Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Recent Advances in Synthetic Strategies of Benzimidazole and its Analogs: A Review

Author(s): Himanshu Singh*, Rajnish Kumar, Prashant Tiwari and Ayushi Singh

Volume 26, Issue 19, 2022

Published on: 23 December, 2022

Page: [1767 - 1778] Pages: 12

DOI: 10.2174/1385272827666221216113723

Price: $65

conference banner
Abstract

It has been established on the basis of reported research that benzimidazoles and their analogs are active scaffolds. Benzimidazole is a benzofused imidazole compound that is present in several marketed molecules with a wide range of uses that established its importance in pharmaceutical sectors and industry. Drugs with a benzimidazole nucleus have unique structural characteristics and an electron-rich environment that allows them to attach to a variety of physiologically significant sites and produce a variety of actions. The development of benzimidazole heterocyclic molecules as antihistaminic (H1-receptor antagonist, for example, bilastine; 5-HT3 antagonist, for example, leri-setron); antimicrobial (antibiotic, for example, ridinilazole); antiulcer (proton pump inhibitor (PPI), for example, ilaprazole); antihypertensive (calcium channel blocker, for example, mibefradil); and drugs used to treat cancer include those that are antiparasitic (specifically anthelmintic, such as fubendazole), antipsychotic (D2 receptor antagonist, such as clopimozide), analgesic (opioid analgesic, such as clonitazene), and phosphodiesterase inhibitor (PDE3 inhibitor, such as adibendan). Due to its broad applications, scientists are continuously enthralled by benzimidazoles and their derivatives to study their chemistry. Several synthesis strategies can prepare benzimidazole or its derivatives and the focus will always be on new, greener, and more economical ways for its synthesis. Among all methods, catalytic cyclization, catalytic coupling, and catalytic reactions are the most used approaches for the synthesis of benzimidazoles and their analogs. The present review entitled various synthetic approaches for synthesizing benzimidazole from 2009 to 2021 and its derivatives, which will be very useful to researchers for developing benzimidazole moieties.

Graphical Abstract

[1]
Enumula, S.; Pangal, A.; Gazge, M.; Shaikh, J.A.; Ahmed, K. Diverse pharmacological aspects of benzimidazole derivatives : A review. Res. J. Chem. Sci., 2014, 4(4), 78-88.
[2]
Salahuddin; Shaharyar, M.; Mazumder, A. Benzimidazoles: A biologically active compounds. Arab. J. Chem., 2017, 10, S157-S173.
[http://dx.doi.org/10.1016/j.arabjc.2012.07.017]
[3]
Kanwal, A.; Ahmad, M.; Aslam, S.; Naqvi, S.A.R.; Saif, M.J.; Saif, M.J. Recent advances in antiviral benzimidazole derivatives: A mini review. Pharm. Chem. J., 2019, 53(3), 179-187.
[http://dx.doi.org/10.1007/s11094-019-01976-3]
[4]
Kamanna, K. Synthesis and pharmacological profile of benzimidazoles. Chemistry and applications of benzimidazole and its derivatives. London, UK. Intech Open., 2019, 13, 51-69.
[5]
Faheem, M.; Rathaur, A.; Pandey, A.; Singh, K. A review on the modern synthetic approach of benzimidazole candidate. Org. Supramol. Chem., 2020, 3981-3994.
[http://dx.doi.org/10.1002/slct.201904832]
[6]
Shaaban, M.A.E.; Kamal, A.M.; Teba, H.E.S. Synthesis, characterisation and biological screening of some 2-substituted benzimidazole derivatives as potential anticancer agents. J. Chem. Res., 2016, 40(4), 228-234.
[http://dx.doi.org/10.3184/174751916X14577069096465]
[7]
Babkov, D.A.; Zhukowskaya, O.N.; Borisov, A.V.; Babkova, V.A.; Sokolova, E.V.; Brigadirova, A.A.; Litvinov, R.A.; Kolodina, A.A.; Morkovnik, A.S.; Sochnev, V.S.; Borodkin, G.S.; Spasov, A.A. Towards multi-target antidiabetic agents: Discovery of biphenyl-benzimidazole conjugates as AMPK activators. Bioorg. Med. Chem. Lett., 2019, 29(17), 2443-2447.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.035] [PMID: 31358465]
[8]
Keri, R.S.; Hiremathad, A.; Budagumpi, S.; Nagaraja, B.M. Comprehensive review in current developments of benzimidazole-based medicinal chemistry. Chem. Biol. Drug Des., 2015, 86(1), 19-65.
[http://dx.doi.org/10.1111/cbdd.12462] [PMID: 25352112]
[9]
El-Gohary, N.S.; Shaaban, M.I. Synthesis, antimicrobial, antiquorum-sensing and antitumor activities of new benzimidazole analogs. Eur. J. Med. Chem., 2017, 137, 439-449.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.064] [PMID: 28623814]
[10]
El-nassan, H.B. Synthesis, antitumor activity and SAR study of novel][1,2,4]triazino[4,5-α] benzimidazole derivatives. Eur. J. Med. Chem., 2012, 53, 22-27.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.028] [PMID: 22542105]
[11]
Tewari, A.K.; Mishra, A. Synthesis and antiviral activities of n-substituted-2-substituted-benzimidazole derivatives. Indian J. Chem., 2006, 45(2), 489-493.
[12]
Hwu, J.R.; Singha, R.; Hong, S.C.; Chang, Y.H.; Das, A.R.; Vliegen, I.; De Clercq, E.; Neyts, J. Synthesis of new benzimidazole–coumarin conjugates as anti-hepatitis C virus agents. Antiviral Res., 2008, 77(2), 157-162.
[http://dx.doi.org/10.1016/j.antiviral.2007.09.003] [PMID: 17977606]
[13]
Li, Y.F.; Wang, G.F.; Luo, Y.; Huang, W.G.; Tang, W.; Feng, C.L.; Shi, L.P.; Ren, Y.D.; Zuo, J.P.; Lu, W. Identification of 1-isopropylsulfonyl-2-amine benzimidazoles as a new class of inhibitors of hepatitis B virus. Eur. J. Med. Chem., 2007, 42(11-12), 1358-1364.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.005] [PMID: 17499889]
[14]
Demirayak, Ş.; Abu Mohsen, U.; Çağri Karaburun, A. Synthesis and anticancer and anti-HIV testing of some pyrazino[1,2-a]benzimidazole derivatives. Eur. J. Med. Chem., 2002, 37(3), 255-260.
[http://dx.doi.org/10.1016/S0223-5234(01)01313-7] [PMID: 11900869]
[15]
Mavrova, A.T.; Vuchev, D.; Anichina, K.; Vassilev, N. Synthesis, antitrichinnellosis and antiprotozoal activity of some novel thieno[2,3-d]pyrimidin-4(3H)-ones containing benzimidazole ring. Eur. J. Med. Chem., 2010, 45(12), 5856-5861.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.050] [PMID: 20950896]
[16]
Navarretevázquez, G.; Rojanovilchis, M.; Yépezmulia, L.; Meléndez, V.; Gerena, L.; Hernándezcampos, A.; Castillo, R.; Hernándezluis, F. Synthesis and antiprotozoal activity of some 2-(trifluoromethyl)-1H-benzimidazole bioisosteres. Eur. J. Med. Chem., 2006, 41(1), 135-141.
[http://dx.doi.org/10.1016/j.ejmech.2005.09.001] [PMID: 16260067]
[17]
Pérez-villanueva, J.; Hernández-campos, A.; Yépez-mulia, L.; Méndez-cuesta, C.; Méndez-lucio, O.; Hernández-luis, F.; Castillo, R. Synthesis and antiprotozoal activity of novel 2- {[ 2- (1 h -imidazol- 1-yl) ethyl] sulfanyl } -1 h -benzimidazole derivatives. bioorg. med. chem. Lett., 2013, 23, 4221-4224.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.012] [PMID: 23731944]
[18]
Sharghi, H.; Hosseini-Sarvari, M.; Moeini, F. Copper-catalyzed one-pot synthesis of benzimidazole derivatives. Can. J. Chem., 2008, 86(11), 1044-1051.
[http://dx.doi.org/10.1139/v08-153]
[19]
Khan, M.T.; Razi, M.T.; Jan, S.U.; Mukhtiar, M.; Gul, R.; IzharUllah; Hussain, A.; Hashmi, A.M.; Ahmad, M.T.; Shahwani, N.A.; Rabbani, I. Synthesis, characterization and antihypertensive activity of 2-phenyl substituted benzimidazoles. Pak. J. Pharm. Sci., 2018, 31(S3), 1067-1074.
[PMID: 29731445]
[20]
Achar, K.C.S.; Hosamani, K.M.; Seetharamareddy, H.R. In-vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives. Eur. J. Med. Chem., 2010, 45(5), 2048-2054.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.029] [PMID: 20133024]
[21]
Sondhi, S.M.; Rajvanshi, S.; Johar, M.; Bharti, N.; Azam, A.; Singh, A.K. Anti-inflammatory, analgesic and antiamoebic activity evaluation of pyrimido[1,6-a]benzimidazole derivatives synthesized by the reaction of ketoisothiocyanates with mono and diamines. Eur. J. Med. Chem., 2002, 37(10), 835-843.
[http://dx.doi.org/10.1016/S0223-5234(02)01403-4] [PMID: 12446042]
[22]
Gaba, M.; Singh, D.; Singh, S.; Sharma, V.; Gaba, P. Synthesis and pharmacological evaluation of novel derivatives as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2010, 45(6), 2245-2249.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.067] [PMID: 20172630]
[23]
Gaba, M.; Singh, S.; Mohan, C. Benzimidazole: An emerging scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 494-505.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.030] [PMID: 24602792]
[24]
Chang, C.S.; Liu, J.F.; Lin, H.J.; Lin, C.D.; Tang, C.H.; Lu, D.Y.; Sing, Y.T.; Chen, L.Y.; Kao, M.C.; Kuo, S.C.; Lai, C.H. Synthesis and bioevaluation of novel 3,4,5-trimethoxybenzylbenzimidazole derivatives that inhibit Helicobacter pylori-induced pathogenesis in human gastric epithelial cells. Eur. J. Med. Chem., 2012, 48, 244-254.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.021] [PMID: 22217866]
[25]
Saini, S.; Dhiman, N.; Mittal, A.; Kumar, G. Research article synthesis and antioxidant activity of the 2-methyl benzimidazole. J. Drug Deliv. Ther., 2016, 6(3), 100-102.
[http://dx.doi.org/10.22270/jddt.v6i3.1234]
[26]
Neochoritis, C.G.; Zarganes-Tzitzikas, T.; Tsoleridis, C.A.; Stephanidou-Stephanatou, J.; Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J.; Choli-Papadopoulou, T. One-pot microwave assisted synthesis under green chemistry conditions, antioxidant screening, and cytotoxicity assessments of benzimidazole Schiff bases and pyrimido[1,2-a]benzimidazol-3(4H)-ones. Eur. J. Med. Chem., 2011, 46(1), 297-306.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.018] [PMID: 21146903]
[27]
Chimirri, A.; De Sarro, A.; De Sarro, G.; Gitto, R.; Zappalà, M. Synthesis and anticonvulsant properties of 2,3,3a,4-tetrahydro-1H-pyrrolo[1,2-a]benzimidazol-1-one derivatives. Farmaco, 2001, 56(11), 821-826.
[http://dx.doi.org/10.1016/S0014-827X(01)01147-8] [PMID: 11765033]
[28]
Siddiqui, N.; Alam, M.S.; Ali, R.; Yar, M.S.; Alam, O. Synthesis of new benzimidazole and phenylhydrazinecarbothiomide hybrids and their anticonvulsant activity. Med. Chem. Res., 2016, 25(7), 1390-1402.
[http://dx.doi.org/10.1007/s00044-016-1570-6]
[29]
Dangi, G.; Kumar, N.; Sharma, C.S.L.S.C. Research article synthesis, anticonvulsant activity of some novel benzimidazole. J. Drug Deliv. Ther., 2014, 4(2), 182-185.
[http://dx.doi.org/10.22270/jddt.v4i2.938]
[30]
Sahoo, B.M.; Banik, B.K.; Mazaharunnisa; Rao, N.S.; Raju, B. Microwave assisted green synthesis of benzimidazole derivatives and evaluation of their anticonvulsant activity. Curr. Microw. Chem., 2019, 6(1), 23-29.
[http://dx.doi.org/10.2174/2213335606666190429124745]
[31]
Shingalapur, R.V.; Hosamani, K.M.; Keri, R.S.; Hugar, M.H. Derivatives of benzimidazole pharmacophore: Synthesis, anticonvulsant, antidiabetic and DNA cleavage studies. Eur. J. Med. Chem., 2010, 45(5), 1753-1759.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.007] [PMID: 20122763]
[32]
Aboul-Enein, H.Y.; El Rashedy, A. Benzimidazole derivatives as antidiabetic agents. Med. Chem., 2015, 5(7), 1-8.
[33]
Dık, B.; Coşkun, D.; Bahçıvan, E.; Üney, K. Potential antidiabetic activity of benzimidazole derivative albendazole and lansoprazole drugs in different doses in experimental type 2 diabetic rats. Turk. J. Med. Sci., 2021, 51(3), 1578-1585.
[http://dx.doi.org/10.3906/sag-2004-38]
[34]
Shojaee, S.; Mahdavi Shahri, M. An efficient synthesis and cytotoxic activity of 2-(4-chlorophenyl)-1 H -benzo[ d]imidazole obtained using a magnetically recyclable Fe 3 O 4 nanocatalyst-mediated white tea extract. Appl. Organomet. Chem., 2018, 32(1), e3934.
[http://dx.doi.org/10.1002/aoc.3934]
[35]
Tarı, Ö.; Gümüş, F.; Açık, L.; Aydın, B. Synthesis, characterization and DNA binding studies of platinum(II) complexes with benzimidazole derivative ligands. Bioorg. Chem., 2017, 74, 272-283.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.015] [PMID: 28881255]
[36]
Almansour, A.I.; Arumugam, N.; Suresh Kumar, R.; Mahalingam, S.M.; Sau, S.; Bianchini, G.; Menéndez, J.C.; Altaf, M.; Ghabbour, H.A. Design, synthesis and antiproliferative activity of decarbonyl luotonin analogues. Eur. J. Med. Chem., 2017, 138, 932-941.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.027] [PMID: 28753517]
[37]
Paul, K.; Bindal, S.; Luxami, V. Synthesis of new conjugated coumarin–benzimidazole hybrids and their anticancer activity. Bioorg. Med. Chem. Lett., 2013, 23(12), 3667-3672.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.071] [PMID: 23642480]
[38]
Cevik, A.U.; Saglık, B.N.; Ardic, C.M.; Atlı, O.; Ozkay, Y. Synthesis and evaluation of new benzimidazole derivatives with hydrazone moiety as anticancer agents hidrazon yapısı içeren yeni benzimidazol turevlerinin sentezi ve antikanser ajan olarak degerlendirilmesi. Turkish J. Biochem., 2018, 43(2), 151-158.
[http://dx.doi.org/10.1515/tjb-2017-0167]
[39]
Darwish, S.A.Z.; Elbayaa, R.Y.; Ashour, H.M.A.; Khalil, M.A.; Badawey, E.A.M. Potential anticancer agents: Design, synthesis of new pyrido[1,2-a]benzimidazoles and related derivatives linked to alkylating fragments. Med. Chem., 2018, 8(4), 86-95.
[http://dx.doi.org/10.4172/2161-0444.1000498]
[40]
Shrivastava, N.; Naim, M.J.; Alam, M.J.; Nawaz, F.; Ahmed, S.; Alam, O. Benzimidazole scaffold as anticancer agent: Synthetic approaches and structure-activity relationship. Arch. Pharm., 2017, 350(6), e201700040.
[http://dx.doi.org/10.1002/ardp.201700040] [PMID: 28544162]
[41]
Garudachari, B.; Satyanarayana, M.N.; Thippeswamy, B.; Shivakumar, C.K.; Shivananda, K.N.; Hegde, G.; Isloor, A.M.; Satyanarayana, M.N.; Thippeswamy, B.; Shivakumar, C.K.; Shivananda, K.N.; Hegde, G.; Isloor, A.M. Synthesis, characterization and antimicrobial studies of some new quinoline incorporated benzimidazole derivatives. Eur. J. Med. Chem., 2012, 54, 900-906.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.027] [PMID: 22732060]
[42]
Zhang, S.L.; Damu, G.L.V.; Zhang, L.; Geng, R.X.; Zhou, C.H. Synthesis and biological evaluation of novel benzimidazole derivatives and their binding behavior with bovine serum albumin. Eur. J. Med. Chem., 2012, 55, 164-175.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.015] [PMID: 22863183]
[43]
Patel, R.V.; Patel, P.K.; Kumari, P.; Rajani, D.P.; Chikhalia, K.H. Synthesis of benzimidazolyl-1,3,4-oxadiazol-2ylthio-N-phenyl (benzothiazolyl) acetamides as antibacterial, antifungal and antituberculosis agents. Eur. J. Med. Chem., 2012, 53, 41-51.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.033] [PMID: 22516426]
[44]
Noolvi, M.; Agrawal, S.; Patel, H.; Badiger, A.; Gaba, M.; Zambre, A. Synthesis, antimicrobial and cytotoxic activity of novel azetidine-2-one derivatives of 1H-benzimidazole. Arab. J. Chem., 2014, 7(2), 219-226.
[http://dx.doi.org/10.1016/j.arabjc.2011.02.011]
[45]
Cong, C.; Wang, H.; Hu, Y.; Liu, C.; Ma, S.; Li, X.; Cao, J.; Ma, S. Synthesis and antibacterial activity of novel 4″-O-benzimidazolyl clarithromycin derivatives. Eur. J. Med. Chem., 2011, 46(7), 3105-3111.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.004] [PMID: 21524827]
[46]
Padhy, G.K.; Panda, J.; Raul, S.K.; Behera, A.K. Synthesis of Some New Benzimidazole Acid Hydrazide Derivatives as Antibacterial Agents Synthesis of Some New Benzimidazole Acid Hydrazide Derivatives as Antibacterial Agents Department of Pharmaceutical Chemistry, Maharajah’s College of Pharmacy, Phool Baugh, Vizianagaram. Indian J. Het. Chem., 2019, 28(04), 447-451.
[47]
Gong, J.X.; He, Y.; Cui, Z.L.; Guo, Y.W. Synthesis, spectral characterization, and antituberculosis activity of thiazino[3,2- A]benzimidazole derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(7), 1036-1041.
[http://dx.doi.org/10.1080/10426507.2015.1135149]
[48]
Khairunissa, N.; Abdullah, N.; Taha, M.; Ahmat, N.; Ismail, N.H.; Wadood, A.; Rahim, F. Synthesis, Molecular Docking Studies of Hybrid Benzimidazole as α-Glucosidase Inhibitor. Bioorg. Chem., 2017, 70, 184-191.
[http://dx.doi.org/10.1016/j.bioorg.2016.12.009] [PMID: 28043716]
[51]
Rithe, S.R.; Jagtap, R.S.; Ubarhande, S.S. One pot synthesis of substituted benzimidazole derivatives and their charcterization. Rasayan J. Chem., 2015, 8(2), 213-217.
[52]
Gupta Atyam, V.S.S.S.; Sarva Raidu, C.; Nannapaneni, D.T.; Reddy, M.I. Synthesis, characterization, and biological evaluation of benzimidazole derivatives as potential anxiolytics. J. Young Pharm., 2010, 2(3), 273-279.
[http://dx.doi.org/10.4103/0975-1483.66809] [PMID: 21042485]
[53]
Eshghi, H.; Rahimizadeh, M.; Shiri, A.; Sedaghat, P. One-pot synthesis of benzimidazoles and benzothiazoles in the presence of fe(hso 4) 3 as a new and efficient oxidant. Bull. Korean Chem. Soc., 2012, 33(2), 515-518.
[http://dx.doi.org/10.5012/bkcs.2012.33.2.515]
[54]
Bastug, G.; Eviolitte, C.; Markó, I.E. Functionalized orthoesters as powerful building blocks for the efficient preparation of heteroaromatic bicycles. Org. Lett., 2012, 14(13), 3502-3505.
[http://dx.doi.org/10.1021/ol301472a] [PMID: 22735031]
[55]
Kim, Y.; Kumar, M.R.; Park, N.; Heo, Y.; Lee, S. Copper-catalyzed, one-pot, three-component synthesis of benzimidazoles by condensation and C-N bond formation. J. Org. Chem., 2011, 76(23), 9577-9583.
[http://dx.doi.org/10.1021/jo2019416] [PMID: 22034860]
[56]
Nguyen, T.B.; Le Bescont, J.; Ermolenko, L.; Al-Mourabit, A. Cobalt- and iron-catalyzed redox condensation of o-substituted nitrobenzenes with alkylamines: a step- and redox-economical synthesis of diazaheterocycles. Org. Lett., 2013, 15(24), 6218-6221.
[http://dx.doi.org/10.1021/ol403064z] [PMID: 24228936]
[57]
Suri, M.; Jousseaume, T.; Neumann, J.J.; Glorius, F. An efficient copper-catalyzed formation of highly substituted pyrazoles using molecular oxygen as the oxidant. Green Chem., 2012, 14(8), 2193-2196.
[58]
Nguyen, T.; Al-Mourabit, A.; Ermolenko, L. Sodium Sulfide: A sustainable solution for unbalanced redox condensation reaction between o-nitroanilines and alcohols catalyzed by an iron–sulfur system. Synthesis, 2015, 47(12), 1741-1748.
[http://dx.doi.org/10.1055/s-0034-1380134]
[59]
Hati, S.; Kumar, D.P.; Dutta, S.; Munshi, P.; Sen, S. Accessing benzimidazoles via a ring distortion strategy: An oxone mediated tandem reaction of 2-aminobenzylamines. Org. Lett., 2016, 18(13), 3090-3093.
[http://dx.doi.org/10.1021/acs.orglett.6b01217] [PMID: 27331245]
[60]
Bhanage, B.; Nale, D. N-substituted formamides as c1-sources for the synthesis of benzimidazole and benzothiazole derivatives by using zinc catalysts. Synlett, 2015, 26(20), 2835-2842.
[http://dx.doi.org/10.1055/s-0035-1560319]
[61]
Saha, P.; Ramana, T.; Purkait, N.; Ali, M.A.; Paul, R.; Punniyamurthy, T. Ligand-free copper-catalyzed synthesis of substituted benzimidazoles, 2-aminobenzimidazoles, 2-aminobenzothiazoles, and benzoxazoles. J. Org. Chem., 2009, 74(22), 8719-8725.
[http://dx.doi.org/10.1021/jo901813g] [PMID: 19908912]
[62]
Lv, X.; Bao, W.; Campus, X. Copper-catalyzed cascade addition/cyclization: An efficient and versatile synthesis of N-substituted 2-heterobenzimidazoles. J. Org. Chem., 2009, 74(15), 5618-5621.
[http://dx.doi.org/10.1021/jo900743y] [PMID: 19719252]
[63]
Guru, M. M.; Ali, A.; Punniyamurthy, T. Copper-mediated synthesis of substituted 2-Aryl- N - Benzylbenzimidazoles and 2-Arylbenzoxazoles via C À H Functionalization / C À N / C À O bond formation. 2011, 76(13), 5295-5308.
[http://dx.doi.org/10.1021/jo2005632]
[64]
Caron, S.; Jones, B.; Wei, L. Preparation of Substituted Benzimidazoles and Imidazopyridines Using 2,2,2-Trichloroethyl Imidates. Synthesis, 2012, 44(19), 3049-3054.
[http://dx.doi.org/10.1055/s-0032-1317019]
[65]
Hanan, E.; Chan, B.; Estrada, A.; Shore, D.; Lyssikatos, J. Mild and general one-pot reduction and cyclization of aromatic and heteroaromatic 2-nitroamines to bicyclic 2h-imidazoles. Synlett, 2010, 2010(18), 2759-2764.
[http://dx.doi.org/10.1055/s-0030-1259007]
[66]
Mayo, M.S.; Yu, X.; Zhou, X.; Feng, X.; Yamamoto, Y.; Bao, M. Convenient synthesis of benzothiazoles and benzimidazoles through Brønsted acid catalyzed cyclization of 2-amino thiophenols/anilines with β-diketones. Org. Lett., 2014, 16(3), 764-767.
[http://dx.doi.org/10.1021/ol403475v] [PMID: 24410080]
[67]
Bahrami, K.; Khodaei, M.M.; Naali, F. Mild and highly efficient method for the synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles a new, convenient method for the syntheses of 2-substituted benzimidazole and benzothizole is described. short reaction times, large-scale synthesis, easy and quick isolation of the products, excellent chemoselectivity, and excellent yields are the main advantages of this procedure. compounds that exhibit the functionality of benzimidazole and benzothiazole have been extensively employed in the area. J. Org. Chem., 2009, 19, 6835-6837.
[68]
Xie, Y.; Wu, J.; Che, X.; Chen, Y.; Huang, H.; Deng, G.J. Efficient pyrido[1,2-a]benzimidazole formation from 2-aminopyridines and cyclohexanones under metal-free conditions. Green Chem., 2016, 18(3), 667-671.
[http://dx.doi.org/10.1039/C5GC01978H]
[69]
Rasheed, S.; Rao, D.N.; Das, P. Copper-catalyzed inter- and intramolecular c–n bond formation: synthesis of benzimidazole-fused heterocycles. J. Org. Chem., 2015, 80(18), 9321-9327.
[http://dx.doi.org/10.1021/acs.joc.5b01396] [PMID: 26322501]
[70]
Yuan, G.; Liu, H.; Gao, J.; Xu, H.; Jiang, L.; Wang, X.; Lv, X. An efficient and facile synthesis of benzimidazo[1,2-a]benzimidazoles via copper-catalyzed domino addition/double cyclization. RSC Advances, 2014, 4(42), 21904-21908.
[http://dx.doi.org/10.1039/C4RA01181C]
[71]
Liu, H.; Tang, J.; Jiang, L.; Zheng, T.; Wang, X.; Lv, X. Efficient domino synthesis of benzimidazole derivatives: copper catalysis versus transition metal-free conditions. Tetrahedron Lett., 2015, 56(13), 1624-1630.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.197]
[72]
Raja, D.; Philips, A.; Palani, P.; Lin, W.Y.; Devikala, S.; Senadi, G.C. Metal-free synthesis of benzimidazoles via oxidative cyclization of D -glucose with o -phenylenediamines in water. J. Org. Chem., 2020, 85(17), 11531-11540.
[http://dx.doi.org/10.1021/acs.joc.0c01053] [PMID: 32786645]
[73]
Baars, H.; Beyer, A.; Kohlhepp, S.V.; Bolm, C. Transition-metal-free synthesis of benzimidazoles mediated by KOH/DMSO. Org. Lett., 2014, 16(2), 536-539.
[http://dx.doi.org/10.1021/ol403414v] [PMID: 24364511]
[74]
Peng, J.; Ye, M.; Zong, C.; Hu, F.; Feng, L.; Wang, X.; Wang, Y.; Chen, C. Copper-catalyzed intramolecular C-N bond formation: A straightforward synthesis of benzimidazole derivatives in water. J. Org. Chem., 2011, 76(2), 716-719.
[http://dx.doi.org/10.1021/jo1021426] [PMID: 21175149]
[75]
Ryabukhin, B. V; Plaskon, A. S.; Volochnyuk, D. M.; Tolmachev, A. A. Synthesis of fused imidazoles and benzothiazoles from ( Hetero ) Aromatic ortho -diamines or ortho -aminothiophenol and aldehydes promoted By. 2006, 21, 3715-3726.
[http://dx.doi.org/10.1055/s-2006-950289]
[76]
Du, L.H.; Wang, Y-G. A rapid and efficient synthesis of benzimidazoles using hypervalent iodine as oxidant. ChemInform, 2007, 38(26), 675-678.
[http://dx.doi.org/10.1002/chin.200726115]
[77]
Alla, S.K.; Kumar, R.K.; Sadhu, P.; Punniyamurthy, T. Iodobenzene catalyzed C-H amination of N-substituted amidines using m-chloroperbenzoic acid. Org. Lett., 2013, 15(6), 1334-1337.
[http://dx.doi.org/10.1021/ol400274f] [PMID: 23444897]
[78]
Xue, D.; Long, Y.Q. Metal-free TEMPO-promoted C(sp3)-H amination to afford multisubstituted benzimidazoles. J. Org. Chem., 2014, 79(10), 4727-4734.
[http://dx.doi.org/10.1021/jo5005179] [PMID: 24758603]
[79]
Mahesh, D.; Sadhu, P.; Punniyamurthy, T. Copper(I)-catalyzed regioselective amination of N-aryl imines using TMSN3 and TBHP: a route to substituted benzimidazoles. J. Org. Chem., 2015, 80(3), 1644-1650.
[http://dx.doi.org/10.1021/jo502574u] [PMID: 25588127]
[80]
Hu, Z.; Zhao, T.; Wang, M.; Wu, J.; Yu, W.; Chang, J.I. 2 -Mediated intramolecular c–h amidation for the synthesis of n-substituted benzimidazoles. J. Org. Chem., 2017, 82(6), 3152-3158.
[http://dx.doi.org/10.1021/acs.joc.7b00142] [PMID: 28233495]
[81]
Das, K.; Mondal, A.; Srimani, D. Selective synthesis of 2-substituted and 1,2-disubstituted benzimidazoles directly from aromatic diamines and alcohols catalyzed by molecularly defined nonphosphine manganese(i) complex. J. Org. Chem., 2018, 83(16), 9553-9560.
[http://dx.doi.org/10.1021/acs.joc.8b01316] [PMID: 29993244]
[82]
Mahesh, D.; Sadhu, P.; Punniyamurthy, T. Copper(II)-catalyzed oxidative cross-coupling of anilines, primary alkyl amines, and sodium azide using tbhp: a route to 2-substituted benzimidazoles. J. Org. Chem., 2016, 81(8), 3227-3234.
[http://dx.doi.org/10.1021/acs.joc.6b00186] [PMID: 26991254]
[83]
Wang, Z.; Song, T.; Yang, Y. Additive- and oxidant-free expedient synthesis of benzimidazoles catalyzed by cobalt nanocomposites on n-doped carbon. Synlett, 2019, 30(3), 319-324.
[http://dx.doi.org/10.1055/s-0037-1610353]
[84]
Diao, X.; Wang, Y.; Jiang, Y.; Ma, D. Assembly of substituted 1h-benzimidazoles and 1,3-dihydrobenzimidazol-2-ones via cui/l-proline catalyzed coupling of aqueous ammonia with 2-iodoacetanilides and 2-iodophenylcarbamates. J. Org. Chem., 2009, 74(20), 7974-7977.
[http://dx.doi.org/10.1021/jo9017183] [PMID: 19775088]
[85]
Mamedov, V.A. Recent advances in the synthesis of benzimidazol(on)es via rearrangements of quinoxalin(on)es. RSC Advances, 2016, 6(48), 42132-42172.
[http://dx.doi.org/10.1039/C6RA03907C]
[86]
She, J.; Jiang, Z. Y. W. one-pot synthesis of functionalized benzimidazoles and 1 h -pyrimidines via cascade reactions of o -aminoanilines or naphthalene-1, 8-diamine with alkynes and p -tolylsulfonyl azide.Letters; , 2009, pp. 2023-2028.
[http://dx.doi.org/10.1055/s-0029-1217515]
[87]
Karami, C.; Ghodrati, K.; Izadi, M.; Farrokh, A.; Jafari, S.; Mahmoudiyani, M.; Haghnazari, N.; S, J.; Mahmoudiyani, M. A Fast procedure for the preparation of benzimidazole derivatives using polymer- supported with trifluoromethanesulfonic acid as novel and reusable catalyst. J. Chil. Chem. Soc., 2013, 58(3), 1914-1917.
[http://dx.doi.org/10.4067/S0717-97072013000300026]
[88]
Lin, J.P.; Zhang, F.H.; Long, Y.Q. Solvent/oxidant-switchable synthesis of multisubstituted quinazolines and benzimidazoles via metal-free selective oxidative annulation of arylamidines. Org. Lett., 2014, 16(11), 2822-2825.
[http://dx.doi.org/10.1021/ol500864r] [PMID: 24814536]
[89]
Nguyen, T.B.; Ermolenko, L.; Dean, W.A.; Al-Mourabit, A. Benzazoles from aliphatic amines and o-amino/mercaptan/hydroxyanilines: elemental sulfur as a highly efficient and traceless oxidizing agent. Org. Lett., 2012, 14(23), 5948-5951.
[http://dx.doi.org/10.1021/ol302856w] [PMID: 23171411]
[90]
Venkateswarlu, Y.; Kumar, S.R.; Leelavathi, P. Facile and efficient one-pot synthesis of benzimidazoles using lanthanum chloride. Org. Med. Chem. Lett., 2013, 3(1), 7.
[http://dx.doi.org/10.1186/2191-2858-3-7] [PMID: 23919542]
[91]
Ke, F.; Zhang, P.; Xu, Y.; Lin, X.; Lin, J.; Lin, C.; Xu, J. Microwave-assisted nickel-catalyzed synthesis of benzimidazoles: Ammonia as a cheap and nontoxic nitrogen source. Synlett, 2018, 29(20), 2722-2726.
[http://dx.doi.org/10.1055/s-0037-1610843]
[92]
Banjare, S.K.; Payra, S.; Saha, A.; Banerjee, S. Organic & medicinal chem ij efficient room temperature synthesis of 2-aryl efficient room temperature synthesis of 2-aryl benzimidazoles using zno nanoparticles as reusable catalyst. Org. Med. Chem, 2019, 1(3), 119-123.
[http://dx.doi.org/10.19080/OMCIJ.2017.01.555568]
[93]
Rasal, K.B.; Yadav, G.D. One-pot synthesis of benzimidazole using DMF as a multitasking reagent in presence CuFe2O4 as catalyst. Catal. Today, 2018, 309(309), 51-60.
[http://dx.doi.org/10.1016/j.cattod.2017.10.014]
[94]
Xu, L.; Wang, L.; Feng, Y.; Li, Y.; Yang, L.; Cui, X. Iridium(III)-catalyzed one-pot access to 1,2-disubstituted benzimidazoles starting from imidamides and sulfonyl azides. Org. Lett., 2017, 19(16), 4343-4346.
[http://dx.doi.org/10.1021/acs.orglett.7b02028] [PMID: 28783343]
[95]
Zhang, R.; Qin, Y.; Zhang, L.; Luo, S. Oxidative synthesis of benzimidazoles, quinoxalines, and benzoxazoles from primary amines by ortho -quinone catalysis. Org. Lett., 2017, 19(20), 5629-5632.
[http://dx.doi.org/10.1021/acs.orglett.7b02786] [PMID: 28968131]
[96]
Alikarami, M.; Nikseresht, A.; Amoozadeh, T. Synthesis of 2-aryl-1 h -benzo[ d]imidazole derivatives using nano montmorillonite clay as an efficient catalyst. Iran. Chem. Commun., 2020, 98(84), 42-48.
[97]
Pattarawarapan, M.; Duangkamol, C.; Phakhodee, W.; Pattarawarapan, M.; Pattarawarapan, M. Potassium periodate mediated oxidative cyclodesulfurization toward benzofused nitrogen heterocycles. Synthesis, 2020, 52(13), 1981-1990.
[http://dx.doi.org/10.1055/s-0039-1690855]
[98]
Dadwal, S.; Kumar, M.; Bhalla, V. “Metal-free” nanoassemblies of aiee-ict-active pyrazine derivative: Efficient photoredox system for the synthesis of benzimidazoles. J. Org. Chem., 2020, 85(21), 13906-13919.
[http://dx.doi.org/10.1021/acs.joc.0c01965] [PMID: 33085479]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy