Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Research Article

The Genetic Diversity of Proteasome Genes in the T1DM Polish Population

Author(s): Tadeusz Strózik, Krystyna Jędrychowska-Dańska, Alicja Zamerska, Ewelina Stoczyńska-Fidelus and Tomasz Wasiak*

Volume 19, Issue 7, 2023

Published on: 19 January, 2023

Article ID: e141222211942 Pages: 9

DOI: 10.2174/1573399819666221214111800

Price: $65

Abstract

Autoimmune metabolic diseases generate numerous healthy and social problems. The possible association of SNPs in the ubiquitin-proteasome system (UPS) with human pathology is under intensive study.

Objective: In the present study, the genetic variations in PSMB5 (rs11543947), PSMA6 (rs2277460, rs1048990), PSMC6 (rs2295826, rs2295827) and PSMA3 (rs2348071) UPS gene cluster was investigated in type 1 diabetes and healthy donors in the Polish population.

Methods: The study comprised 105 patients with type 1 diabetes mellitus (T1DM) and 214 controls. All were genotyped by PCR and restriction digestion analysis or Sanger sequencing.

Results: Rs1048990 and rs2348071 were found to be neutral to T1DM (p-value: 0.499 and 0.656, respectively). According to the multiple loci genotype (MLG) analysis, the major homozygote of the tested polymorphisms had a protective effect. The most common MLG in the T1DM group was characterised by simultaneous risk factors at rs11543947, rs2277460, rs2295826 and rs2295827 (pvalue: <0.0001 vs. MGL1). Multiple locus haplotype analysis revealed a similar dependence, with common alleles at all tested loci demonstrating a protective effect, and the rare alleles increasing T1DM risk (p-value: <0.0001 vs. MLH1).

Conclusion: Our study suggests that the proteasome gene polymorphisms rs11543947, rs2277460, rs2295826, and rs2295827 could be potential markers for T1DM susceptibility in the Polish population.

[1]
Scheuner D, Kaufman RJ. The unfolded protein response: a pathway that links insulin demand with beta-cell failure and diabetes. Endocr Rev 2008; 29(3): 317-33.
[http://dx.doi.org/10.1210/er.2007-0039] [PMID: 18436705]
[2]
Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nat Rev Endocrinol 2009; 5(4): 219-26.
[http://dx.doi.org/10.1038/nrendo.2009.21] [PMID: 19352320]
[3]
Eizirik DL, Miani M, Cardozo AK. Signalling danger: endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. Diabetologia 2013; 56(2): 234-41.
[http://dx.doi.org/10.1007/s00125-012-2762-3] [PMID: 23132339]
[4]
Eizirik DL, Sammeth M, Bouckenooghe T, et al. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet 2012; 8(3)e1002552
[http://dx.doi.org/10.1371/journal.pgen.1002552] [PMID: 22412385]
[5]
McLaughlin RJ, de Haan A, Zaldumbide A, et al. Human islets and dendritic cells generate post-translationally modified islet autoantigens. Clin Exp Immunol 2016; 185(2): 133-40.
[http://dx.doi.org/10.1111/cei.12775] [PMID: 26861694]
[6]
Marré ML, Profozich JL, Coneybeer JT, et al. Inherent ER stress in pancreatic islet β cells causes self-recognition by autoreactive T cells in type 1 diabetes. J Autoimmun 2016; 72: 33-46.
[http://dx.doi.org/10.1016/j.jaut.2016.04.009] [PMID: 27173406]
[7]
Kracht MJL, van Lummel M, Nikolic T, et al. Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nat Med 2017; 23(4): 501-7.
[http://dx.doi.org/10.1038/nm.4289] [PMID: 28263308]
[8]
Fabunmi RP, Wigley WC, Thomas PJ, DeMartino GN. Activity and regulation of the centrosome-associated proteasome. J Biol Chem 2000; 275(1): 409-13.
[http://dx.doi.org/10.1074/jbc.275.1.409] [PMID: 10617632]
[9]
Lundh M, Bugliani M, Dahlby T, et al. The immunoproteasome is induced by cytokines and regulates apoptosis in human islets. J Endocrinol 2017; 233(3): 369-79.
[http://dx.doi.org/10.1530/JOE-17-0110] [PMID: 28438776]
[10]
Broca C, Varin E, Armanet M, et al. Proteasome dysfunction mediates high glucose-induced apoptosis in rodent beta cells and human islets. PLoS One 2014; 9(3)e92066
[http://dx.doi.org/10.1371/journal.pone.0092066] [PMID: 24642635]
[11]
Sjakste T, Paramonova N, Osina K, Dokane K, Sokolovska J, Sjakste N. Genetic variations in the PSMA3, PSMA6 and PSMC6 genes are associated with type 1 diabetes in Latvians and with expression level of number of UPS-related and T1DM-susceptible genes in HapMap individuals. Mol Genet Genomics 2016; 291(2): 891-903.
[http://dx.doi.org/10.1007/s00438-015-1153-0] [PMID: 26661414]
[12]
Higuchi R. Rapid, efficient DNA extraction for PCR from cells or blood. Amplification 1989; 2: 1-3.
[13]
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol 2007; 24(8): 1596-9.
[http://dx.doi.org/10.1093/molbev/msm092] [PMID: 17488738]
[14]
Auton A, Abecasis GR, Altshuler DM, et al. A global reference for human genetic variation. Nature 2015; 526(7571): 68-74.
[http://dx.doi.org/10.1038/nature15393] [PMID: 26432245]
[15]
Excoffier L, Lischer HL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010; 10(3): 564-7.
[http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x] [PMID: 21565059]
[16]
Thomaidou S, Zaldumbide A, Roep BO. Islet stress, degradation and autoimmunity. Diabetes Obes Metab 2018; 20(S2): 88-94.
[http://dx.doi.org/10.1111/dom.13387] [PMID: 30230178]
[17]
Tomko RJ Jr, Hochstrasser M. Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 2013; 82(1): 415-45.
[http://dx.doi.org/10.1146/annurev-biochem-060410-150257] [PMID: 23495936]
[18]
Paramonova NKS, Rumba-Rozenfelde I. Association between the PSMB5 and PSMC6 genetic variations and children obesity in the Latvian population. Biopolymers Cell 2014; 30(6): 3.
[19]
Sjakste T, Paramonova N, Rumba-Rozenfelde I, Trapina I, Sugoka O, Sjakste N. Juvenile idiopathic arthritis subtype- and sex-specific associations with genetic variants in the PSMA6/PSMC6/PSMA3 gene cluster. Pediatr Neonatol 2014; 55(5): 393-403.
[http://dx.doi.org/10.1016/j.pedneo.2014.01.007] [PMID: 24875235]
[20]
Campbell MC, Smith LT, Harvey J. Population genetic evidence for positive and purifying selection acting at the human IFN-γ locus in Africa. Genes Immun 2019; 20(2): 143-57.
[http://dx.doi.org/10.1038/s41435-018-0016-1] [PMID: 29599512]
[21]
Sjakste T, Paramonova N, Wu LSS, et al. PSMA6 (rs2277460, rs1048990), PSMC6 (rs2295826, rs2295827) and PSMA3 (rs2348071) genetic diversity in Latvians, Lithuanians and Taiwanese. Meta Gene 2014; 2: 283-98.
[http://dx.doi.org/10.1016/j.mgene.2014.03.002] [PMID: 25606411]
[22]
Sjakste T, Poudziunas I, Ninio E, et al. SNPs of PSMA6 gene--investigation of possible association with myocardial infarction and type 2 diabetes mellitus. Genetika 2007; 43(4): 553-9.
[PMID: 17555133]
[23]
Kupca S, Sjakste T, Paramonova N, et al. Association of obesity with proteasomal gene polymorphisms in children. J Obes 2013; 2013: 1-9.
[http://dx.doi.org/10.1155/2013/638154] [PMID: 24455213]
[24]
Buraczynska M, Stec A, Filipczak A, Ksiazek A. Association between functional variant of inflammatory system gene (PSMA6) and end-stage kidney disease. Int Urol Nephrol 2016; 48(12): 2083-7.
[http://dx.doi.org/10.1007/s11255-016-1420-y] [PMID: 27671905]
[25]
Gu ZC, Enenkel C. Proteasome assembly. Cell Mol Life Sci 2014; 71(24): 4729-45.
[http://dx.doi.org/10.1007/s00018-014-1699-8] [PMID: 25107634]
[26]
Paramonova N. Genetic variants in the PSMA6, PSMC6 and PSMA3 genes associated with childhood asthma in Latvian and Taiwanese populations. Biopolym Cell 2014; 30(5): 10. Epub 387.
[27]
Paramonova N, Kalnina J, Dokane K, et al. Genetic variations in the PSMA6 and PSMC6 proteasome genes are associated with multiple sclerosis and response to interferon β therapy in Latvians. Exp Ther Med 2021; 21(5): 478.
[http://dx.doi.org/10.3892/etm.2021.9909] [PMID: 33767773]
[28]
Harpending HH. Kinship and Population Subdivision. Population and Environment In: Hutchinson, J, Smith A D, Eds. (1996) Ethnicity. Oxford Readers. Oxford: Oxford University Press 2002.
[http://dx.doi.org/10.1023/A:1020815420693]
[29]
Kang J, Kugathasan S, Georges M, Zhao H, Cho JH. Improved risk prediction for Crohn’s disease with a multi-locus approach. Hum Mol Genet 2011; 20(12): 2435-42.
[http://dx.doi.org/10.1093/hmg/ddr116] [PMID: 21427131]
[30]
Egerer K, Kuckelkorn U, Rudolph PE, et al. Circulating proteasomes are markers of cell damage and immunologic activity in autoimmune diseases. J Rheumatol 2002; 29(10): 2045-52.
[PMID: 12375310]
[31]
Dwivedi V, Yaniv K, Sharon M. Beyond cells: The extracellular circulating 20S proteasomes. Biochim Biophys Acta Mol Basis Dis 2021; 1867(3)166041
[http://dx.doi.org/10.1016/j.bbadis.2020.166041] [PMID: 33338594]
[32]
Jean-Philippe J, Paz S, Caputi M. hnRNP A1: the Swiss army knife of gene expression. Int J Mol Sci 2013; 14(9): 18999-9024.
[http://dx.doi.org/10.3390/ijms140918999] [PMID: 24065100]
[33]
Perkins ND. Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol 2007; 8(1): 49-62.
[http://dx.doi.org/10.1038/nrm2083] [PMID: 17183360]
[34]
Goetzke CC, Ebstein F, Kallinich T. Role of proteasomes in inflammation. J Clin Med 2021; 10(8): 1783.
[http://dx.doi.org/10.3390/jcm10081783] [PMID: 33923887]
[35]
Zhao Y, Krishnamurthy B, Mollah ZU, Kay TW, Thomas HE. NF-κB in type 1 diabetes. Inflamm Allergy Drug Targets 2011; 10(3): 208-17.
[http://dx.doi.org/10.2174/187152811795564046] [PMID: 21495968]
[36]
Brasier AR. The NF-kappaB regulatory network. Cardiovasc Toxicol 2006; 6(2): 111-30.
[http://dx.doi.org/10.1385/CT:6:2:111] [PMID: 17303919]
[37]
Shin S, Le Lay J, Everett LJ, Gupta R, Rafiq K, Kaestner KH. CREB mediates the insulinotropic and anti-apoptotic effects of GLP-1 signaling in adult mouse β-cells. Mol Metab 2014; 3(8): 803-12.
[http://dx.doi.org/10.1016/j.molmet.2014.08.001] [PMID: 25379405]
[38]
Dalle S, Quoyer J, Varin E, Costes S. Roles and regulation of the transcription factor CREB in pancreatic β -cells. Curr Mol Pharmacol 2011; 4(3): 187-95.
[http://dx.doi.org/10.2174/1874467211104030187] [PMID: 21488836]
[39]
Wilfinger A, Arkhipova V, Meyer D. Cell type and tissue specific function of islet genes in zebrafish pancreas development. Dev Biol 2013; 378(1): 25-37.
[http://dx.doi.org/10.1016/j.ydbio.2013.03.009] [PMID: 23518338]
[40]
Pliss L, Tambets K, Loogväli EL, et al. Mitochondrial DNA portrait of Latvians: towards the understanding of the genetic structure of Baltic-speaking populations. Ann Hum Genet 2006; 70(4): 439-58.
[http://dx.doi.org/10.1111/j.1469-1809.2005.00238.x] [PMID: 16759178]
[41]
Grzybowski T, Malyarchuk BA, Derenko MV, Perkova MA, Bednarek J, Woźniak M. Complex interactions of the Eastern and Western Slavic populations with other European groups as revealed by mitochondrial DNA analysis. Forensic Sci Int Genet 2007; 1(2): 141-7.
[http://dx.doi.org/10.1016/j.fsigen.2007.01.010] [PMID: 19083745]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy