Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Porous Aromatic Framework-based Materials: Superior Adsorbents for Uranium Extraction from Aqueous Solutions

Author(s): Jinlu Chen, Dongyang Xu, Shuai Shuai Guo, Zui Tao, Long ChengLiangJin, Yuyun Liu, Xiaoli Chen and Guowen Peng*

Volume 20, Issue 6, 2023

Published on: 17 January, 2023

Page: [612 - 621] Pages: 10

DOI: 10.2174/1570193X20666221216145900

Price: $65

Abstract

Uranium, the primary fuel source for nuclear power reactors, is one of the most crucial components in new energy production. Currently, uranium is mainly mined from land ore, which will be exhausted within 200 years. As the world's largest uranium reservoir, the ocean is an ideal source for people to obtain these industrial resources. However, the low concentration of uranium (typically about 3.3 ug/L) in seawater poses a great challenge for the project uranium extraction from seawater. The porous aromatic framework (PAF) is a new type of porous nano-solid material with chemical stability, robust framework, and inherent porosity, making itself being the promising material for uranium capturing from aqueous solutions. The progress and advancements of PAFs and PAF-based materials as adsorbents for uranium extraction from aqueous solutions are detailed in this review. Then, several common utilized ways to enhance PAF-based materials’ adsorption performance are discussed. Finally, the authors make a summary and perspective on the opportunities and challenges of this kind of nanomaterials to provide some relevant information on designing PAFs and PAF-based materials for Uranium Extraction from seawater.

Graphical Abstract

[1]
Hurley, D.H.; El-Azab, A.; Bryan, M.S.; Cooper, M.W.D.; Dennett, C.A.; Gofryk, K.; He, L.; Khafizov, M.; Lander, G.H.; Manley, M.E.; Mann, J.M.; Marianetti, C.A.; Rickert, K.; Selim, F.A.; Tonks, M.R.; Wharry, J.P. Thermal energy transport in oxide nuclear fuel. Chem. Rev., 2022, 122(3), 3711-3762.
[http://dx.doi.org/10.1021/acs.chemrev.1c00262] [PMID: 34919381]
[2]
Abney, C.W.; Mayes, R.T.; Saito, T.; Dai, S. Materials for the recovery of uranium from seawater. Chem. Rev., 2017, 117(23), 13935-14013.
[http://dx.doi.org/10.1021/acs.chemrev.7b00355] [PMID: 29165997]
[3]
Kushwaha, S.; Patel, K. Catalyst: Uranium extraction from seawater, a paradigm shift in resource recovery. Chem, 2021, 7(2), 271-274.
[http://dx.doi.org/10.1016/j.chempr.2021.01.008]
[4]
Tan, Y.; Li, L.; Zhang, H.; Ding, D.; Dai, Z.; Xue, J.; Liu, J.; Hu, N.; Wang, Y. Adsorption and recovery of U(VI) from actual acid radioactive wastewater with low uranium concentration using thioacetamide modified activated carbon from liquorice residue. J. Radioanal. Nucl. Chem., 2018, 317(2), 811-824.
[http://dx.doi.org/10.1007/s10967-018-5952-8]
[5]
Saputra, A.; Swantomo, D.; Ariyanto, T.; Sulistyo, H. Uranium removal from wastewater using Mg(OH)2-impregnated activated carbon. Water Air Soil Pollut., 2019, 230(9), 213.
[http://dx.doi.org/10.1007/s11270-019-4269-8]
[6]
Yi, H.; Nakabayashi, K.; Yoon, S.H.; Miyawaki, J. Study on the applicability of pressurized physically activated carbon as an adsorbent in adsorption heat pumps. RSC Advances, 2022, 12(5), 2558-2563.
[http://dx.doi.org/10.1039/D1RA08395C] [PMID: 35425304]
[7]
Huang, F.; Liu, W.; Chen, S.; Tian, Z.; Wei, J. Thermal desorption characteristics of the adsorbate in activated carbon based on a two-dimensional heat and mass transfer model. Appl. Therm. Eng., 2022, 214, 118775.
[http://dx.doi.org/10.1016/j.applthermaleng.2022.118775]
[8]
Petrescu, E.; Cirtoaje, C. Electric properties of multiwalled carbon nanotubes dispersed in liquid crystals and their influence on freedericksz transitions. Nanomaterials (Basel), 2022, 12(7), 1119.
[http://dx.doi.org/10.3390/nano12071119] [PMID: 35407237]
[9]
Yang, H.N.; Wang, D.; Yu, H. Test and detection of antifreezing and anticorrosion performance of carbon nanofiber bridge concrete. Int. J. Anal. Chem., 2022, 2022, 4055128.
[http://dx.doi.org/10.1155/2022/4055128] [PMID: 36225343]
[10]
Thapa, R.; Rahmani, A.; Turhanen, P.; Taskinen, A.; Nissinen, T.; Neitola, R.; Vepsäläinen, J.; Lehto, V.P.; Riikonen, J. Recovery of uranium with bisphosphonate modified mesoporous silicon. Separ. Purif. Tech., 2021, 272, 118913.
[http://dx.doi.org/10.1016/j.seppur.2021.118913]
[11]
Nawaz, S.; Khan, Y.; Abdelmohsen, S.A.M.; Khalid, S.; Björk, E.M.; Rasheed, M.A.; Siddiq, M. Polyaniline inside the pores of high surface area mesoporous silicon as composite electrode material for supercapacitors. RSC Advances, 2022, 12(27), 17228-17236.
[http://dx.doi.org/10.1039/D2RA01829B] [PMID: 35755593]
[12]
Liu, D.; Liu, Z.; Wang, C.; Lai, Y. Removal of uranium (VI) from aqueous solution using nanoscale zero-valent iron supported on activated charcoal. J. Radioanal. Nucl. Chem., 2016, 310(3), 1131-1137.
[http://dx.doi.org/10.1007/s10967-016-4892-4]
[13]
Dong, D.; Kyung Choi, O.; Woo Lee, J. Influence of the continuous addition of zero valent iron (ZVI) and nano-scaled zero valent iron (nZVI) on the anaerobic biomethanation of carbon dioxide. Chem. Eng. J., 2022, 430, 132233.
[http://dx.doi.org/10.1016/j.cej.2021.132233]
[14]
Chen, M.; Lang, L.; Chen, L.; Wang, X.; Shi, C.; Sun, Q.; Xu, Y.; Diwu, J.; Wang, S. Improving in vivo uranyl removal efficacy of a nano‐metal organic framework by interior functionalization with 3‐HYDROXY‐2‐pyridinone. Chin. J. Chem., 2022, 40(17), 2054-2060.
[http://dx.doi.org/10.1002/cjoc.202200206]
[15]
Zhao, W.W.; Li, L.H.; Liao, J.Z.; Liang, R.P.; Song, A.M.; Zhang, F.D.; Ke, H.; Qiu, J.D. Regenerable and stable biomimetic hydroxyl-modified metal-organic frameworks for targeted uranium capture. Chem. Eng. J., 2022, 433, 133787.
[http://dx.doi.org/10.1016/j.cej.2021.133787]
[16]
Feng, L.; Wang, H.; Feng, T.; Yan, B.; Yu, Q.; Zhang, J.; Guo, Z.; Yuan, Y.; Ma, C.; Liu, T.; Wang, N. In situ synthesis of uranyl‐imprinted nanocage for selective uranium recovery from seawater. Angew. Chem. Int. Ed., 2022, 61(13), e202101015.
[http://dx.doi.org/10.1002/anie.202101015] [PMID: 33590940]
[17]
Wang, C.; Xi, W.; Guo, R.; Wang, S.; Lu, W.; Bai, Y.; Wang, J. A novel amidoxime-functionalized covalent organic framework for removal of U(VI) from uranium-containing wastewater with appreciable efficiency and selectivity. J. Radioanal. Nucl. Chem., 2022, 331(6), 2469-2478.
[http://dx.doi.org/10.1007/s10967-022-08294-1]
[18]
Qin, X.; Tang, X.; Ma, Y.; Xu, H.; Xu, Q.; Yang, W.; Gu, C. Decorating covalent organic frameworks with high-density chelate groups for uranium extraction. Chem. Res. Chin. Univ., 2022, 38(2), 433-439.
[http://dx.doi.org/10.1007/s40242-022-1463-9]
[19]
Li, Z.; Zhu, R.; Zhang, P.; Yang, M.; Zhao, R.; Wang, Y.; Dai, X.; Liu, W. Functionalized polyarylether-based COFs for rapid and selective extraction of uranium from aqueous solution. Chem. Eng. J., 2022, 434, 134623.
[http://dx.doi.org/10.1016/j.cej.2022.134623]
[20]
Ahmad, M.; Chen, J.J.; Yang, K.; Shah, T.R.; Naik, M.U.D.; Zhang, Q.Y.; Zhang, B.L. Preparation of amidoxime modified porous organic polymer flowers for selective uranium recovery from seawater (vol 418, 12937, 2021). Chem. Eng. J., 2022, 136404.
[http://dx.doi.org/10.1016/j.cej.2022.136404]
[21]
Zhang, G.G.; Wang, Y.D.; Zhang, X.; Liu, L.J.; Ma, F.Q.; Zhang, C.H.; Dong, H.X. Synthesis of a porous amidoxime modified hypercrosslinked benzil polymer and efficient uranium extraction from water. Colloids Surf. A Physicochem. Eng. Asp., 2022, 641, 128508.
[22]
Zhang, Q.; Zeng, K.; Wang, C.; Wei, P.; Zhao, X.; Wu, F.; Liu, Z. An imidazole functionalized porous organic polymer for the highly efficient extraction of uranium from aqueous solutions. New J. Chem., 2022, 46(19), 9238-9249.
[http://dx.doi.org/10.1039/D1NJ05896G]
[23]
Yan, Z.; Yuan, Y.; Tian, Y.; Zhang, D.; Zhu, G. Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites. Angew. Chem. Int. Ed., 2015, 54(43), 12733-12737.
[http://dx.doi.org/10.1002/anie.201503362] [PMID: 26316032]
[24]
Yang, Y.; Wang, T.; Jing, X.; Zhu, G. Phosphine-based porous aromatic frameworks for gold nanoparticle immobilization with superior catalytic activities. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(16), 10004-10009.
[http://dx.doi.org/10.1039/C8TA12099D]
[25]
Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F.; Simmons, J.M.; Qiu, S.; Zhu, G. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed., 2009, 48(50), 9457-9460.
[http://dx.doi.org/10.1002/anie.200904637] [PMID: 19921728]
[26]
Zhang, W.; Li, Y.; Wang, S.; Wu, Y.; Chen, S.; Fu, Y.; Ma, W.; Zhang, Z.; Ma, H. Fluorine-induced electric field gradient in 3D porous aromatic frameworks for highly efficient capture of Xe and F-Gases. ACS Appl. Mater. Interfaces, 2022, 14(30), 35126-35137.
[http://dx.doi.org/10.1021/acsami.2c10050] [PMID: 35866627]
[27]
Yan, Z.; Qiao, Y.; Wang, J.; Xie, J.; Cui, B.; Fu, Y.; Lu, J.; Yang, Y.; Bu, N.; Yuan, Y.; Xia, L. An Azo-group-functionalized porous aromatic framework for achieving highly efficient capture of iodine. Molecules, 2022, 27(19), 6297.
[http://dx.doi.org/10.3390/molecules27196297] [PMID: 36234834]
[28]
Wang, S.S.; Wu, Y.; Zhang, Y.; Zhang, Z.C.; Zhang, W.X.; Li, X.Y.; Ma, W.J.; Ma, H.P. HF resistant porous aromatic frameworks for electronic special gases separation. Langmuir, 2022, 38(28), 8667-8676.
[http://dx.doi.org/10.1021/acs.langmuir.2c01098]
[29]
Ma, Y.; Liu, L.; Lei, H.; Tian, Y.; Ding, S.; Zhang, N.; Zhu, G. Facile synthesis of porphyrin-based PAF membrane for hydrogen purification. Inorg. Chem. Commun., 2022, 141, 109526.
[http://dx.doi.org/10.1016/j.inoche.2022.109526]
[30]
Yan, Z.; Qiao, Y.; Sun, Q.; Cui, B.; Feng, B.; Bu, N.; Chu, K.; Ruan, X.; Yuan, Y.; Yang, Y.; Xia, L. Introducing polar groups in porous aromatic framework for achieving high capacity of organic molecules and enhanced self-cleaning applications. Molecules, 2022, 27(18), 6113.
[http://dx.doi.org/10.3390/molecules27186113]
[31]
Wang, S.; Li, H.; Huang, H.; Cao, X.; Chen, X.; Cao, D. Porous organic polymers as a platform for sensing applications. Chem. Soc. Rev., 2022, 51(6), 2031-2080.
[http://dx.doi.org/10.1039/D2CS00059H] [PMID: 35226024]
[32]
Yan, Z.; Xie, J.; Geng, T.; Feng, B.; Cui, B.; Li, N.; Su, P.; Bu, N.; Yuan, Y.; Xia, L. Decorating porous aromatic framework cavities with long‐chain alkyl grippers for rapid and selective iron(III) detection. ChemistrySelect, 2022, 7(37)
[http://dx.doi.org/10.1002/slct.202201331]
[33]
Wang, L.; Zhang, P.; Chen, K.; Dong, J.; Luo, F.; Huang, Q.; Sun, Z.; Zou, X.; Zhu, G. Synthetic subnanochannels in porous aromatic frameworks accelerate selective water permeation in membrane desalination. Sci. China Mater., 2022, 65(7), 1920-1928.
[http://dx.doi.org/10.1007/s40843-021-1993-7]
[34]
You, B.; Tian, Y.; Wang, B.; Zhu, G. Au nanoparticles supported by porous aromatic frameworks-efficient and recyclable catalysts for nitro reduction. Catalysts, 2022, 12(6), 588.
[http://dx.doi.org/10.3390/catal12060588]
[35]
You, B.X.; Zou, M.; Xu, R.T.; Tian, Y.Y.; Wang, B.L.; Zhu, G.S. Metal−free catalysis of the reductive amination of aldehydes using a phosphonium-doped porous aromatic framework. Mol. Catal., 2022, 530, 112600.
[http://dx.doi.org/10.1016/j.mcat.2022.112600]
[36]
Yin, L.; Wang, Z.; Wu, Q.; Liu, L.; Zhang, N.; Xie, Z.; Zhu, G. Water-dispersible porous aromatic frameworks with quasi-amino acid structures via N-H insertion reactions. ACS Nano, 2022, 16(4), 6197-6205.
[http://dx.doi.org/10.1021/acsnano.2c00007] [PMID: 35349273]
[37]
Ma, T.; Zhao, R.; Song, J.; Jing, X.; Tian, Y.; Zhu, G. Turning electronic waste to continuous-flow reactor using porous aromatic frameworks. ACS Appl. Mater. Interfaces, 2022, 14(22), 25601-25608.
[http://dx.doi.org/10.1021/acsami.2c07418] [PMID: 35618663]
[38]
Ben, T.; Pei, C.; Zhang, D.; Xu, J.; Deng, F.; Jing, X.; Qiu, S. Gas storage in porous aromatic frameworks (PAFs). Energy Environ. Sci., 2011, 4(10), 3991-3999.
[http://dx.doi.org/10.1039/c1ee01222c]
[39]
Yuan, D.; Lu, W.; Zhao, D.; Zhou, H.C. Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv. Mater., 2011, 23(32), 3723-3725.
[http://dx.doi.org/10.1002/adma.201101759] [PMID: 21732563]
[40]
Jia, J.; Chen, Z.; Jiang, H.; Belmabkhout, Y.; Mouchaham, G.; Aggarwal, H.; Adil, K.; Abou-Hamad, E. Czaban-Jóźwiak, J.; Tchalala, M.R.; Eddaoudi, M. Extremely hydrophobic POPs to access highly porous storage media and capturing agent for organic vapors. Chem, 2019, 5(1), 180-191.
[http://dx.doi.org/10.1016/j.chempr.2018.10.005]
[41]
Miyaura, N.; Yanagi, T.; Suzuki, A. The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases. Synth. Commun., 1981, 11(7), 513-519.
[http://dx.doi.org/10.1080/00397918108063618]
[42]
Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16(50), 4467-4470.
[http://dx.doi.org/10.1016/S0040-4039(00)91094-3]
[43]
Heck, R.; Nolley, J.P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem., 1972, 37(14), 2320-2322.
[44]
Milstein, D.; Stille, J.K. A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. J. Am. Chem. Soc., 1978, 100(11), 3636-3638.
[http://dx.doi.org/10.1021/ja00479a077]
[45]
Park, J.H.; Ko, K.C.; Park, N.; Shin, H.W.; Kim, E.; Kang, N.; Hong Ko, J.; Lee, S.M.; Kim, H.J.; Ahn, T.K.; Lee, J.Y.; Son, S.U. Microporous organic nanorods with electronic push–pull skeletons for visible light-induced hydrogen evolution from water. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(21), 7656-7661.
[http://dx.doi.org/10.1039/c4ta00989d]
[46]
Liu, D.P.; Chen, Q.; Zhao, Y.C.; Zhang, L.M.; Qi, A.D.; Han, B.H. Fluorinated porous organic polymers via direct C-H arylation polycondensation. ACS Macro Lett., 2013, 2(6), 522-526.
[http://dx.doi.org/10.1021/mz4001699] [PMID: 35581810]
[47]
Thirion, D.; Lee, J.S.; Özdemir, E.; Yavuz, C.T. Robust C-C bonded porous networks with chemically designed functionalities for improved CO2 capture from flue gas. Beilstein J. Org. Chem., 2016, 12, 2274-2279.
[http://dx.doi.org/10.3762/bjoc.12.220] [PMID: 28144294]
[48]
Ratsch, M.; Ye, C.; Yang, Y.; Zhang, A.; Evans, A.M.; Börjesson, K. All-carbon-linked continuous three-dimensional porous aromatic framework films with nanometer-precise controllable thickness. J. Am. Chem. Soc., 2020, 142(14), 6548-6553.
[http://dx.doi.org/10.1021/jacs.9b10884] [PMID: 32186875]
[49]
Braunecker, W.A.; Tsarevsky, N.V.; Gennaro, A.; Matyjaszewski, K. Thermodynamic components of the atom transfer radical polymerization equilibrium: Quantifying solvent effects. Macromolecules, 2009, 42(17), 6348-6360.
[http://dx.doi.org/10.1021/ma901094s]
[50]
Yue, Y.; Mayes, R.T.; Kim, J.; Fulvio, P.F.; Sun, X.G.; Tsouris, C.; Chen, J.; Brown, S.; Dai, S. Seawater uranium sorbents: preparation from a mesoporous copolymer initiator by atom-transfer radical polymerization. Angew. Chem. Int. Ed., 2013, 52(50), 13458-13462.
[http://dx.doi.org/10.1002/anie.201307825] [PMID: 24174429]
[51]
Yue, Y.; Zhang, C.; Tang, Q.; Mayes, R.T.; Liao, W.P.; Liao, C.; Tsouris, C.; Stankovich, J.J.; Chen, J.; Hensley, D.K.; Abney, C.W.; Jiang, D.; Brown, S.; Dai, S.; Poly, A.A. Poly(acrylonitrile)-functionalized porous aromatic framework synthesized by atom-transfer radical polymerization for the extraction of uranium from seawater. Ind. Eng. Chem. Res., 2016, 55(15), 4125-4129.
[http://dx.doi.org/10.1021/acs.iecr.5b03372]
[52]
Li, B.; Sun, Q.; Zhang, Y.; Abney, C.W.; Aguila, B.; Lin, W.; Ma, S. Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions. ACS Appl. Mater. Interfaces, 2017, 9(14), 12511-12517.
[http://dx.doi.org/10.1021/acsami.7b01711] [PMID: 28350432]
[53]
Yuan, Y.; Yang, Y.; Ma, X.; Meng, Q.; Wang, L.; Zhao, S.; Zhu, G. Molecularly imprinted porous aromatic frameworks and their composite components for selective extraction of uranium ions. Adv. Mater., 2018, 30(12), 1706507.
[http://dx.doi.org/10.1002/adma.201706507] [PMID: 29423920]
[54]
Shen, Y.; Chu, N.; Yang, S.; Li, X.; Cao, H.; Tian, G. Quaternary phosphonium-grafted porous aromatic framework for preferential uranium adsorption in alkaline solution. Ind. Eng. Chem. Res., 2019, 58(39), 18329-18335.
[http://dx.doi.org/10.1021/acs.iecr.9b03580]
[55]
Yuan, Y.; Meng, Q.; Faheem, M.; Yang, Y.; Li, Z.; Wang, Z.; Deng, D.; Sun, F.; He, H.; Huang, Y.; Sha, H.; Zhu, G. A molecular coordination template strategy for designing selective porous aromatic framework materials for uranyl capture. ACS Cent. Sci., 2019, 5(8), 1432-1439.
[http://dx.doi.org/10.1021/acscentsci.9b00494] [PMID: 31482126]
[56]
Wang, T.; Xu, M.; Han, X.; Yang, S.; Hua, D. Petroleum pitch-based porous aromatic frameworks with phosphonate ligand for efficient separation of uranium from radioactive effluents. J. Hazard. Mater., 2019, 368, 214-220.
[http://dx.doi.org/10.1016/j.jhazmat.2019.01.048] [PMID: 30677653]
[57]
Aguila, B.; Sun, Q.; Cassady, H.; Abney, C.W.; Li, B.; Ma, S. Design strategies to enhance amidoxime chelators for uranium recovery. ACS Appl. Mater. Interfaces, 2019, 11(34), 30919-30926.
[http://dx.doi.org/10.1021/acsami.9b09532] [PMID: 31378064]
[58]
Wang, Z.; Meng, Q.; Ma, R.; Wang, Z.; Yang, Y.; Sha, H.; Ma, X.; Ruan, X.; Zou, X.; Yuan, Y.; Zhu, G. Constructing an ion pathway for uranium extraction from seawater. Chem, 2020, 6(7), 1683-1691.
[http://dx.doi.org/10.1016/j.chempr.2020.04.012]
[59]
Wang, D.; Song, J.; Wen, J.; Yuan, Y.; Liu, Z.; Lin, S.; Wang, H.; Wang, H.; Zhao, S.; Zhao, X.; Fang, M.; Lei, M.; Li, B.; Wang, N.; Wang, X.; Wu, H. Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent. Adv. Energy Mater., 2018, 8(33), 1802607.
[http://dx.doi.org/10.1002/aenm.201802607]
[60]
Sun, Q.; Aguila, B.; Earl, L.D.; Abney, C.W.; Wojtas, L.; Thallapally, P.K.; Ma, S. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv. Mater., 2018, 30(20), 1705479.
[http://dx.doi.org/10.1002/adma.201705479] [PMID: 29582484]
[61]
Li, Z.; Meng, Q.; Yang, Y.; Zou, X.; Yuan, Y.; Zhu, G. Constructing amidoxime-modified porous adsorbents with open architecture for cost-effective and efficient uranium extraction. Chem. Sci. (Camb.), 2020, 11(18), 4747-4752.
[http://dx.doi.org/10.1039/D0SC00249F] [PMID: 34122930]
[62]
Wang, Z.; Ma, R.; Meng, Q.; Yang, Y.; Ma, X.; Ruan, X.; Yuan, Y.; Zhu, G. Constructing uranyl-specific nanofluidic channels for unipolar ionic transport to realize ultrafast uranium extraction. J. Am. Chem. Soc., 2021, 143(36), 14523-14529.
[http://dx.doi.org/10.1021/jacs.1c02592] [PMID: 34482686]
[63]
Yuan, Y.; Niu, B.; Yu, Q.; Guo, X.; Guo, Z.; Wen, J.; Liu, T.; Zhang, H.; Wang, N. Photoinduced multiple effects to enhance uranium extraction from natural seawater by black phosphorus Nanosheets. Angew. Chem. Int. Ed., 2020, 59(3), 1220-1227.
[http://dx.doi.org/10.1002/anie.201913644] [PMID: 31692138]
[64]
Wang, D.; Song, J.N.; Lin, S.; Wen, J. Ma, C. X.; Yuan, Y.H.; Lei, M.; Wang, X.L.; Wang, N.; Wu, H. A marine-inspired hybrid sponge for highly efficient uranium extraction from seawater. Adv. Funct. Mater., 2019, 29(32), 12.
[65]
Xu, X.; Zhang, H.; Ao, J.; Xu, L.; Liu, X.; Guo, X.; Li, J.; Zhang, L.; Li, Q.; Zhao, X.; Ye, B.; Wang, D.; Shen, F.; Ma, H. 3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater. Energy Environ. Sci., 2019, 12(6), 1979-1988.
[http://dx.doi.org/10.1039/C9EE00626E]
[66]
Yuan, Y.; Zhao, S.; Wen, J.; Wang, D.; Guo, X.; Xu, L.; Wang, X.; Wang, N. Rational design of porous nanofiber adsorbent by blow-spinning with ultrahigh uranium recovery capacity from seawater. Adv. Funct. Mater., 2019, 29(2), 1805380.
[http://dx.doi.org/10.1002/adfm.201805380]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy