Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Recent Advances in Organocatalytic Methods for the Synthesis of Deuterated Aldehydes

Author(s): Vasudevan Dhayalan*

Volume 20, Issue 6, 2023

Published on: 19 December, 2022

Page: [593 - 611] Pages: 19

DOI: 10.2174/2352096516666221101145135

Price: $65

conference banner
Abstract

Formyl-selective deuteration of aldehydes is one of the important synthetic methods in the field of medicinal chemistry. Aldehyde-d is often used as an important building block for pharmaceutical and drug synthesis due to its versatile reactivity and applicability. Due to the recent interest and development in the use of deuterated pharma drugs, there is an urgent need for simple and practical synthetic methods that are effective in producing a broad range of highly deuterated (up to 99% D) functionalized aryl, heteroaryl, alkyl, and alkenyl aldehyde moieties. Organocatalytic processes mediated by NHC have recently been used to achieve selective deuterium labelling processes; this system is frequently used to analyze drug distribution, metabolism, absorption, and excretion (ADME). Moreover, deuterated pharmaceutical compounds are designed to develop therapeutic effectiveness and reduce significant side effects and toxicity by increasing the half-life of the isotope drug response. Remarkably, in 2019-2022, NHC-mediated various catalytic approaches have been dramatically developed. One such method is a practical and mild synthesis of functionalized deuterated aldehydes, drug molecules, therapeutic agents, small and complex natural products, and their analogues using a green method in the presence of water-d as a cheap reagent. These modern methods prepared deuterated drug scaffolds such as 3-formyl rifamycin, midecamycin, menthol, ibuprofen, naproxen, etc. In this concern, we could provide a succinct description of the NHC-organocatalyzed modern synthetic strategies, as well as a mild greener approach for the functional group-selective deuterium isotopic labeling of various formyl compounds using commercially available deuterium sources (D2O and CD3OD).

Graphical Abstract

[1]
Helfenbein, J.; Lartigue, C.; Noirault, E.; Azim, E.; Legailliard, J.; Galmier, M.J.; Madelmont, J.C. Isotopic effect study of propofol deuteration on the metabolism, activity, and toxicity of the anesthetic. J. Med. Chem., 2002, 45(26), 5806-5808.
[http://dx.doi.org/10.1021/jm020864q] [PMID: 12477364]
[2]
Elmore, C.S.; Bragg, R.A. Isotope chemistry; a useful tool in the drug discovery arsenal. Bioorg. Med. Chem. Lett., 2015, 25(2), 167-171.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.051] [PMID: 25499878]
[3]
Geng, H.; Chen, X.; Gui, J.; Zhang, Y.; Shen, Z.; Qian, P.; Chen, J.; Zhang, S.; Wang, W. Practical synthesis of C1 deuterated aldehydes enabled by NHC catalysis. Nat. Catal., 2019, 2(12), 1071-1077.
[http://dx.doi.org/10.1038/s41929-019-0370-z] [PMID: 33791590]
[4]
Gadekar, S.C.; Dhayalan, V.; Nandi, A.; Zak, I.L.; Mizrachi, M.S.; Kozuch, S.; Milo, A. Rerouting the organocatalytic benzoin reaction toward aldehyde deuteration. ACS Catal., 2021, 11(23), 14561-14569.
[http://dx.doi.org/10.1021/acscatal.1c04583]
[5]
Katsnelson, A. Heavy drugs draw heavy interest from pharma backers. Nat. Med., 2013, 19(6), 656-656.
[http://dx.doi.org/10.1038/nm0613-656] [PMID: 23744136]
[6]
Gant, T.G. Using deuterium in drug discovery: Leaving the label in the drug. J. Med. Chem., 2014, 57(9), 3595-3611.
[http://dx.doi.org/10.1021/jm4007998] [PMID: 24294889]
[7]
Atzrodt, J.; Derdau, V.; Kerr, W.J.; Reid, M. Applications of hydrogen isotopes in the life sciences. Angew. Chem. Int. Ed., 2017, 57(7), 1758-1784.
[http://dx.doi.org/10.1002/anie.201704146]
[8]
Russak, E.M.; Bednarczyk, E.M. Impact of deuterium substitution on the pharmacokinetics of pharmaceuticals. Ann. Pharmacother., 2019, 53(2), 211-216.
[http://dx.doi.org/10.1177/1060028018797110] [PMID: 30136594]
[9]
Busenlehner, L.S.; Armstrong, R.N. Insights into enzyme structure and dynamics elucidated by amide H/D exchange mass spectrometry. Arch. Biochem. Biophys., 2005, 433(1), 34-46.
[http://dx.doi.org/10.1016/j.abb.2004.09.002] [PMID: 15581564]
[10]
Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. The renaissance of H/D exchange. Angew. Chem. Int. Ed., 2007, 46(41), 7744-7765.
[http://dx.doi.org/10.1002/anie.200700039] [PMID: 17886815]
[11]
Miller, S.M.; Klinman, J.P. Secondary isotope effects and structure-reactivity correlations in the dopamine beta-monooxygenase reaction: Evidence for a chemical mechanism. Biochemistry, 1985, 24(9), 2114-2127.
[http://dx.doi.org/10.1021/bi00330a004] [PMID: 3995006]
[12]
Dong, J.; Wang, X.; Wang, Z.; Song, H.; Liu, Y.; Wang, Q. Formyl-selective deuteration of aldehydes with D2O via synergistic organic and photoredox catalysis. Chem. Sci., 2020, 11(4), 1026-1031.
[http://dx.doi.org/10.1039/C9SC05132E] [PMID: 34084358]
[13]
Zhang, Y.; Ji, P.; Dong, Y.; Wei, Y.; Wang, W. Deuteration of formyl groups via a catalytic radical H/D exchange approach. ACS Catal., 2020, 10(3), 2226-2230.
[http://dx.doi.org/10.1021/acscatal.9b05300] [PMID: 33623725]
[14]
Zhang, M.; Yuan, X.A.; Zhu, C.; Xie, J. Deoxygenative deuteration of carboxylic acids with D2O. Angew. Chem. Int. Ed., 2019, 58(1), 312-316.
[http://dx.doi.org/10.1002/anie.201811522] [PMID: 30352142]
[15]
Leitch, J.A. Rossolini, T.; Rogova, T.; Dixon, D.J. α-Tertiary dialkyl ether synthesis via reductive photocatalytic α-functionalization of alkyl enol ethers. ACS Catal., 2020, 10(19), 11430-11437.
[http://dx.doi.org/10.1021/acscatal.0c02584]
[16]
Kuang, Y.; Cao, H.; Tang, H.; Chew, J.; Chen, W.; Shi, X.; Wu, J. Visible light driven deuteration of formyl C–H and hydridic C(sp3)–H bonds in feedstock chemicals and pharmaceutical molecules. Chem. Sci. (Camb.), 2020, 11(33), 8912-8918.
[http://dx.doi.org/10.1039/D0SC02661A] [PMID: 34123145]
[17]
Niu, T.; Chen, S.; Hong, M.; Zhang, T.; Chen, J.; Dong, X.; Ni, B. Heterogeneous carbon nitride photocatalyst for C–C bond oxidative cleavage of vicinal diols in aerobic micellar medium. Green Chem., 2020, 22(15), 5042-5049.
[http://dx.doi.org/10.1039/D0GC01727B]
[18]
Adcock, H.V.; Chatzopoulou, E.; Davies, P.W. Divergent C-H insertion–cyclization cascades of N-allyl Ynamides. Angew. Chem. Int. Ed., 2015, 54(51), 15525-15529.
[http://dx.doi.org/10.1002/anie.201507167] [PMID: 26515958]
[19]
Defoin, A.; Defoin-Straatmann, R.; Kuhn, H.J. Preparation of formyl-deuterated benzaldehydes by direct photo-deuteration or by photolysis of phenylglyoxylic acid. J. Labelled Comp. Radiopharm., 1982, 19(7), 891-898.
[http://dx.doi.org/10.1002/jlcr.2580190709]
[20]
Chaudhuri, S.; Zaki, H.; Levine, M. Environmentally friendly procedure for the aqueous oxidation of benzyl alcohols to aldehydes with dibromodimethylhydantoin (DBDMH) and cyclodextrin: Scope and mechanistic insights. Synth. Commun., 2016, 46(7), 636-644.
[http://dx.doi.org/10.1080/00397911.2016.1161801]
[21]
Kim, S.; Ginsbach, J.W.; Lee, J.Y.; Peterson, R.L.; Liu, J.J.; Siegler, M.A.; Sarjeant, A.A.; Solomon, E.I.; Karlin, K.D. Amine oxidative N-dealkylation via cupric hydroperoxide Cu-OOH homolytic cleavage followed by site-specific fenton chemistry. J. Am. Chem. Soc., 2015, 137(8), 2867-2874.
[http://dx.doi.org/10.1021/ja508371q] [PMID: 25706825]
[22]
Kerr, W.J.; Reid, M.; Tuttle, T. Iridium-catalyzed formyl-selective deuteration of aldehydes. Angew. Chem. Int. Ed., 2017, 56(27), 7808-7812.
[http://dx.doi.org/10.1002/anie.201702997] [PMID: 28510987]
[23]
Ibrahim, M.Y.S.; Denmark, S.E. Palladium/Rhodium cooperative catalysis for the production of aryl aldehydes and their deuterated analogues using the water–gas shift reaction. Angew. Chem. Int. Ed., 2018, 57(32), 10362-10367.
[http://dx.doi.org/10.1002/anie.201806148] [PMID: 30015402]
[24]
Isbrandt, E.; Vandavasi, J.; Zhang, W.; Jamshidi, M.; Newman, S. Catalytic deuteration of aldehydes with D2O. Synlett, 2017, 28(20), 2851-2854.
[http://dx.doi.org/10.1055/s-0036-1588540]
[25]
Enders, D.; Niemeier, O.; Henseler, A. Organocatalysis by N-heterocyclic carbenes. Chem. Rev., 2007, 107(12), 5606-5655.
[http://dx.doi.org/10.1021/cr068372z] [PMID: 17956132]
[26]
Marion, N.; Díez-González, S.; Nolan, S.P. N-heterocyclic carbenes as organocatalysts. Angew. Chem. Int. Ed., 2007, 46(17), 2988-3000.
[http://dx.doi.org/10.1002/anie.200603380] [PMID: 17348057]
[27]
Yamashita, M.; Miyoshi, K.; Nakazono, Y.; Suemitsu, R. A New synthesis of aldehydes and aldehydes-d from Grignard reagents. Bull. Chem. Soc. Jpn., 1982, 55(5), 1663-1664.
[http://dx.doi.org/10.1246/bcsj.55.1663]
[28]
Buitrago Santanilla, A.; Regalado, E.L.; Pereira, T.; Shevlin, M.; Bateman, K.; Campeau, L.C.; Schneeweis, J.; Berritt, S.; Shi, Z.C.; Nantermet, P.; Liu, Y.; Helmy, R.; Welch, C.J.; Vachal, P.; Davies, I.W.; Cernak, T.; Dreher, S.D. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science, 2015, 347(6217), 49-53.
[http://dx.doi.org/10.1126/science.1259203] [PMID: 25554781]
[29]
Bugaut, X.; Glorius, F. Organocatalytic umpolung: N-heterocyclic carbenes and beyond. Chem. Soc. Rev., 2012, 41(9), 3511-3522.
[http://dx.doi.org/10.1039/c2cs15333e] [PMID: 22377957]
[30]
He, M.; Struble, J.R.; Bode, J.W. Highly enantioselective azadiene Diels-Alder reactions catalyzed by chiral N-heterocyclic carbenes. J. Am. Chem. Soc., 2006, 128(26), 8418-8420.
[http://dx.doi.org/10.1021/ja062707c] [PMID: 16802805]
[31]
Xiang, S.H.; Tan, B. Advances in asymmetric organocatalysis over the last 10 years. Nat. Commun., 2020, 11(1), 3786-3786.
[http://dx.doi.org/10.1038/s41467-020-17580-z] [PMID: 32728115]
[32]
Liu, W.; Zhao, L.L.; Melaimi, M.; Cao, L.; Xu, X.; Bouffard, J.; Bertrand, G.; Yan, X. Mesoionic carbene (MIC)-catalyzed H/D exchange at formyl groups. Chem, 2019, 5(9), 2484-2494.
[http://dx.doi.org/10.1016/j.chempr.2019.08.011]
[33]
Sawama, Y.; Miki, Y.; Sajiki, H. N-Heterocyclic carbene catalyzed deuteration of aldehydes in D2O. Synlett, 2020, 31(7), 699-702.
[http://dx.doi.org/10.1055/s-0040-1707993]
[34]
Dhayalan, V.; Gadekar, S.C.; Alassad, Z.; Milo, A. Unravelling mechanistic features of organocatalysis with in situ modifications at the secondary sphere. Nat. Chem., 2019, 11(6), 543-551.
[http://dx.doi.org/10.1038/s41557-019-0258-1] [PMID: 31086303]
[35]
Zak, I.L.; Gadekar, S.C.; Milo, A. Designing the secondary coordination sphere in small-molecule catalysis. Synlett, 2021, 32(4), 329-336.
[http://dx.doi.org/10.1055/s-0040-1707326]
[36]
Berkessel, A.; Elfert, S.; Yatham, V.R.; Neudörfl, J.M.; Schlörer, N.E.; Teles, J.H. Umpolung by N-heterocyclic carbenes: generation and reactivity of the elusive 2,2-diamino enols (Breslow intermediates). Angew. Chem. Int. Ed., 2012, 51(49), 12370-12374.
[http://dx.doi.org/10.1002/anie.201205878] [PMID: 23081675]
[37]
Collett, C.J.; Massey, R.S.; Taylor, J.E.; Maguire, O.R.; O’Donoghue, A.C.; Smith, A.D. Rate and equilibrium constants for the addition of N-heterocyclic carbenes into benzaldehydes: a remarkable 2-substituent effect. Angew. Chem., 2015, 127(23), 6991-6996.
[http://dx.doi.org/10.1002/ange.201501840] [PMID: 27478264]
[38]
Breslow, R. Rapid deuterium exchange in thiazolium salts. J. Am. Chem. Soc., 1957, 79(7), 1762-1763.
[http://dx.doi.org/10.1021/ja01564a064]
[39]
Breslow, R. On the mechanism of thiamine action. iv1 evidence from studies on model systems. J. Am. Chem. Soc., 1958, 80(14), 3719-3726.
[http://dx.doi.org/10.1021/ja01547a064]
[40]
Dhayalan, V.; Mal, K.; Milo, A. Practical synthesis of chiral N-heterocyclic carbene triazolium salts containing a hydroxy functional handle. Synthesis, 2019, 51(14), 2845-2864.
[http://dx.doi.org/10.1055/s-0037-1611786]
[41]
Raed, A.A.; Dhayalan, V.; Barkai, S.; Milo, A. N-Heterocyclic Carbene triazolium salts containing brominated aromatic motifs: Features and synthetic protocol. Chimia, 2020, 74(11), 878-882.
[http://dx.doi.org/10.2533/chimia.2020.878] [PMID: 33243323]
[42]
Gadekar, S.C.; Dhayalan, V.; Zak, I.L.; Mizrachi, M.S.; Nandi, A.; Kozuch, S.; Milo, A. Rerouting an organocatalytic reaction by intercepting its reactive intermediates. ChemRxiv, 2020, 1-9.
[http://dx.doi.org/10.26434/chemrxiv.13061717.v1]
[43]
Sharma, D.; Chatterjee, R.; Dhayalan, V.; Dhanusuraman, R.; Dandela, R. Recent advances in the practical synthesis of C1 deuterated aromatic aldehydes enabled by catalysis and beyond. Chem. Asian J., 2022, 17(18), e202200485.
[http://dx.doi.org/10.1002/asia.202200485] [PMID: 35844079]
[44]
Guo, Y.; Zhuang, Z.; Liu, Y. Advances in C1-deuterated aldehyde synthesis. Coord. Chem. Rev., 2022, 463, 214525.
[http://dx.doi.org/10.1016/j.ccr.2022.214525]
[45]
Pirali, T.; Serafini, M.; Cargnin, S.; Genazzani, A.A. Applications of deuterium in medicinal chemistry. J. Med. Chem., 2019, 62(11), 5276-5297.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01808] [PMID: 30640460]
[46]
Dean, M.; Sung, V. Review of deutetrabenazine: A novel treatment for chorea associated with Huntington’s disease. Drug Des. Devel. Ther., 2018, 12, 313-319.
[http://dx.doi.org/10.2147/DDDT.S138828] [PMID: 29497277]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy