Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Pyrazole and Benzimidazole Derivatives: Chelating Properties Towards Metals Ions and their Applications

Author(s): Karim Chkirate* and El Mokhtar Essassi

Volume 26, Issue 19, 2022

Published on: 30 December, 2022

Page: [1735 - 1766] Pages: 32

DOI: 10.2174/1385272827666221216110504

Price: $65

Abstract

Due mainly to their structural diversities, pharmacological, electrochemical, and photophysical properties, the metal synthesis pyrazole and benzimidazole complexes were extensively designed and developed. The nitrogen-containing ligands playing an important role in coordination chemistry contain a wide variety of heterocyclic systems possessing one or more nitrogen atoms as electron donors, such as pyridine, isoxazole, pyrazole, 1,2,4- triazole, 1,3,5-triazine, quinoline, quinoxaline and benzothiazole. The structure of all ligands and the corresponding metal complexes are established using elemental analysis, infrared spectroscopy, NMR spectroscopy, mass spectrometry, single-crystal X-ray diffraction, thermogravimetric differential thermal analysis, static, magnetic susceptibility measurements, electron paramagnetic resonance spectroscopy (EPR), UV-Vis spectroscopy, and conductivity measurements.In this review, we report the synthesis and the chelating reactions of several heterocyclic ligands with various metals such as transition metals and lanthanides. The photophysical and photochemical properties of the metal complexes will also be presented and discussed.

Next »
Graphical Abstract

[1]
Starčević, K.; Kralj, M.; Ester, K.; Sabol, I.; Grce, M.; Pavelić, K.; Karminski-Zamola, G. Synthesis, antiviral and antitumor activity of 2-substituted-5-amidino-benzimidazoles. Bioorg. Med. Chem., 2007, 15(13), 4419-4426.
[http://dx.doi.org/10.1016/j.bmc.2007.04.032] [PMID: 17482821]
[2]
Gupta, S.K.; Pancholi, S.S.; Gupta, M.K.; Agarwal, D.; Khinchi, M.P. Synthesis and biological evaluation of some 2-substituted derivatives of benzimidazoles. J. Pharm. Sci. Res., 2010, 2(4), 228-231.
[3]
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.; Al-aizari, F.; Ansar, M. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 2018, 23(1), 134.
[http://dx.doi.org/10.3390/molecules23010134] [PMID: 29329257]
[4]
Reedijk, J. Comprehensive coordination chemistry., Wilkinson, G.; Gillard, R.D.; McCleverty, J.A. 1987, 2, 73.
[5]
Trofimenko, S. Coordination chemistry of pyrazole-derived ligands. Chem. Rev., 1972, 72(5), 497-509.
[http://dx.doi.org/10.1021/cr60279a003]
[6]
Trofimenko, S. The coordination chemistry of pyrazole-derived ligands. Prog. Inorg. Chem., 1986, 34, 115-210.
[http://dx.doi.org/10.1002/9780470166352.ch3]
[7]
Kitajima, N.; Tolman, W.B. Coordination chemistry with sterically hindered hydrotris(pyrazolyl)borate ligands: Organometallic and bioinorganic perspectives. Prog. Inorg. Chem., 2007, 43, 419-531.
[http://dx.doi.org/10.1002/9780470166444.ch5]
[8]
Mukherjee, R. Coordination chemistry with pyrazole-based chelating ligands: Molecular structural aspects. Coord. Chem. Rev., 2000, 203(1), 151-218.
[http://dx.doi.org/10.1016/S0010-8545(99)00144-7]
[9]
Halcrow, M.A. Pyrazoles and pyrazolides—flexible synthons in self-assembly. Dalton Trans., 2009, (12), 2059-2073.
[http://dx.doi.org/10.1039/b815577a] [PMID: 19274281]
[10]
Budzisz, E.; Miernicka, M.; Lorenz, I.P.; Mayer, P.; Krajewska, U.; Rozalski, M. Synthesis and X-ray structure of platinum(II), palladium(II) and copper(II) complexes with pyridine–pyrazole ligands: Influence of ligands’ structure on cytotoxic activity. Polyhedron, 2009, 28(3), 637-645.
[http://dx.doi.org/10.1016/j.poly.2008.12.013]
[11]
Das, K.; Mandal, T.N.; Roy, S.; Gupta, S.; Barik, A.K.; Mitra, P.; Rheingold, A.L.; Kar, S.K. Syntheses, characterization, x-ray crystal structures and emission properties of copper(ii), zinc(ii) and cadmium(ii) complexes of pyridyl–pyrazole derived schiff base ligand – metal selective ligand binding modes. Polyhedron, 2010, 29(15), 2892-2899.
[http://dx.doi.org/10.1016/j.poly.2010.07.015]
[12]
Kupcewicz, B.; Sobiesiak, K.; Malinowska, K.; Koprowska, K.; Czyz, M.; Keppler, B.; Budzisz, E. Copper(II) complexes with derivatives of pyrazole as potential antioxidant enzyme mimics. Med. Chem. Res., 2013, 22(5), 2395-2402.
[http://dx.doi.org/10.1007/s00044-012-0233-5] [PMID: 23542890]
[13]
Shen, L.; Huang, S.; Nie, Y.; Lei, F. An efficient microwave-assisted Suzuki reaction using a new pyridine-pyrazole/Pd(II) species as catalyst in aqueous media. Molecules, 2013, 18(2), 1602-1612.
[http://dx.doi.org/10.3390/molecules18021602] [PMID: 23353128]
[14]
Hawes, C.; Kruger, P. dimensionality variation in dinuclear cu(ii) complexes of a heterotritopic pyrazolate ligand. Crystals, 2014, 4(1), 32-41.
[http://dx.doi.org/10.3390/cryst4010032]
[15]
Soria, L.; Ovejero, P.; Cano, M.; Campo, J.A.; Torres, M.R.; Núñez, C.; Lodeiro, C. Selecting pyrazole-based silver complexes for efficient liquid crystal and luminescent materials. Dyes Pigments, 2014, 110, 159-168.
[http://dx.doi.org/10.1016/j.dyepig.2014.04.010]
[16]
Pearce, B.H.; Ogutu, H.F.O.; Saban, W.; Luckay, R.C. Synthesis, characterization and use of imidazole and methyl-pyrazole based pyridine ligands as extractants for nickel(II) and copper(II). Inorg. Chim. Acta, 2019, 490, 57-67.
[http://dx.doi.org/10.1016/j.ica.2019.02.020]
[17]
Wang, H.; Li, H.; Ren, Z.; Chen, Y.; Lang, J. Syntheses, crystal structures and luminescent properties of a dimeric complex [(bzdmpzm)cu(µ-i)]2 and a polymeric complex [(bzdmpzm)Cu(µ-NCS)]n (bzdmpzm=Bis(4-benzyl-3,5-dimethyl-1H-pyrazol-1-yl)methane). Chin. J. Chem., 2010, 28(8), 1373-1378.
[http://dx.doi.org/10.1002/cjoc.201090235]
[18]
Abbo, H.; Titinchi, S. A new vanadium (III) complex of 2,6-bis(3,5-diphenylpyrazol-1-ylmethyl)pyridine as a catalyst for ethylene polymerization. Molecules, 2013, 18(4), 4728-4738.
[http://dx.doi.org/10.3390/molecules18044728] [PMID: 23609623]
[19]
Bouanane, Z.; Bounekhel, M.; Ellkoli, M.; Takfaoui, A.; Abrigach, F.; Boyaala, R.; Touzani, R. Synthesis and IR, UV characterization of Cu(II) and Ni(II) complexes of bispyrazoloquinoxaline ligands. Part 1. Maghr. J. Pure Appl. Sci., 2015, 1(2), 62-73.
[20]
Wang, Y.; Xu, F.; Zhang, L.J.; Shi, Z.; Xing, Y.H.; Bai, F.Y. Synthesis, structure, surface photovoltage spectra and photocatalytic activity of transition metal with triazine-pyrazole derivatives. J. Mol. Struct., 2017, 1147, 281-288.
[http://dx.doi.org/10.1016/j.molstruc.2017.06.100]
[21]
Jackson, M.T.; Spiegel, M.; Farmer, P.J.; Duncan, N.C.; Rich, B.; Jones, M.E.; Brien, K.A.; Klausmeyer, K.K.; Garner, C.M. First row metal complexes of the hindered tridentate ligand 2,6-bis-(3′,5′-diphenylpyrazolyl)pyridine. Inorg. Chim. Acta, 2018, 473, 180-185.
[http://dx.doi.org/10.1016/j.ica.2017.12.032]
[22]
El-Massaoudi, M.; Radi, S.; Mabkhot, Y.N.; Al-Showiman, S.S.; Ghabbour, H.A.; Ferbinteanu, M.; Adarsh, N.N.; Garcia, Y. Cu(II) and Mn(II) coordination complexes constructed by C linked bispyrazoles: Effect of anions and hydrogen bonding on the self assembly process. Inorg. Chim. Acta, 2018, 482, 411-419.
[http://dx.doi.org/10.1016/j.ica.2018.06.041]
[23]
Doidge, E.D.; Roebuck, J.W.; Healy, M.R.; Tasker, P.A. Phenolic pyrazoles: Versatile polynucleating ligands. Coord. Chem. Rev., 2015, 288, 98-117.
[http://dx.doi.org/10.1016/j.ccr.2015.01.009]
[24]
Büyükkıdan, N.; Büyükkıdan, B.; Bülbül, M.; Kasımoğulları, R.; Mert, S. Synthesis, characterization and in vitro inhibition of metal complexes of pyrazole based sulfonamide on human erythrocyte carbonic anhydrase isozymes I and II. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 208-213.
[http://dx.doi.org/10.1080/14756366.2016.1247056] [PMID: 28114829]
[25]
Shafeeulla, M.R.; Krishnamurthy, G.; Bhojynaik, H.S.; Manjuraj, T. Synthesis, cytotoxicity and molecular docking study of complexes containing thiazole moiety. J. Turkish Chem. Soc. Sect. A, 2017, 4(3), 787-810.
[26]
Aradhyula, B.P.R.; Mawnai, I.L.; Kaminsky, W.; Kollipara, M.R. Synthesis and spectral studies of sterically hindered half-sandwich d 6 metal complexes containing quinoxaline based electron rich heterocyclic pyrazoles. Inorg. Chim. Acta, 2018, 476, 101-109.
[http://dx.doi.org/10.1016/j.ica.2018.01.026]
[27]
Liebing, P.; Wang, L.; Gilje, J.W.; Hilfert, L.; Edelmann, F.T. Supramolecular first-row transition metal complexes of 3-(3,5-dimethylpyrazol-1-yl)propanamide: Three different coordination modes. Polyhedron, 2019, 164, 228-235.
[http://dx.doi.org/10.1016/j.poly.2019.02.056]
[28]
Chkirate, K.; Fettach, S.; Karrouchi, K.; Sebbar, N.K.; Essassi, E.M.; Mague, J.T.; Radi, S.; El Abbes Faouzi, M.; Adarsh, N.N.; Garcia, Y. Novel Co(II) and Cu(II) coordination complexes constructed from pyrazole-acetamide: Effect of hydrogen bonding on the self assembly process and antioxidant activity. J. Inorg. Biochem., 2019, 191, 21-28.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.11.006] [PMID: 30448715]
[29]
Chkirate, K.; Kansiz, S.; Karrouchi, K.; Mague, J.T.; Dege, N.; Essassi, E.M. Crystal structure and Hirshfeld surface analysis of N -2-[(E)-(4-methylbenzylidene)amino]phenyl-2-(5-methyl-1- H -pyrazol-3-yl)acetamide hemihydrate. Acta Crystallogr. E Crystallogr. Commun., 2019, 75(2), 154-158.
[http://dx.doi.org/10.1107/S2056989018017747] [PMID: 30800442]
[30]
Al Ati, G.; Chkirate, K.; Mague, J.T.; Abad, N.; Achour, R.; Essassi, E.M. Crystal structure, hirshfeld surface analysis and DFT study of N -(2-amino-5-methylphenyl)-2-(5-methyl-1 H -pyrazol-3-yl)acetamide. Acta Crystallogr. E Crystallogr. Commun., 2021, 77(6), 638-642.
[http://dx.doi.org/10.1107/S205698902100503X] [PMID: 34164143]
[31]
Chkirate, K.; Regragui, R.; Essassi, E.M.; Pierrot, M. Crystal structure of diaquabis[N-2-aminophenyl-5-methyIpyrazol-ylacetamido]zinc(II) diperchlorate, C24H34N8O4Zn(ClO4)2. Z. Kristallogr. NCS, 2001, 216, 635-636.
[32]
Chkirate, K.; Karrouchi, K.; Chakchak, H.; Mague, J.T.; Radi, S.; Adarsh, N.N.; Li, W.; Talbaoui, A.; Essassi, E.M.; Garcia, Y. Coordination complexes constructed from pyrazole–acetamide and pyrazole–quinoxaline: Effect of hydrogen bonding on the self-assembly process and antibacterial activity. RSC Advances, 2022, 12(9), 5324-5339.
[http://dx.doi.org/10.1039/D1RA09027E] [PMID: 35425576]
[33]
Yellol, G.S.; Donaire, A.; Yellol, J.G.; Vasylyeva, V.; Janiak, C.; Ruiz, J. On the antitumor properties of novel cyclometalated benzimidazole Ru(ii), Ir(iii) and Rh(iii) complexes. Chem. Commun., 2013, 49(98), 11533-11535.
[http://dx.doi.org/10.1039/c3cc46239k] [PMID: 24177492]
[34]
Booysen, I.N.; Adebisi, A.; Munro, O.Q.; Xulu, B. Ruthenium complexes with Schiff base ligands containing benz(othiazole/imidazole) moieties: Structural, electron spin resonance and electrochemistry studies. Polyhedron, 2014, 73, 1-11.
[http://dx.doi.org/10.1016/j.poly.2014.02.009]
[35]
Yellol, G.S.; Yellol, J.G.; Kenche, V.B.; Liu, X.M.; Barnham, K.J.; Donaire, A.; Janiak, C.; Ruiz, J. Synthesis of 2-pyridyl-benzimidazole iridium(III), ruthenium(II), and platinum(II) complexes. study of the activity as inhibitors of amyloid-β aggregation and neurotoxicity evaluation. Inorg. Chem., 2015, 54(2), 470-475.
[http://dx.doi.org/10.1021/ic502119b] [PMID: 25409492]
[36]
Dayan, O.; Demirmen, S.; Özdemir, N. Heteroleptic ruthenium(II) complexes of 2-(2-pyridyl)benzimidazoles: A study of catalytic efficiency towards transfer hydrogenation of acetophenone. Polyhedron, 2015, 85, 926-932.
[http://dx.doi.org/10.1016/j.poly.2014.10.012]
[37]
Chowdhury, S.; Bhattacharya, A.; Saha, P.; Majumder, S.; Suresh, E.; Naskar, J.P. A copper(II) complex of benzimidazole-based ligand: Synthesis, structure, redox aspects and fluorescence properties. J. Coord. Chem., 2016, 69(24), 3664-3676.
[http://dx.doi.org/10.1080/00958972.2016.1234047]
[38]
Ashraf, A.; Siddiqui, W.A.; Akbar, J.; Mustafa, G.; Krautscheid, H.; Ullah, N.; Mirza, B.; Sher, F.; Hanif, M.; Hartinger, C.G. Metal complexes of benzimidazole derived sulfonamide: Synthesis, molecular structures and antimicrobial activity. Inorg. Chim. Acta, 2016, 443, 179-185.
[http://dx.doi.org/10.1016/j.ica.2015.12.031]
[39]
Zhao, J.; Zhi, S.; Yu, H.; Mao, R.; Hu, J.; Song, W.; Zhang, J. Mitochondrial and nuclear DNA dual damage induced by 2-(2′-quinolyl)benzimidazole copper complexes with potential anticancer activity. RSC Advances, 2017, 7(81), 51162-51174.
[http://dx.doi.org/10.1039/C7RA09102H]
[40]
Khider Abbas, A.; Salam Kadhim, R. Metal complexes of proline-azo dyes, synthesis, characterization, dying performance and antibacterial activity studies. Orient. J. Chem., 2017, 33(1), 402-417.
[http://dx.doi.org/10.13005/ojc/330148]
[41]
Lavrenova, L.G.; Kuz’menko, T.A.; Ivanova, A.D.; Smolentsev, A.I.; Komarov, V.Y.; Bogomyakov, A.S.; Sheludyakova, L.A.; Vorontsova, E.V. Synthesis and magnetic and cytotoxic properties of Copper(II) halide complexes with 1,2,4-triazolo[1,5-a] benzimidazoles. New J. Chem., 2017, 41(11), 4341-4347.
[http://dx.doi.org/10.1039/C7NJ00533D]
[42]
Ahmad, W.; Khan, S.A.; Munawar, K.S.; Khalid, A.; Kawanl, S. Synthesis, characterization and pharmacological evaluation of mixed ligand-metal complexes containing omeprazole and 8-hydroxyquinoline. Trop. J. Pharm. Res., 2017, 16(5), 1137-1146.
[http://dx.doi.org/10.4314/tjpr.v16i5.23]
[43]
Prosser, K.E.; Chang, S.W.; Saraci, F.; Lê, P.H.; Walsby, C.J. Anticancer copper pyridine benzimidazole complexes: ROS generation, biomolecule interactions, and cytotoxicity. J. Inorg. Biochem., 2017, 167, 89-99.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.11.006] [PMID: 27915178]
[44]
Akremi, A.; Noubigh, A.; Abualreish, J.A. Novel organotin(IV) complexes derived from chiral benzimidazoles: Synthesis, molecular structure and spectral properties. Orient. J. Chem., 2018, 34(2), 764-770.
[http://dx.doi.org/10.13005/ojc/340220]
[45]
Milani, J.L.S.; Oliveira, I.S.; Santos, P.A.D.; Valdo, A.K.S.M.; Martins, F.T.; Cangussu, D.; Chagas, R.P.D. Chemical fixation of carbon dioxide to cyclic carbonates catalyzed by zinc(II) complex bearing 1,2-disubstituted benzimidazole ligand. Chin. J. Catal., 2018, 39(2), 245-249.
[http://dx.doi.org/10.1016/S1872-2067(17)62992-9]
[46]
Mahmood, K.; Hashmi, W.; Ismail, H.; Mirza, B.; Twamley, B.; Akhter, Z.; Rozas, I.; Baker, R.J. Synthesis, DNA binding and antibacterial activity of metal(II) complexes of a benzimidazole Schiff base. Polyhedron, 2019, 157, 326-334.
[http://dx.doi.org/10.1016/j.poly.2018.10.020]
[47]
Yu, M.H.; Yang, H.H.; Gu, Y.C.; Wang, B.H.; Liu, F.C.; Lin, I.J.B.; Lee, G.H. Formation of anionic NHC complexes through the reaction of benzimidazoles with mercury chloride. Subsequent protonation and transmetallation reactions. J. Organomet. Chem., 2019, 887, 12-17.
[http://dx.doi.org/10.1016/j.jorganchem.2019.02.015]
[48]
Su, W.Y.; Pan, R.K.; Song, J.L.; Li, G.B.; Liu, S.G. Synthesis, crystal structures and cytotoxic activity of two zinc(II) complexes derived from benzimidazole derivatives. Polyhedron, 2019, 161, 268-275.
[http://dx.doi.org/10.1016/j.poly.2019.01.012]
[49]
Wang, X.; Ling, N.; Che, Q.T.; Zhang, Y.W.; Yang, H.X.; Ruan, Y.; Zhao, T.T. Synthesis, structure and biological properties of benzimidazole-based Cu(II)/Zn(II) complexes. Inorg. Chem. Commun., 2019, 105, 97-101.
[http://dx.doi.org/10.1016/j.inoche.2019.04.038]
[50]
Boulebd, H.; Lahneche, Y.D.; Khodja, I.A.; Benslimane, M.; Belfaitah, A. New Schiff bases derived from benzimidazole as efficient mercury-complexing agents in aqueous medium. J. Mol. Struct., 2019, 1196, 58-65.
[http://dx.doi.org/10.1016/j.molstruc.2019.06.060]
[51]
Idrissi, A.; Chkirate, K.; Abad, N.; Djerrari, B.; Achour, R.; Essassi, E.M.; Van, M.L. Crystal structure, Hirshfeld surface analysis and density functional theory study of 6-methyl-2-[(5-methylisoxazol-3-yl)methyl]-1 H -benzimidazole. Acta Crystallogr. E Crystallogr. Commun., 2021, 77(4), 396-401.
[http://dx.doi.org/10.1107/S2056989021002723] [PMID: 33936764]
[52]
Attar, K.; Kandri Rodi, Y.; Benchidmi, M.; Haoudi, A.; Capet, F.; Rolando, C.; Essassi, E.M. Demonstration of heteroarylmethane oxidation in a benzimidazole derivative with the use of UV spectrophotometry and X-ray diffraction. Sci. Study Res.: Chem. Chem. Eng. Biotechnol. Food Ind., 2012, 13(1), 19-26.
[53]
Małecki, J.G. Synthesis, crystal, molecular and electronic structures of thiocyanate ruthenium(II) complexes with pyrazole, benzimidazole and triazole ligands. Polyhedron, 2010, 29(4), 1237-1242.
[http://dx.doi.org/10.1016/j.poly.2009.12.036]
[54]
Yang, P.; Wu, J.J.; Zhou, H.Y.; Ye, B.H. Ligand-directed construction of Zn(II) Complexes from zero-dimensional metallomacrocycle to one-, two-, and three-dimensional coordination polymers based on n-donor and β-diketone bifunctional ligands. Cryst. Growth Des., 2012, 12(1), 99-108.
[http://dx.doi.org/10.1021/cg200850r]
[55]
Rong, Y.; Palmer, J.H.; Parkin, G. Benzannulated tris(2-mercapto-1-imidazolyl)hydroborato ligands: Tetradentate κ 4 -S 3 H binding and access to monomeric monovalent thallium in an [S 3] coordination environment. Dalton Trans., 2014, 43(3), 1397-1407.
[http://dx.doi.org/10.1039/C3DT52418C] [PMID: 24201311]
[56]
Cañellas, S.; Bauzá, A.; Lancho, A.; García-Raso, A.; Fiol, J.J.; Molins, E.; Ballester, P.; Frontera, A. Synthesis, X-ray characterization and DFT studies of N-benzimidazolyl-pyrimidine–M(II) complexes (M = Cu, Co and Ni): The prominent role of π-hole and anion–π interactions. CrystEngComm, 2015, 17(31), 5987-5997.
[http://dx.doi.org/10.1039/C5CE01009H]
[57]
Booysen, I.N.; Maikoo, S.; Akerman, M.P.; Xulu, B. Isolation of ruthenium compounds with bidentate benz(imidazole/othiazole) chelators. Trans. Met. Chem., 2015, 40(4), 397-404.
[http://dx.doi.org/10.1007/s11243-015-9929-y]
[58]
Wang, G.F.; Zhang, X.; Sun, S.W.; Han, Q.P.; Yang, X.; Li, H.; Ma, H.X.; Yao, C.Z.; Sun, H.; Dong, H.B. Synthesis and crystal structure of a novel Mn(II) coordination polymer with 3-(4-(1H-benzo[d]imidazol-1-yl)-4-methoxyphenyl)-1-phenylprop-2-en-1-one ligands. Crystallogr. Rep., 2015, 60(7), 1038-1043.
[http://dx.doi.org/10.1134/S1063774515070305]
[59]
Uslu, A.; Tümay, S.O.; Şenocak, A.; Yuksel, F.; Özcan, E.; Yeşilot, S. Imidazole/benzimidazole-modified cyclotriphosphazenes as highly selective fluorescent probes for Cu2+: Synthesis, configurational isomers, and crystal structures. Dalton Trans., 2017, 46(28), 9140-9156.
[http://dx.doi.org/10.1039/C7DT01134B] [PMID: 28671228]
[60]
Mansour, A.M.; Friedrich, A. IClick cycloaddition reaction of light-triggered manganese(I) carbonyl complexes. New J. Chem., 2018, 42(22), 18418-18425.
[http://dx.doi.org/10.1039/C8NJ01838C]
[61]
Rajakannu, P.; Kim, H.S.; Lee, W.; Kumar, A.; Lee, M.H.; Yoo, S. Naphthalene benzimidazole based neutral ir(iii) emitters for deep red organic light-emitting diodes. Inorg. Chem., 2020, 59(17), 12461-12470.
[http://dx.doi.org/10.1021/acs.inorgchem.0c01561] [PMID: 32852204]
[62]
Jian, F.; Wang, H.; Xiao, H. Synthesis, structures, and spectroscopic characterizations of the and forms of bis(n-phenmethyl-benzimidazole-n) dichloro cobalt(ii) complex: CoCl 2 (C7H5N2CH2Ph)2. Struct. Chem., 2004, 15(4), 277-283.
[http://dx.doi.org/10.1023/B:STUC.0000026742.02447.f5]
[63]
Khan, T.A.; Arif Khan, M.; Khan, Z.; Haq, M.M. Metal Poly(Benzimidazol‐1‐yl)borates. synthesis and spectral characterization of some lanthanide chelates of hydridotris‐ and tetrakis(benzimidazol‐1‐yl)borate anions. Synth. React. Inorg. Met.-Org. Chem., 2003, 33(2), 297-308.
[http://dx.doi.org/10.1081/SIM-120017788]
[64]
Wałęsa-Chorab, M.; Banasz, R.; Marcinkowski, D.; Kubicki, M.; Patroniak, V. Electrochromism and electrochemical properties of complexes of transition metal ions with benzimidazole-based ligand. RSC Advances, 2017, 7(80), 50858-50867.
[http://dx.doi.org/10.1039/C7RA10451K]
[65]
Seredyuk, M.; Znovjyak, K.O.; Kusz, J.; Nowak, M.; Muñoz, M.C.; Real, J.A. Control of the spin state by charge and ligand substitution: two-step spin crossover behaviour in a novel neutral iron(II) complex. Dalton Trans., 2014, 43(43), 16387-16394.
[http://dx.doi.org/10.1039/C4DT01885K] [PMID: 25247462]
[66]
Ivanova, A.D.; Lavrenova, L.G.; Korotaev, E.V.; Trubina, S.V.; Sheludyakova, L.A.; Petrov, S.A.; Zhizhin, K.Y.; Kuznetsov, N.T. High-temperature spin crossover in complexes of iron(II) closo-Borates with 2,6-Bis(benzimidazol-2-yl)pyridine. Russ. J. Inorg. Chem., 2020, 65(11), 1687-1694.
[http://dx.doi.org/10.1134/S0036023620110078]
[67]
Lamkaddem, A.; Capitelli, F.; Essassi, E.M.; Harcharras, M.; Larena, A.A.; Ennaciri, A. Synthesis and crystal structure of the dichloro zinc bis (benzimidazol-2-yl) methane. J. Mar. Chim. Heterocycl., 2010, 9, 9-14.
[68]
Salhaji, A.; El Kacemi, K.; Moussaif, A.; Qafas, Z.; Brohmi, L.; Zniber, R.; El Ghoul, M.; Achour, R. Etude des proprietes complexantes de derives du benzimidazole vis-a-vis de quelques cations metalliques. J. Soc. Chim. Tunisie, 2011, 13, 51-60.
[69]
Mohapatra, S.C.; Mathur, P. Synthesis and spectral studies of copper complexes using a N-octylated bis benzimidazole diamide ligand. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 78(2), 612-616.
[http://dx.doi.org/10.1016/j.saa.2010.11.033] [PMID: 21193344]
[70]
Qiao, X.; Ma, Z.Y.; Shao, J.; Bao, W.G.; Xu, J.Y.; Qiang, Z.Y.; Lou, J.S. Biological evaluation of a cytotoxic 2-substituted benzimidazole copper(II) complex: DNA damage, antiproliferation and apoptotic induction activity in human cervical cancer cells. Biometals, 2014, 27(1), 155-172.
[http://dx.doi.org/10.1007/s10534-013-9696-1] [PMID: 24368745]
[71]
Tao, C.; Yuan, X.; Yin, Q.; Yan, H.; Ni, W.; Yan, L.; Zhang, L. Synthesis, characterization and photoluminescent properties of europium(III) complexes with ligands bearing benzimidazole groups. J. Mater. Sci. Mater. Electron., 2016, 27(6), 5715-5722.
[http://dx.doi.org/10.1007/s10854-016-4483-8]
[72]
Rodriguez-Cordero, M.; Cigüela, N.; Llovera, L.; González, T.; Briceño, A.; Landaeta, V.R.; Pastrán, J. Synthesis, structural elucidation and DNA binding profile of Zn(II) bis-benzimidazole complexes. Inorg. Chem. Commun., 2018, 91, 124-128.
[http://dx.doi.org/10.1016/j.inoche.2018.03.019]
[73]
Suwalsky, M.; Castillo, I.; Sánchez-Eguía, B.N.; Gallardo, M.J.; Dukes, N.; Santiago-Osorio, E.; Aguiñiga, I.; Rivera-Martínez, A.R. In vitro effects of benzimidazole/thioether-copper complexes with antitumor activity on human erythrocytes. J. Inorg. Biochem., 2018, 178, 87-93.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.10.009] [PMID: 29121535]
[74]
Xiao, B.; Hou, H.; Fan, Y. 1-D chain metal-organic polymers bridged bybis -benzimidazole-based ligands: Syntheses, structures, and fluorescent properties. J. Coord. Chem., 2009, 62(11), 1827-1834.
[http://dx.doi.org/10.1080/00958970802705901]
[75]
Castillo, I.; Ugalde-Saldívar, V.M.; Rodríguez Solano, L.A.; Sánchez Eguía, B.N.; Zeglio, E.; Nordlander, E. Structural, spectroscopic, and electrochemical properties of tri- and tetradentate N3 and N3S copper complexes with mixed benzimidazole/thioether donors. Dalton Trans., 2012, 41(31), 9394-9404.
[http://dx.doi.org/10.1039/c2dt30756a] [PMID: 22735464]
[76]
Imran, M.; Neumann, B.; Stammler, H.G.; Monkowius, U.; Ertl, M.; Mitzel, N.W. Borate-based ligands with two soft heterocycle/thione groups and their sodium and bismuth complexes. Dalton Trans., 2014, 43(3), 1267-1278.
[http://dx.doi.org/10.1039/C3DT52607K] [PMID: 24190102]
[77]
Mansour, A.M.; Friedrich, A. The CO release properties of κ 2 N 1, N 2 Mn(I) tricarbonyl photoCORMs with tridentate benzimidazole coligands. Inorg. Chem. Front., 2017, 4(9), 1517-1524.
[http://dx.doi.org/10.1039/C7QI00390K]
[78]
Hu, M.; Yan, Y.; Zhu, B.; Chang, F.; Yu, S.; Alatan, G. A series of Mn(I) photo-activated carbon monoxide-releasing molecules with benzimidazole coligands: synthesis, structural characterization, CO releasing properties and biological activity evaluation. RSC Advances, 2019, 9(36), 20505-20512.
[http://dx.doi.org/10.1039/C9RA01370A] [PMID: 35515566]
[79]
Chirinos, J.; Ibarra, D.; Morillo, Á.; Llovera, L.; González, T.; Zárraga, J.; Larreal, O.; Guerra, M. Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bis-benzimidazole ligand. Polyhedron, 2021, 203, 115232.
[http://dx.doi.org/10.1016/j.poly.2021.115232]
[80]
Vaidyanathan, M.; Balamurugan, R.; Sivagnanam, U.; Palaniandavar, M. Synthesis, structure, spectra and redox of Cu(II) complexes of chelating bis(benzimidazole)—thioether ligands as models for electron transfer blue copper proteins. J. Chem. Soc., Dalton Trans., 2001, (23), 3498-3506.
[http://dx.doi.org/10.1039/b103511h]
[81]
Chkirate, K.; Azgaou, K.; Elmsellem, H.; El Ibrahimi, B.; Sebbar, N.K.; Anouar, E.H.; Benmessaoud, M.; El Hajjaji, S.; Essassi, E.M. Corrosion inhibition potential of 2-[(5-methylpyrazol-3-yl)methyl]benzimidazole against carbon steel corrosion in 1 M HCl solution: Combining experimental and theoretical studies. J. Mol. Liq., 2021, 321, 114750.
[http://dx.doi.org/10.1016/j.molliq.2020.114750]
[82]
Sbai, F.; Chkirate, K.; Regragui, R.; Essassi, E.M.; Pierrot, M. Diaquabis2-[(5-méthylpyrazol-3-yl)méthyl]benzimidazolenickel(II) dichloride dihydrate. Acta Crystallogr. Sect. E Struct. Rep. Online, 2002, 58(7), m337-m339.
[http://dx.doi.org/10.1107/S1600536802009868]
[83]
Sbai, F.; Regragui, R.; Essassi, E.; Kenz, A.; Pierrot, M. Complexation du 2-[(5-méthylpyrazolyl)méthyle]benzimidazole par les chlorures de cuivre et de cadmium. Acta Crystallogr. C, 2003, 59(8), m334-m336.
[http://dx.doi.org/10.1107/S0108270103013945] [PMID: 12909760]
[84]
Sbai, F.; Regragui, R.; Essassi, E.; Kenz, A.; Pierrot, M. Complexation du 2-[(5-méthylpyrazol-3-yl)méthyl]benzimidazole par le chlorure du cobalt. Acta Crystallogr. Sect. E Struct. Rep. Online, 2003, 59(8), m571-m573.
[http://dx.doi.org/10.1107/S1600536803014028]
[85]
Maru, M.; Shah, M.K. Transition metal complexes of 2-(substituted-1H-pyrazole-4-yl)-1Hbenzo[d]imidazoles: Synthesis and characterization. J. Chem. Pharm. Res., 2012, 4, 1638-1643.
[86]
Bhava, P.S.; Tharmaraj, P.; Raja, S.J. Synthesis, spectral characterization, antimicrobial screening and dna binding, cleavage studies of transition metal complexes of heterocyclic ligand derived from 4-aminoantipyrine and 2-mercaptobenzimdazole. Int. J. Innov. Res. Dev., 2013, 2, 378-396.
[87]
Ghomsi, J.N.T.; Bouhfid, R.; Ahabchane, N.H.; Essassi, E.M. Synthesis and UV-Visible complexation study of 1-pyrazolylbenzimidazol-2-one polyether macrocyclic derivatives. Front. Sci. Eng. Int. J., 2014, 4(2), 41-51.
[88]
Hawes, C.S.; Kruger, P.E. Metallosupramolecular architectures based upon new 2-(1-pyrazolyl)-benzimidazole chelating ligands. Supramol. Chem., 2015, 27(11-12), 757-771.
[http://dx.doi.org/10.1080/10610278.2015.1067315]
[89]
Chkirate, K.; El Bakri, Y.; Essassi, E.M.; Mague, J.T. Dichlorido2-[(5-methyl-1 H -pyrazol-3-yl-κ N2)methyl]-1 H -1,3-benzimidazole-κ N3 zinc. IUCrdata, 2017, 2(1), x170116.
[http://dx.doi.org/10.1107/S241431461700116X]
[90]
Chkirate, K.; Karrouchi, K.; Dege, N.; Kheira, S.N.; Ejjoummany, A.; Radi, S.; Adarsh, N.N.; Talbaoui, A.; Ferbinteanu, M.; Essassi, E.M.; Garcia, Y. Co(II) and Zn(II) pyrazolyl-benzimidazole complexes with remarkable antibacterial activity. New J. Chem., 2020, 44(6), 2210-2221.
[http://dx.doi.org/10.1039/C9NJ05913J]
[91]
Baitalik, S.; Dutta, B.; Nag, K. Spectroscopic and redox properties of RhIIIRuII and RuIIRuII complexes derived from 2,2′-bipyridine, pyrazole-3,5-bis(benzimidazole) and 1,2,4-triazole-3,5-dicarboxylic acid as bridging ligands. Polyhedron, 2004, 23(6), 913-919.
[http://dx.doi.org/10.1016/j.poly.2003.09.035]
[92]
Maru, M.S.; Shah, M.K. Cu(II) and Ni(II) complexes of novel three 2-1′-phenyl-3′-(4 ″ -Halophenyl)-1 H -Pyrazole-4-yl-1 H -Benzimidazoles: Synthesis and structural depiction. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2014, 44(6), 912-919.
[http://dx.doi.org/10.1080/15533174.2013.797437]
[93]
Naziruddin, A.R.; Galstyan, A.; Iordache, A.; Daniliuc, C.G.; Strassert, C.A.; De Cola, L. Bidentate NHC^pyrozolate ligands in luminescent platinum(II) complexes. Dalton Trans., 2015, 44(18), 8467-8477.
[http://dx.doi.org/10.1039/C4DT03651D] [PMID: 25616069]
[94]
Bhattacharyya, S.; Purkait, K.; Mukherjee, A. Ruthenium(II) p-cymene complexes of a benzimidazole-based ligand capable of VEGFR2 inhibition: Hydrolysis, reactivity and cytotoxicity studies. Dalton Trans., 2017, 46(26), 8539-8554.
[http://dx.doi.org/10.1039/C7DT00938K] [PMID: 28638907]
[95]
Bouhfid, R.; Essassi, E.M.; Zerzouf, A.; Reuter, H. Crystal structure of 2-((5-methyl-1-(pyridin-2-yl)-1H-pyrazol-3-yl)-methyl)-1H-benzo[d] imidazolecadmium(II) dichloride, Cd(C17H15N5)Cl2. Z. Kristallogr. NCS, 2009, 224, 339-340.
[96]
Luo, W.; Li, A.; Liu, S.; Ye, H.; Li, Z. 2-Benzimidazol-6-pyrazol-pyridine Chromium(III) Trichlorides: Synthesis, Characterization, and Application for Ethylene Oligomerization and Polymerization. Organometallics, 2016, 35(17), 3045-3050.
[http://dx.doi.org/10.1021/acs.organomet.6b00573]
[97]
Rajnák, C.; Schäfer, B.; Šalitroš, I.; Fuhr, O.; Ruben, M.; Boča, R. Influence of the charge of the complex unit on the SCO properties in pyrazolyl-pyridinyl-benzimidazole based Fe(II) complexes. Polyhedron, 2017, 135, 189-194.
[http://dx.doi.org/10.1016/j.poly.2017.06.035]
[98]
Feng, M.; Pointillart, F.; Lefeuvre, B.; Dorcet, V.; Golhen, S.; Cador, O.; Ouahab, L. Multiple single-molecule magnet behaviors in dysprosium dinuclear complexes involving a multiple functionalized tetrathiafulvalene-based ligand. Inorg. Chem., 2015, 54(8), 4021-4028.
[http://dx.doi.org/10.1021/acs.inorgchem.5b00272] [PMID: 25831451]
[99]
Speed, S.; Feng, M.; Fernandez Garcia, G.; Pointillart, F.; Lefeuvre, B.; Riobé, F.; Golhen, S.; Le Guennic, B.; Totti, F.; Guyot, Y.; Cador, O.; Maury, O.; Ouahab, L. Lanthanide complexes involving multichelating TTF-based ligands. Inorg. Chem. Front., 2017, 4(4), 604-617.
[http://dx.doi.org/10.1039/C6QI00546B]
[100]
Saiki, R.; Miyamoto, H.; Sagayama, H.; Kumai, R.; Newton, G.N.; Shiga, T.; Oshio, H. Substituent dependence on the spin crossover behaviour of mononuclear Fe(II) complexes with asymmetric tridentate ligands. Dalton Trans., 2019, 48(10), 3231-3236.
[http://dx.doi.org/10.1039/C9DT00204A] [PMID: 30720038]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy