Bergant, L.K. Janežič, M.; Štampar, M.; Žegura, B.; Filipič, M.; Perdih, A. Substituted 4,5′-bithiazoles as catalytic inhibitors of human DNA topoisomerase IIα. J. Chem. Inf. Model., 2020, 60(7), 3662-3678.
[http://dx.doi.org/10.1021/acs.jcim.0c00202] [PMID: 32484690]
[36]
Skok, Ž.; Zidar, N.; Kikelj, D.; Ilaš, J. Dual inhibitors of human DNA topoisomerase II and other cancer related targets. J. Med. Chem., 2020, 63(3), 884-904.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00726] [PMID: 31592646]
[37]
Stanger, F.V.; Dehio, C.; Schirmer, T. Structure of the N-terminal Gyrase B fragment in complex with ADP-Pi reveals rigid-body motion induced by ATP hydrolysis. PLoS One, 2014, 9(9)e107289
[http://dx.doi.org/10.1371/journal.pone.0107289] [PMID: 25202966]
[38]
a) Pawar, S.; Kumawat, M.K.; Kundu, M.; Kumar, K. Synthetic and medicinal perspective of antileishmanial agents: An overview. J. Mol. Struct., 2023, 1271133977
[http://dx.doi.org/10.1016/j.molstruc.2022.133977];
b) Konar, D.; Maru, S.; Kar, S.; Kumar, K. Synthesis and clinical development of palbociclib: An overview. Med. Chem., 2022, 18(1), 2-25.
[http://dx.doi.org/10.2174/1573406417666201204161243] [PMID: 33280599];
c) Pawar, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Synthetic and medicinal perspective of fused-thiazoles as anticancer agents. Anticancer. Agents Med. Chem., 2021, 21(11), 1379-1402.
[http://dx.doi.org/10.2174/1871520620666200728133017] [PMID: 32723259];
d) Kaur, R.; Kumar, K. Synthetic and medicinal perspective of quinolines as antiviral agents. Eur. J. Med. Chem., 2021, 215, 113220-113258.
[http://dx.doi.org/10.1016/j.ejmech.2021.113220] [PMID: 33609889];
e) Kapoor, Y.; Kumar, K. Structural and clinical impact of antiallergy agents: An overview. Bioorg. Chem., 2020, 94, 103351-103375.
[http://dx.doi.org/10.1016/j.bioorg.2019.103351] [PMID: 31668464];
f) Kaur, R.; Manjal, S.K.; Rawal, R.K.; Kumar, K. Recent synthetic and medicinal perspectives of tryptanthrin. Bioorg. Med. Chem., 2017, 25(17), 4533-4552.
[http://dx.doi.org/10.1016/j.bmc.2017.07.003] [PMID: 28720329];
g) Kaur, M.S.; Kaur, R.; Bhatia, R.; Kumar, K.; Singh, V.; Shankar, R.; Kaur, R.; Rawal, R.K. Synthetic and medicinal perspective of thiazolidinones: A review. Bioorg. Chem., 2017, 75, 406-423.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.014] [PMID: 29102723];
h) Kaur, R.; Chaudhary, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review. Eur. J. Med. Chem., 2017, 132, 108-134.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.025] [PMID: 28342939];
i) Kumar, B.; Singh, V.; Shankar, R.; Kumar, K.; Rawal, R. Synthetic and medicinal prospective of structurally modified curcumins. Curr. Top. Med. Chem., 2016, 17(2), 148-161.
[http://dx.doi.org/10.2174/1568026616666160605050052] [PMID: 27280465];
j) Mittal, M.; Kumar, K.; Anghore, D.; Rawal, R.K. ICP-MS: Analytical method for identification and detection of elemental impurities. Curr. Drug Discov. Technol., 2017, 14(2), 106-120.
[http://dx.doi.org/10.2174/1570163813666161221141402] [PMID: 28003007];
k) Talwan, P.; Choudhary, S.; Kumar, K.; Rawal, R.K. Chemical and medicinal versatility of substituted 1, 4-dihydropyridines. Curr. Bioact. Compd., 2017, 13, 109-120.
[http://dx.doi.org/10.2174/1573407212666160607090202]
[39]
a) Kumar, K. Microwave-assisted diversified synthesis of pyrimidines: An overview. J. Heterocycl. Chem., 2022, 59(2), 205-238.
[http://dx.doi.org/10.1002/jhet.4376];
b) Kumar, K. TosMIC: A powerful synthon for cyclization and sulfonylation. Chem. Select, 2020, 5(33), 10298-10328.
[http://dx.doi.org/10.1002/slct.202001344];
c) Kaur, R.; Kapoor, Y.; Manjal, S.K.; Rawal, R.K.; Kumar, K. Diversity-oriented synthetic approaches for furoindoline: A review. Curr. Org. Synth., 2019, 16(3), 342-368.
[http://dx.doi.org/10.2174/1570179416666190328211509] [PMID: 31984898];
d) Manjal, S.K.; Pathania, S.; Bhatia, R.; Kaur, R.; Kumar, K.; Rawal, R.K. Diversified synthetic strategies for pyrroloindoles: An overview. J. Heterocycl. Chem., 2019, 56(9), 2318-2332.
[http://dx.doi.org/10.1002/jhet.3661]
[40]
a) Kumar, K.; Rawal, R.K. CuI/DBU-mediated MBH reaction of isatins: A convenient synthesis of 3-substituted-3-hydroxy-2- oxindole. Chem. Select, 2020, 5(10), 3048-3051.
[http://dx.doi.org/10.1002/slct.201903703];
b) Kaur, R.; Kumar, K. One-pot synthesis of [4-(tert-butyl)-1Hpyrrol- 3-yl](phenyl)methanone from tosylmethyl isocyanide and carbonyl compound. Chem. Heterocycl. Compd., 2018, 54(7), 700-702.
[http://dx.doi.org/10.1007/s10593-018-2335-6];
c) Kumar, K.; More, S.S.; Khatik, G.L.; Rawal, R.K.; Nair, V.A. A highly stereoselective chiral auxiliary-assisted reductive cyclization to furoindoline. J. Heterocycl. Chem., 2017, 54(5), 2696-2702.
[http://dx.doi.org/10.1002/jhet.2870];
d) Kumar, K.; Konar, D.; Goyal, S.; Gangar, M.; Chouhan, M.; Rawal, R.K.; Nair, V.A. Water-promoted regiospecific azidolysis and copper-catalyzed azide–alkyne cycloaddition: One-pot synthesis of 3-hydroxy-1-alkyl-3-[(4-aryl/alkyl-1 H -1,2,3-triazol-1- yl)methyl]indolin-2-ones. J. Org. Chem., 2016, 81(20), 9757-9764.
[http://dx.doi.org/10.1021/acs.joc.6b01819] [PMID: 27657181];
e) Kumar, K.; Siddique, J.; Gangar, M.; Goyal, S.; Rawal, R.K.; Nair, V.A. ZrCl4 catalysed diastereoselective synthesis of spirocarbocyclic oxindoles via [4+2] cycloaddition. Chem. Select, 2016, 1(10), 2409-2412.
[http://dx.doi.org/10.1002/slct.201600447];
f) Kumar, K.; Konar, D.; Goyal, S.; Gangar, M.; Chouhan, M.; Rawal, R.K.; Nair, V.A. AlCl3/Cyclohexane mediated electrophilic activation of isothiocyanates: An efficient synthesis of thioamides. Chem. Select, 2016, 1(12), 3228-3231.
[http://dx.doi.org/10.1002/slct.201600601];
g) Kumar, K.; More, S.S.; Goyal, S.; Gangar, M.; Khatik, G.L.; Rawal, R.K.; Nair, V.A. A convenient synthesis of 4-alkyl-3- benzoylpyrroles from α,β-unsaturated ketones and tosylmethyl isocyanide. Tetrahedron Lett., 2016, 57(21), 2315-2319.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.056];
h) Kumar, K.; Mudshinge, S.R.; Goyal, S.; Gangar, M.; Nair, V.A. A catalyst free, one pot approach for the synthesis of quinoxaline derivatives via oxidative cyclisation of 1,2-diamines and phenacyl bromides. Tetrahedron Lett., 2015, 56(10), 1266-1271.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.138];
i) Goyal, S.; Patel, J.K.; Gangar, M.; Kumar, K.; Nair, V.A. Zirconocene dichloride catalysed one-pot synthesis of pyrroles through nitroalkene-enamine assembly. RSC Advances, 2015, 5(5), 3187-3195.
[http://dx.doi.org/10.1039/C4RA09873K];
j) Goyal, S.; Patel, B.; Sharma, R.; Chouhan, M.; Kumar, K.; Gangar, M.; Nair, V.A. An efficient strategy for the synthesis of syn 1,3-diols via iterative acetate aldol reactions and synthesis of atorvastatin lactone. Tetrahedron Lett., 2015, 56(40), 5409-5412.
[http://dx.doi.org/10.1016/j.tetlet.2015.08.011];
k) Gangar, M.; Kashyap, N.; Kumar, K.; Goyal, S.; Nair, V.A. Imidazolidinone based chiral auxiliary mediated acetate aldol reactions of isatin derivatives and stereoselective synthesis of 3- substituted-3-hydroxy-2-oxindoles. Tetrahedron Lett., 2015, 56(51), 7074-7081.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.007];
l) Chouhan, M.; Senwar, K.R.; Kumar, K.; Sharma, R.; Nair, V.A. Catalytic C-H activation of arylacetylenes: A fast assembly of 3- hydroxy-3-(arylethynyl)indolin-2-ones using CuI/DBU. Synthesis, 2014, 46(2), 195-202.;
m) Kumar, V.; Kumar, K.; Pal, A.; Khatik, G.L.; Nair, V.A. Aldol reactions of 2-thioxotetrahydropyrimidin-4(1H)-ones: Stereoregulations from endo- and exocyclic chiral centres. Tetrahedron, 2013, 69(6), 1747-1754.
[http://dx.doi.org/10.1016/j.tet.2012.12.020];
n) Sharma, R.; Kumar, K.; Chouhan, M.; Grover, V.; Nair, V.A. Lithium hydroxide mediated synthesis of 3,4-disubstituted pyrroles. RSC Advances, 2013, 3(34), 14521-14527.
[http://dx.doi.org/10.1039/c3ra42569j];
o) Chouhan, M.; Kumar, K.; Sharma, R.; Grover, V.; Nair, V.A. NiCl2·6H2O/NaBH4 in methanol: A mild and efficient strategy for chemoselective deallylation/debenzylation of aryl ethers. Tetrahedron Lett., 2013, 54(34), 4540-4543.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.072]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy