Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Polychlorinated Biphenyls: A Review of Recent Updates on Food Safety and Environmental Monitoring, Health and Toxicological Implications, and Analysis

Author(s): Elahe Zarerad, Kimia Niksalehi, Maryam Armandeh, Mahmood Alizadeh Sani, Mahshid Ataei, Taraneh Mousavi, Armin Salek Maghsoudi* and Shokoufeh Hassani*

Volume 23, Issue 13, 2023

Published on: 27 December, 2022

Page: [1390 - 1411] Pages: 22

DOI: 10.2174/1389557523666221213091445

Price: $65

Abstract

A class of organic chemicals known as polychlorinated biphenyls (PCBs) consists of chlorine, hydrogen, and carbon atoms. High boiling points, chemical stability, non-flammability, and insulating properties have enabled them to be used in various industries. Because of their high toxicity, PCBs were one of the first industrial compounds to be banned from production. These compounds have high-fat solubility with bioaccumulation and biomagnification properties in the environment, food chain, and individuals. Hence, they may have an impact not only on individual organisms but ultimately on whole ecosystems. The main sources of PCB exposure are food and environmental pollutants. In the toxicology of PCBs, oxidative stress plays the most influential function. The induction of CYP1A1 due to the high affinity of PCBs for aryl hydrocarbon receptors is considered a trigger for oxidative stress. Production of reactive oxygen species and depletion of glutathione occur due to phase Ⅰ and Ⅱ metabolism, respectively. Thus, cellular redox balance may be disrupted in the presence of PCBs and their metabolites. Chronic and long-term exposure to these compounds can often lead to life-threatening diseases, like diabetes, obesity, cardiovascular and neurological diseases, cancer, and reproductive and endocrine disorders. We present the current knowledge of the routes of PCB exposure and bioaccumulation, the outlook regarding environmental and food safety, the potential role of PCBs in various diseases, the principal mechanisms responsible for PCB toxicity, and the main detection techniques used for PCBs.

« Previous
Graphical Abstract

[1]
Habibullah-Al-Mamun, M.; Kawser Ahmed, M.; Saiful Islam, M.; Tokumura, M.; Masunaga, S. Occurrence, distribution and possible sources of polychlorinated biphenyls (PCBs) in the surface water from the Bay of Bengal coast of Bangladesh. Ecotoxicol. Environ. Saf., 2019, 167, 450-458.
[http://dx.doi.org/10.1016/j.ecoenv.2018.10.052] [PMID: 30368138]
[2]
Ngoubeyou, P.S.K.; Wolkersdorfer, C.; Ndibewu, P.P.; Augustyn, W. Toxicity of polychlorinated biphenyls in aquatic environments – A review. Aquat. Toxicol., 2022, 251, 106284.
[http://dx.doi.org/10.1016/j.aquatox.2022.106284] [PMID: 36087490]
[3]
Fiedler, H.; Kallenborn, R.; Boer, J.; Sydnes, L.K. The Stockholm Convention: A tool for the global regulation of persistent organic pollu-tants. Chem. Int., 2019, 41(2), 4-11.
[http://dx.doi.org/10.1515/ci-2019-0202]
[4]
Niehoff, N.M.; Zabor, E.C.; Satagopan, J.; Widell, A.; O’Brien, T.R.; Zhang, M.; Rothman, N.; Grimsrud, T.K.; Van Den Eeden, S.K.; En-gel, L.S. Prediagnostic serum polychlorinated biphenyl concentrations and primary liver cancer: A case-control study nested within two prospective cohorts. Environ. Res., 2020, 187, 109690.
[http://dx.doi.org/10.1016/j.envres.2020.109690] [PMID: 32474310]
[5]
Panesar, H.K.; Kennedy, C.L.; Keil Stietz, K.P.; Lein, P.J. Polychlorinated Biphenyls (PCBs): Risk Factors for Autism Spectrum Disorder? Toxics, 2020, 8(3), 70.
[http://dx.doi.org/10.3390/toxics8030070] [PMID: 32957475]
[6]
Pessah, I.N.; Lein, P.J.; Seegal, R.F.; Sagiv, S.K. Neurotoxicity of polychlorinated biphenyls and related organohalogens. Acta Neuropathol., 2019, 138(3), 363-387.
[http://dx.doi.org/10.1007/s00401-019-01978-1] [PMID: 30976975]
[7]
Te, B.; Yiming, L.; Tianwei, L.; Huiting, W.; Pengyuan, Z.; Wenming, C.; Jun, J. Polychlorinated biphenyls in a grassland food network: Concentrations, biomagnification, and transmission of toxicity. Sci. Total Environ., 2020, 709, 135781.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135781] [PMID: 31884281]
[8]
Lee, C.C.; Chang, W.H.; Hung, C.F.; Chen, H.L. Fish consumption is an indicator of exposure to non-dioxin like polychlorinated bip-henyls in cumulative risk assessments based on a probabilistic and sensitive approach. Environ. Pollut., 2021, 268(Pt B), 115732.
[http://dx.doi.org/10.1016/j.envpol.2020.115732] [PMID: 33045582]
[9]
Carpenter, D.O. Polychlorinated biphenyls (PCBs): routes of exposure and effects on human health. Rev. Environ. Health, 2006, 21(1), 1-24.
[http://dx.doi.org/10.1515/REVEH.2006.21.1.1] [PMID: 16700427]
[10]
Malavia, J.; Abalos, M.; Santos, F.J.; Abad, E.; Rivera, J.; Galceran, M.T. Analysis of polychlorinated dibenzo-p-dioxins, dibenzofurans and dioxin-like polychlorinated biphenyls in vegetable oil samples by gas chromatography–ion trap tandem mass spectrometry. J. Chromatogr. A, 2007, 1149(2), 321-332.
[http://dx.doi.org/10.1016/j.chroma.2007.03.052] [PMID: 17399728]
[11]
Kraft, M.; Rauchfuss, K.; Fromme, H.; Grün, L.; Sievering, S.; Köllner, B.; Chovolou, Y. Inhalation Exposure to PCB from Contaminated Indoor Air-How Much Is Absorbed into the Blood? Pollutants, 2021, 1(3), 181-193.
[http://dx.doi.org/10.3390/pollutants1030015]
[12]
Hooper, K.; She, J.; Sharp, M.; Chow, J.; Jewell, N.; Gephart, R.; Holden, A. Depuration of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in breast milk from California first-time mothers (primiparae). Environ. Health Perspect., 2007, 115(9), 1271-1275.
[http://dx.doi.org/10.1289/ehp.10166] [PMID: 17805415]
[13]
Tehrani, R.; Van Aken, B. Hydroxylated polychlorinated biphenyls in the environment: sources, fate, and toxicities. Environ. Sci. Pollut. Res. Int., 2014, 21(10), 6334-6345.
[http://dx.doi.org/10.1007/s11356-013-1742-6] [PMID: 23636595]
[14]
Perkins, J.T.; Petriello, M.C.; Newsome, B.J.; Hennig, B. Polychlorinated biphenyls and links to cardiovascular disease. Environ. Sci. Pollut. Res. Int., 2016, 23(3), 2160-2172.
[http://dx.doi.org/10.1007/s11356-015-4479-6] [PMID: 25877901]
[15]
Buha Djordjevic, A.; Antonijevic, E.; Curcic, M.; Milovanovic, V.; Antonijevic, B. Endocrine-disrupting mechanisms of polychlorinated biphenyls. Curr. Opin. Toxicol., 2020, 19, 42-49.
[http://dx.doi.org/10.1016/j.cotox.2019.10.006]
[16]
Liu, J.; Tan, Y.; Song, E.; Song, Y. A critical review of polychlorinated biphenyls metabolism, metabolites, and their correlation with oxi-dative stress. Chem. Res. Toxicol., 2020, 33(8), 2022-2042.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00078] [PMID: 32677429]
[17]
Quinete, N.; Schettgen, T.; Bertram, J.; Kraus, T. Analytical approaches for the determination of PCB metabolites in blood: a review. Anal. Bioanal. Chem., 2014, 406(25), 6151-6164.
[http://dx.doi.org/10.1007/s00216-014-7922-5] [PMID: 24908411]
[18]
Llobet, J.M.; Bocio, A.; Domingo, J.L.; Teixidó, A.; Casas, C.; Müller, L. Levels of polychlorinated biphenyls in foods from Catalonia, Spain: estimated dietary intake. J. Food Prot., 2003, 66(3), 479-484.
[http://dx.doi.org/10.4315/0362-028X-66.3.479] [PMID: 12636304]
[19]
Baars, A.J.; Bakker, M.I.; Baumann, R.A.; Boon, P.E.; Freijer, J.I.; Hoogenboom, L.A.P.; Hoogerbrugge, R.; van Klaveren, J.D.; Liem, A.K.D.; Traag, W.A.; de Vries, J. Dioxins, dioxin-like PCBs and non-dioxin-like PCBs in foodstuffs: occurrence and dietary intake in The Netherlands. Toxicol. Lett., 2004, 151(1), 51-61.
[http://dx.doi.org/10.1016/j.toxlet.2004.01.028] [PMID: 15177640]
[20]
Papadopoulos, A.; Vassiliadou, I.; Costopoulou, D.; Papanicolaou, C.; Leondiadis, L. Levels of dioxins and dioxin-like PCBs in food samples on the Greek market. Chemosphere, 2004, 57(5), 413-419.
[http://dx.doi.org/10.1016/j.chemosphere.2004.07.006] [PMID: 15331268]
[21]
Yagüe, C.; Bayarri, S.; Conchello, P.; Lázaro, R.; Pérez-Arquillué, C.; Herrera, A.; Ariño, A. Determination of pesticides and PCBs in virgin olive oil by multicolumn solid-phase extraction cleanup followed by GC-NPD/ECD and confirmation by ion-trap GC-MS. J. Agric. Food Chem., 2005, 53(13), 5105-5109.
[http://dx.doi.org/10.1021/jf050247l] [PMID: 15969482]
[22]
Leondiadis, L.; Costopoulou, D.; Vassiliadou, I.; Papadopoulos, A. Monitoring of dioxins and dioxin-like PCBs in food, feed, and biolo-gical samples in Greece.In: The fate of persistent organic pollutants in the environment; Springer Dorecht, 2008, pp. 83-98.
[http://dx.doi.org/10.1007/978-1-4020-6642-9_7]
[23]
Adenugba, A.A.; Headley, J.; McMartin, D.; Beck, A.J. Comparison of levels of polychlorinated biphenyls in edible oils and oil-based products—possible link to environmental factors. J. Environ. Sci. Health B, 2008, 43(5), 422-428.
[http://dx.doi.org/10.1080/03601230802062216] [PMID: 18576223]
[24]
Oljana, P.; Aurel, N. Levels of organchlorinated pesticides and pcb in olive oil of vlora region, albania. J. Int. Environ. Appl. Sci., 2015, 10(4), 455-459.
[25]
Pemberthy, D.; Quintero, A.; Martrat, M.G.; Parera, J.; Ábalos, M.; Abad, E.; Villa, A.L. Polychlorinated dibenzo-p-dioxins, dibenzofu-rans and dioxin-like PCBs in commercialized food products from Colombia. Sci. Total Environ., 2016, 568, 1185-1191.
[http://dx.doi.org/10.1016/j.scitotenv.2016.04.113] [PMID: 27173454]
[26]
Ebadi Fathabad, A.; Jafari, K.; Tajik, H.; Behmanesh, M.; Shariatifar, N.; Mirahmadi, S.S.; Oliveri Conti, G.; Miri, M. Comparing dioxin-like polychlorinated biphenyls in most consumed fish species of the Caspian Sea. Environ. Res., 2020, 180, 108878.
[http://dx.doi.org/10.1016/j.envres.2019.108878] [PMID: 31706601]
[27]
Li, X.; Zhen, Y.; Wang, R.; Li, T.; Dong, S.; Zhang, W.; Cheng, J.; Wang, P.; Su, X. Application of gas chromatography coupled to triple quadrupole mass spectrometry (GC-(APCI)MS/MS) in determination of PCBs (mono-to deca-) and PCDD/Fs in Chinese mitten crab food webs. Chemosphere, 2021, 265, 129055.
[http://dx.doi.org/10.1016/j.chemosphere.2020.129055] [PMID: 33272672]
[28]
Patil, R.; Chatterjee, N.S.; Kamble, N.; Nerpagar, A.; Langade, N.; Kandaswamy, C.; Presley, S.I.D.; Banerjee, K. Multiresidue analysis of pesticides, polyaromatic hydrocarbons and polychlorinated biphenyls in poultry meat and chicken eggs by GC-MS/MS: method develop-ment and validation. J. Environ. Sci. Health B, 2022, 57(4), 263-283.
[http://dx.doi.org/10.1080/03601234.2022.2047390] [PMID: 35452352]
[29]
Yazdi, F.; Yazdi, M.H.; Eidi, A.; Shoeibi, S. A Useful method with appropriate recovery and high accuracy in simultaneous analysis of 12 polychlorinated biphenyls in cereal-based baby foods using gas chromatography-electron capture detector. Nutrition Food Sci. Res., 2022, 9(1), 41-48.
[http://dx.doi.org/10.52547/nfsr.9.1.41]
[30]
Nikonova, A.A.; Gorshkov, A.G. Rapid chromatography for the determination of polychlorinated biphenyls by GC-MS in environmental monitoring. Anal. Lett., 2011, 44(7), 1290-1300.
[http://dx.doi.org/10.1080/00032719.2010.546024]
[31]
Wang, X.; Li, C.; Wu, D.; Shen, J.; Wei, Y.; Wang, C. Enrichment of polychlorinated biphenyls in river water by using magnetic adsorbents with high selectivity to nonplanar aromatic compounds and their analysis with gas chromatography–mass spectrometry. J. Chin. Chem. Soc., 2021, 68(9), 1731-1738.
[http://dx.doi.org/10.1002/jccs.202100102]
[32]
Ali Ghardashi, A.; Mirabi, M.; Haghighat, G.A. An overview on PCBs in the environment, their health effects, identifying and removal methodsl methods. J. Jiroft. Uni. Med. Sci., 2019, 6(1), 87-100.
[33]
Björklund, E.; Müller, A.; von Holst, C. Comparison of fat retainers in accelerated solvent extraction for the selective extraction of PCBs from fat-containing samples. Anal. Chem., 2001, 73(16), 4050-4053.
[http://dx.doi.org/10.1021/ac010178j] [PMID: 11534735]
[34]
Ritter, R.; Scheringer, M.; MacLeod, M.; Moeckel, C.; Jones, K.C.; Hungerbühler, K. Intrinsic human elimination half-lives of polychlori-nated biphenyls derived from the temporal evolution of cross-sectional biomonitoring data from the United Kingdom. Environ. Health Perspect., 2011, 119(2), 225-231.
[http://dx.doi.org/10.1289/ehp.1002211] [PMID: 20934951]
[35]
Avino, P.; Russo, M.V. A comprehensive review of analytical methods for determining persistent organic pollutants in air, soil, water and waste. Curr. Org. Chem., 2018, 22(10), 939-953.
[http://dx.doi.org/10.2174/1385272822666180404144834]
[36]
Megson, D.; Reiner, E.J.; Jobst, K.J.; Dorman, F.L.; Robson, M.; Focant, J.F. A review of the determination of persistent organic pollutants for environmental forensics investigations. Anal. Chim. Acta, 2016, 941, 10-25.
[http://dx.doi.org/10.1016/j.aca.2016.08.027] [PMID: 27692373]
[37]
Hassani, S.; Rezaei Akmal, M.; Salek Maghsoudi, A.; Rahmani, S.; Vakhshiteh, F.; Norouzi, P.; Ganjali, M.R.; Abdollahi, M. High-performance voltammetric aptasensing platform for ultrasensitive detection of bisphenol A as an environmental pollutant. Front. Bioeng. Biotechnol., 2020, 8, 574846.
[http://dx.doi.org/10.3389/fbioe.2020.574846] [PMID: 33015024]
[38]
Salek Maghsoudi, A.; Hassani, S.; Rezaei Akmal, M.; Ganjali, M.R.; Mirnia, K.; Norouzi, P.; Abdollahi, M. An electrochemical aptasensor platform based on flower-like gold microstructure-modified screen-printed carbon electrode for detection of serpin A12 as a Type 2 DIA-BETES BIOMArker. Int. J. Nanomedicine, 2020, 15, 2219-2230.
[http://dx.doi.org/10.2147/IJN.S244315] [PMID: 32280216]
[39]
Muir, D.; Sverko, E. Analytical methods for PCBs and organochlorine pesticides in environmental monitoring and surveillance: a critical appraisal. Anal. Bioanal. Chem., 2006, 386(4), 769-789.
[http://dx.doi.org/10.1007/s00216-006-0765-y] [PMID: 17047943]
[40]
Vijaya Bhaskar Reddy, A.; Yusop, Z.; Jaafar, J.; Bin Aris, A.; Abdul Majid, Z.; Umar, K.; Talib, J. Simultaneous determination of three organophosphorus pesticides in different food commodities by gas chromatography with mass spectrometry. J. Sep. Sci., 2016, 39(12), 2276-2283.
[http://dx.doi.org/10.1002/jssc.201600155] [PMID: 27095506]
[41]
Zhou, Q.; Sang, Y.; Wang, L.; Ji, S.; Ye, J.; Wang, X. Determination of polychlorinated biphenyls by GC/MS with ultrasound-assisted extraction from shellfish. Front. Agric. China, 2010, 4(4), 489-493.
[http://dx.doi.org/10.1007/s11703-010-1032-8]
[42]
Tranchida, P.Q.; Mondello, L. Current-day employment of the micro-bore open-tubular capillary column in the gas chromatography field. J. Chromatogr. A, 2012, 1261, 23-36.
[http://dx.doi.org/10.1016/j.chroma.2012.05.074] [PMID: 22749360]
[43]
Domínguez, I.; Arrebola, F.J.; Gavara, R.; Martínez Vidal, J.L.; Frenich, A.G. Automated and simultaneous determination of priority subs-tances and polychlorinated biphenyls in wastewater using headspace solid phase microextraction and high resolution mass spectrometry. Anal. Chim. Acta, 2018, 1002, 39-49.
[http://dx.doi.org/10.1016/j.aca.2017.11.056] [PMID: 29306412]
[44]
Eguchi, A.; Enomoto, T.; Suzuki, N.; Okuno, M.; Mori, C. Development of simple analytical methods of polychlorinated biphenyls in human serum by gas chromatography negative ion chemical ionization quadrupole mass spectrometry. Acta Chromatogr., 2017, 29(4), 503-506.
[http://dx.doi.org/10.1556/1326.2017.00029]
[45]
Francisco, A.P.; Nardocci, A.C.; Tominaga, M.Y.; da Silva, C.R.; de Assunção, J.V. Spatial and seasonal trends of polychlorinated dioxins, furans and dioxin-like polychlorinated biphenyls in air using passive and active samplers and inhalation risk assessment. Atmos. Pollut. Res., 2017, 8(5), 979-987.
[http://dx.doi.org/10.1016/j.apr.2017.03.007]
[46]
Li, F.; Jin, J.; Tan, D.; Xu, J. Dhanjai; Ni, Y.; Zhang, H.; Chen, J. High performance solid-phase extraction cleanup method coupled with gas chromatography-triple quadrupole mass spectrometry for analysis of polychlorinated naphthalenes and dioxin-like polychlorinated biphenyls in complex samples. J. Chromatogr. A, 2016, 1448, 1-8.
[http://dx.doi.org/10.1016/j.chroma.2016.04.037] [PMID: 27130583]
[47]
Zhang, C.; Cagliero, C.; Pierson, S.A.; Anderson, J.L. Rapid and sensitive analysis of polychlorinated biphenyls and acrylamide in food samples using ionic liquid-based in situ dispersive liquid-liquid microextraction coupled to headspace gas chromatography. J. Chromatogr. A, 2017, 1481, 1-11.
[http://dx.doi.org/10.1016/j.chroma.2016.12.013] [PMID: 28017564]
[48]
Reddy, A.V.B.; Moniruzzaman, M.; Aminabhavi, T.M. Polychlorinated biphenyls (PCBs) in the environment: Recent updates on sampling, pretreatment, cleanup technologies and their analysis. Chem. Eng. J., 2019, 358, 1186-1207.
[http://dx.doi.org/10.1016/j.cej.2018.09.205]
[49]
Montes, R.; Ramil, M.; Rodríguez, I.; Rubí, E.; Cela, R. Rapid screening of polychlorinated biphenyls in sediments using non-equilibrium solid-phase microextraction and fast gas chromatography with electron-capture detection. J. Chromatogr. A, 2006, 1124(1-2), 43-50.
[http://dx.doi.org/10.1016/j.chroma.2006.04.047] [PMID: 16714025]
[50]
Fu, L.; Lu, X.; Tan, J.; Wang, L.; Chen, J. Multiresidue determination and potential risks of emerging pesticides in aquatic products from Northeast China by LC–MS/MS. J. Environ. Sci., 2018, 63, 116-125.
[http://dx.doi.org/10.1016/j.jes.2017.09.010] [PMID: 29406095]
[51]
Li, D.; Zhu, J.; Wang, M.; Bi, W.; Huang, X.; Chen, D.D.Y. Extraction of trace polychlorinated biphenyls in environmental waters by well-dispersed velvet-like magnetic carbon nitride nanocomposites. J. Chromatogr. A, 2017, 1491, 27-35.
[http://dx.doi.org/10.1016/j.chroma.2017.02.048] [PMID: 28249718]
[52]
Bureš, J.; Jansová, H.; Stariat, J.; Filipský, T.; Mladěnka, P.; Šimůnek, T.; Kučera, R.; Klimeš, J.; Wang, Q.; Franz, K.J.; Kovaříková, P. LC–UV/MS methods for the analysis of prochelator-Boronyl Salicylaldehyde Isonicotinoyl Hydrazone (BSIH) and its active chelator Sali-cylaldehyde Isonicotinoyl Hydrazone (SIH). J. Pharm. Biomed. Anal., 2015, 105, 55-63.
[http://dx.doi.org/10.1016/j.jpba.2014.11.044] [PMID: 25527982]
[53]
Salek Maghsoudi, A.; Hassani, S.; Mirnia, K.; Abdollahi, M. Recent advances in nanotechnology-based biosensors development for detec-tion of arsenic, lead, mercury, and cadmium. Int. J. Nanomedicine, 2021, 16, 803-832.
[http://dx.doi.org/10.2147/IJN.S294417] [PMID: 33568907]
[54]
Reddy, A.V.B.; Jaafar, J.; Umar, K.; Majid, Z.A.; Aris, A.B.; Talib, J.; Madhavi, G. Identification, control strategies, and analytical approa-ches for the determination of potential genotoxic impurities in pharmaceuticals: A comprehensive review. J. Sep. Sci., 2015, 38(5), 764-779.
[http://dx.doi.org/10.1002/jssc.201401143] [PMID: 25556762]
[55]
Quinete, N.; Kraus, T.; Belov, V.N.; Aretz, C.; Esser, A.; Schettgen, T. Fast determination of hydroxylated polychlorinated biphenyls in human plasma by online solid phase extraction coupled to liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta, 2015, 888, 94-102.
[http://dx.doi.org/10.1016/j.aca.2015.06.041] [PMID: 26320963]
[56]
Laborie, S.; Moreau-Guigon, E.; Alliot, F.; Desportes, A.; Oziol, L.; Chevreuil, M. A new analytical protocol for the determination of 62 endocrine-disrupting compounds in indoor air. Talanta, 2016, 147, 132-141.
[http://dx.doi.org/10.1016/j.talanta.2015.09.028] [PMID: 26592587]
[57]
Hayteas, D.L.; Duffield, D.A. The determination by HPLC of PCB and p,p′-DDE residues in marine mammals stranded on the Oregon Coast, 1991–1995. Mar. Pollut. Bull., 1997, 34(10), 844-848.
[http://dx.doi.org/10.1016/S0025-326X(97)00045-3]
[58]
Lin, Y.Y.; Liu, G.; Wai, C.M.; Lin, Y. Bioelectrochemical immunoassay of polychlorinated biphenyl. Anal. Chim. Acta, 2008, 612(1), 23-28.
[http://dx.doi.org/10.1016/j.aca.2008.01.080] [PMID: 18331854]
[59]
Fillmann, G.; Galloway, T.S.; Sanger, R.C.; Depledge, M.H.; Readman, J.W. Relative performance of immunochemical (enzyme-linked immunosorbent assay) and gas chromatography–electron-capture detection techniques to quantify polychlorinated biphenyls in mussel tissues. Anal. Chim. Acta, 2002, 461(1), 75-84.
[http://dx.doi.org/10.1016/S0003-2670(02)00233-7]
[60]
Tsutsumi, T.; Amakura, Y.; Okuyama, A.; Tanioka, Y.; Sakata, K.; Sasaki, K.; Maitani, T. Application of an ELISA for PCB 118 to the screening of dioxin-like PCBs in retail fish. Chemosphere, 2006, 65(3), 467-473.
[http://dx.doi.org/10.1016/j.chemosphere.2006.01.059] [PMID: 16530250]
[61]
Hu, Y.; Peng, H.; Yan, Y.; Guan, S.; Wang, S.; Li, P.C.H.; Sun, Y. Integration of laminar flow extraction and capillary electrophoretic sepa-ration in one microfluidic chip for detection of plant alkaloids in blood samples. Anal. Chim. Acta, 2017, 985, 121-128.
[http://dx.doi.org/10.1016/j.aca.2017.05.036] [PMID: 28864182]
[62]
Hancu, G.; Simon, B.; Rusu, A.; Mircia, E.; Gyéresi, A. Principles of micellar electrokinetic capillary chromatography applied in pharma-ceutical analysis. Adv. Pharm. Bull., 2013, 3(1), 1-8.
[PMID: 24312804]
[63]
García-Ruiz, C.; Martín-Biosca, Y.; Crego, A.L.; Marina, M.L. Rapid enantiomeric separation of polychlorinated biphenyls by electrokine-tic chromatography using mixtures of neutral and charged cyclodextrin derivatives. J. Chromatogr. A, 2001, 910(1), 157-164.
[http://dx.doi.org/10.1016/S0021-9673(00)01176-6] [PMID: 11263569]
[64]
Edwards, S.H.; Shamsi, S.A. Micellar electrokinetic chromatography of polychlorinated biphenyl congeners using a polymeric surfactant as the pseudostationary phase. J. Chromatogr. A, 2000, 903(1-2), 227-236.
[http://dx.doi.org/10.1016/S0021-9673(00)00884-0] [PMID: 11153946]
[65]
Makahleh, A.; Yap, H.F.; Saad, B. Vortex-assisted liquid–liquid–liquid microextraction (VALLLME) technique: A new microextraction approach for direct liquid chromatography and capillary electrophoresis analysis. Talanta, 2015, 143, 394-401.
[http://dx.doi.org/10.1016/j.talanta.2015.05.011] [PMID: 26078176]
[66]
Quinete, N.; Esser, A.; Kraus, T.; Schettgen, T. Determination of hydroxylated polychlorinated biphenyls (OH-PCBs) in human urine in a highly occupationally exposed German cohort: New prospects for urinary biomarkers of PCB exposure. Environ. Int., 2016, 97, 171-179.
[http://dx.doi.org/10.1016/j.envint.2016.08.028] [PMID: 27622755]
[67]
Echols, K.; Gale, R.; Tillitt, D.; Schwartz, T.; O’Laughlin, J. An automated HPLC method for the fractionation of polychlorinated bip-henyls, polychlorinated dibenzo- p -dioxins, and polychlorinated dibenzofurans in fish tissue on a porous graphitic carbon column. Environ. Toxicol. Chem., 1997, 16(8), 1590-1597.
[http://dx.doi.org/10.1002/etc.5620160805]
[68]
Liang, R.; Zhao, Y.; Su, Y.; Qin, W. Determination of hydroxylated polychlorinated biphenyls by offline solid-phase extraction-liquid chromatography–tandem mass spectrometry using a molecularly imprinted polymer as a sorbent for sample preconcentration. Talanta, 2015, 144, 115-121.
[http://dx.doi.org/10.1016/j.talanta.2015.05.064] [PMID: 26452800]
[69]
Lundgren, K.; van Bavel, B.; Tysklind, M. Development of a high-performance liquid chromatography carbon column based method for the fractionation of dioxin-like polychlorinated biphenyls. J. Chromatogr. A, 2002, 962(1-2), 79-93.
[http://dx.doi.org/10.1016/S0021-9673(02)00443-0] [PMID: 12198974]
[70]
Zebühr, Y.; Näf, C.; Bandh, C.; Broman, D.; Ishaq, R.; Pettersen, H. An automated HPLC separation method with two coupled columns for the analysis of PCDD/Fs, PCBs AND PACs. Chemosphere, 1993, 27(7), 1211-1219.
[http://dx.doi.org/10.1016/0045-6535(93)90168-5]
[71]
Shuai, J.; Yu, X.; Zhang, J.; Xiong, A.; Xiong, F. Regional analysis of potential polychlorinated biphenyl degrading bacterial strains from China. Braz. J. Microbiol., 2016, 47(3), 536-541.
[http://dx.doi.org/10.1016/j.bjm.2014.12.001] [PMID: 27140507]
[72]
Duong, V.T.T.; Duong, V.; Lien, N.T.H.; Imasaka, T.; Tang, Y.; Shibuta, S.; Hamachi, A.; Hoa, D.Q.; Imasaka, T.; Hoa, D.Q.; Imasaka, T. Detection of polychlorinated biphenyls in transformer oils in Vietnam by multiphoton ionization mass spectrometry using a far-ultraviolet femtosecond laser as an ionization source. Talanta, 2016, 149, 275-279.
[http://dx.doi.org/10.1016/j.talanta.2015.11.054] [PMID: 26717841]
[73]
Sethi, S.; Chen, X.; Kass, P.H.; Puschner, B. Polychlorinated biphenyl and polybrominated diphenyl ether profiles in serum from cattle, sheep, and goats across California. Chemosphere, 2017, 181, 63-73.
[http://dx.doi.org/10.1016/j.chemosphere.2017.04.059] [PMID: 28426942]
[74]
Eguchi, K. Experimental study of wireless power transmission system using multiple coils for under seawater. Proc. IEICE Gen. Conf., 2016, pp. 1-4.
[75]
Kuzukiran, O.; Filazi, A. Determination of selected polychlorinated biphenyl residues in meat products by QuEChERS method coupled with gas chromatography–mass spectrometry. Food Anal. Methods, 2016, 9(7), 1867-1875.
[http://dx.doi.org/10.1007/s12161-015-0367-4]
[76]
Cheng, Z.; Hanke, M.; Vogt, P.; Bierwagen, O.; Trampert, A. Phase formation and strain relaxation of Ga2O3 on c-plane and a-plane sap-phire substrates as studied by synchrotron-based X-ray diffraction. Appl. Phys. Lett., 2017, 111(16), 162104.
[http://dx.doi.org/10.1063/1.4998804]
[77]
St-Gelais, A.T.; Aeppli, C.; Burnell, C.A.; Costa-Pierce, B.A. Non-dioxin like polychlorinated biphenyl indicator congeners in Northwest Atlantic spiny dogfish (Squalus acanthias). Mar. Pollut. Bull., 2017, 120(1-2), 414-421.
[http://dx.doi.org/10.1016/j.marpolbul.2017.05.001] [PMID: 28479149]
[78]
Stancheva, M.; Georgieva, S.; Makedonski, L. Polychlorinated biphenyls in fish from Black Sea, Bulgaria. Food Control, 2017, 72, 205-210.
[http://dx.doi.org/10.1016/j.foodcont.2016.05.012]
[79]
Xia, D.; Gao, L.; Zheng, M.; Wang, S.; Liu, G. Simultaneous analysis of polychlorinated biphenyls and polychlorinated naphthalenes by isotope dilution comprehensive two-dimensional gas chromatography high-resolution time-of-flight mass spectrometry. Anal. Chim. Acta, 2016, 937, 160-167.
[http://dx.doi.org/10.1016/j.aca.2016.07.018] [PMID: 27590558]
[80]
Gallart-Mateu, D.; Pastor, A.; de la Guardia, M.; Armenta, S.; Esteve-Turrillas, F.A. Hard cap espresso extraction-stir bar preconcentration of polychlorinated biphenyls in soil and sediments. Anal. Chim. Acta, 2017, 952, 41-49.
[http://dx.doi.org/10.1016/j.aca.2016.11.051] [PMID: 28010841]
[81]
Gómara, B.; Ramos, L.; González, M.J. Determination of polychlorinated biphenyls in small-size serum samples by solid-phase extraction followed by gas chromatography with micro-electron-capture detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 766(2), 279-287.
[http://dx.doi.org/10.1016/S0378-4347(01)00508-4] [PMID: 11824816]
[82]
Ramil Criado, M.; Rodríguez Pereiro, I.; Cela Torrijos, R. Determination of polychlorinated biphenyl compounds in indoor air samples. J. Chromatogr. A, 2002, 963(1-2), 65-71.
[http://dx.doi.org/10.1016/S0021-9673(02)00643-X] [PMID: 12188002]
[83]
Li, Z.; Li, D.; Ren, J.; Wang, L.; Yuan, L.; Liu, Y. Optimization and application of accelerated solvent extraction for rapid quantification of PCBs in food packaging materials using GC-ECD. Food Control, 2012, 27(2), 300-306.
[http://dx.doi.org/10.1016/j.foodcont.2012.04.006]
[84]
Qiu, C.; Cochran, J.; Smuts, J.; Walsh, P.; Schug, K.A. Gas chromatography-vacuum ultraviolet detection for classification and speciation of polychlorinated biphenyls in industrial mixtures. J. Chromatogr. A, 2017, 1490, 191-200.
[http://dx.doi.org/10.1016/j.chroma.2017.02.031] [PMID: 28236461]
[85]
Afful, S.; Awudza, J.A.M.; Twumasi, S.K.; Osae, S. Determination of indicator polychlorinated biphenyls (PCBs) by gas chromatography–electron capture detector. Chemosphere, 2013, 93(8), 1556-1560.
[http://dx.doi.org/10.1016/j.chemosphere.2013.08.001] [PMID: 24016628]
[86]
Ullah, R.; Asghar, R.; Baqar, M.; Mahmood, A.; Alamdar, A.; Qadir, A.; Sohail, M.; Schäfer, R.B.; Musstjab Akber Shah Eqani, S.A. As-sessment of polychlorinated biphenyls (PCBs) in the himalayan riverine network of Azad Jammu and Kashmir. Chemosphere, 2020, 240, 124762.
[http://dx.doi.org/10.1016/j.chemosphere.2019.124762] [PMID: 31568940]
[87]
García-Ruiz, C.; Crego, A.L.; Marina, M.L. Comparison of charged cyclodextrin derivatives for the chiral separation of atropisomeric polychlorinated biphenyls by capillary electrophoresis. Electrophoresis, 2003, 24(15), 2657-2664.
[http://dx.doi.org/10.1002/elps.200305465] [PMID: 12900879]
[88]
Marina, M.L.; Benito, I.; Díez-Masa, J.C.; González, M.J. Separation of chiral polychlorinated biphenyls by micellar electrokinetic chroma-tography using β- and γ-cyclodextrin mixtures in the separation buffer. J. Chromatogr. A, 1996, 752(1-2), 265-270.
[http://dx.doi.org/10.1016/S0021-9673(96)00506-7] [PMID: 8962501]
[89]
Benito, I.; Saz, J.M.; Marina, M.L.; Jime’nez-Barbero, J.; Gonza’lez, M.J.; Diez-Masa, J.C. Micellar electrokinetic capillary chromatogra-phic separation of polychlorinated biphenyl congeners. J. Chromatogr. A, 1997, 778(1-2), 77-85.
[http://dx.doi.org/10.1016/S0021-9673(97)00217-3]
[90]
Regan, F.; Moran, A.; Fogarty, B.; Dempsey, E. Development of comparative methods using gas chromatography–mass spectrometry and capillary electrophoresis for determination of endocrine disrupting chemicals in bio-solids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 770(1-2), 243-253.
[http://dx.doi.org/10.1016/S1570-0232(01)00631-6] [PMID: 12013232]
[91]
Deng, A.P.; Kolář, V.; Ulrich, R.; Fránek, M. Direct competitive ELISA for the determination of polychlorinated biphenyls in soil samples. Anal. Bioanal. Chem., 2002, 373(8), 685-690.
[http://dx.doi.org/10.1007/s00216-002-1311-1] [PMID: 12194024]
[92]
Johnson, J.C.; Van Emon, J.M.; Clarke, A.N.; Wamsley, B.N. Quantitative ELISA of polychlorinated biphenyls in an oily soil matrix using supercritical fluid extraction. Anal. Chim. Acta, 2001, 428(2), 191-199.
[http://dx.doi.org/10.1016/S0003-2670(00)01243-5]
[93]
Van Emon, J.M.; Chuang, J.C.; Bronshtein, A.; Altstein, M. Determination of polychlorinated biphenyls in soil and sediment by selective pressurized liquid extraction with immunochemical detection. Sci. Total Environ., 2013, 463-464, 326-333.
[http://dx.doi.org/10.1016/j.scitotenv.2013.05.020] [PMID: 23827357]
[94]
Chuang, J.C.; Miller, L.S.; Davis, D.B.; Peven, C.S.; Johnson, J.C.; Van Emon, J.M. Analysis of soil and dust samples for polychlorinated biphenyls by enzyme-linked immunosorbent assay (ELISA). Anal. Chim. Acta, 1998, 376(1), 67-75.
[http://dx.doi.org/10.1016/S0003-2670(98)00439-5]
[95]
Sdix. Your Antibody Partner–Innovating to a Healthier Tomorrow. Available from: www.sdix.com
[96]
Zhou, L.; Wang, J.; Li, D.; Li, Y. An electrochemical aptasensor based on gold nanoparticles dotted graphene modified glassy carbon elec-trode for label-free detection of bisphenol A in milk samples. Food Chem., 2014, 162, 34-40.
[http://dx.doi.org/10.1016/j.foodchem.2014.04.058] [PMID: 24874354]
[97]
Barbounis, E.G.; Tzatzarakis, M.N.; Alegakis, A.K.; Kokkinaki, A.; Karamanos, N.; Tsakalof, A.; Tsatsakis, A.M. Assessment of PCBs exposure in human hair using double focusing high resolution mass spectrometry and single quadrupole mass spectrometry. Toxicol. Lett., 2012, 210(2), 225-231.
[http://dx.doi.org/10.1016/j.toxlet.2011.07.031] [PMID: 21875657]
[98]
Centi, S.; Laschi, S.; Fránek, M.; Mascini, M. A disposable immunomagnetic electrochemical sensor based on functionalised magnetic beads and carbon-based screen-printed electrodes (SPCEs) for the detection of polychlorinated biphenyls (PCBs). Anal. Chim. Acta, 2005, 538(1-2), 205-212.
[http://dx.doi.org/10.1016/j.aca.2005.01.073]
[99]
Fan, Y.; Zhang, H.; Wang, D.; Ren, M.; Zhang, X.; Wang, L.; Chen, J. Simultaneous determination of chlorinated aromatic hydrocarbons in fly ashes discharged from industrial thermal processes. Anal. Methods, 2017, 9(35), 5198-5203.
[http://dx.doi.org/10.1039/C7AY01545C]
[100]
Cioffi, F.; Adam, R.H.I.; Broersen, K. Molecular mechanisms and genetics of oxidative stress in Alzheimer’s disease. J. Alzheimers Dis., 2019, 72(4), 981-1017.
[http://dx.doi.org/10.3233/JAD-190863] [PMID: 31744008]
[101]
Sun, Y.; Lu, Y.; Saredy, J.; Wang, X.; Drummer, C., IV; Shao, Y.; Saaoud, F.; Xu, K.; Liu, M.; Yang, W.Y.; Jiang, X.; Wang, H.; Yang, X. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol., 2020, 37, 101696.
[http://dx.doi.org/10.1016/j.redox.2020.101696] [PMID: 32950427]
[102]
Gupta, P.; Thompson, B.L.; Wahlang, B.; Jordan, C.T.; Zach Hilt, J.; Hennig, B.; Dziubla, T. The environmental pollutant, polychlorinated biphenyls, and cardiovascular disease: a potential target for antioxidant nanotherapeutics. Drug Deliv. Transl. Res., 2018, 8(3), 740-759.
[http://dx.doi.org/10.1007/s13346-017-0429-9] [PMID: 28975503]
[103]
Momtaz, S.; Salek-Maghsoudi, A.; Abdolghaffari, A.H.; Jasemi, E.; Rezazadeh, S.; Hassani, S.; Ziaee, M.; Abdollahi, M.; Behzad, S.; Na-bavi, S.M. Polyphenols targeting diabetes via the AMP-activated protein kinase pathway; future approach to drug discovery. Crit. Rev. Clin. Lab. Sci., 2019, 56(7), 472-492.
[http://dx.doi.org/10.1080/10408363.2019.1648376] [PMID: 31418340]
[104]
Yaribeygi, H.; Sathyapalan, T.; Atkin, S.L.; Sahebkar, A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid. Med. Cell. Longev., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/8609213] [PMID: 32215179]
[105]
Nono Nankam, P.A.; Nguelefack, T.B.; Goedecke, J.H.; Blüher, M. Contribution of adipose tissue oxidative stress to obesity-associated diabetes risk and ethnic differences: focus on women of african ancestry. Antioxidants, 2021, 10(4), 622.
[http://dx.doi.org/10.3390/antiox10040622] [PMID: 33921645]
[106]
Hassani, S.; Tavakoli, F.; Amini, M.; Kobarfard, F.; Nili-Ahmadabadi, A.; Sabzevari, O. Occurrence of melamine contamination in powder and liquid milk in market of Iran. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2013, 30(3), 413-420.
[http://dx.doi.org/10.1080/19440049.2012.761730] [PMID: 23373843]
[107]
Miller, M.R. Oxidative stress and the cardiovascular effects of air pollution. Free Radic. Biol. Med., 2020, 151, 69-87.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.01.004] [PMID: 31923583]
[108]
Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Bayo Jimenez, M.T.; Vujacic-Mirski, K.; Helmstädter, J.; Kröller-Schön, S.; Münzel, T.; Daiber, A. Vascular inflammation and oxidative stress: major triggers for cardiovascular disease. Oxid. Med. Cell. Longev., 2019, 2019, 1-26.
[http://dx.doi.org/10.1155/2019/7092151] [PMID: 31341533]
[109]
Konovalova, J.; Gerasymchuk, D.; Parkkinen, I.; Chmielarz, P.; Domanskyi, A. Interplay between MicroRNAs and oxidative stress in neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(23), 6055.
[http://dx.doi.org/10.3390/ijms20236055] [PMID: 31801298]
[110]
Andrisic, L.; Dudzik, D.; Barbas, C.; Milkovic, L.; Grune, T.; Zarkovic, N. Short overview on metabolomics approach to study pathop-hysiology of oxidative stress in cancer. Redox Biol., 2018, 14, 47-58.
[http://dx.doi.org/10.1016/j.redox.2017.08.009] [PMID: 28866248]
[111]
Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative stress in cancer. Cancer Cell, 2020, 38(2), 167-197.
[http://dx.doi.org/10.1016/j.ccell.2020.06.001] [PMID: 32649885]
[112]
Everett, C.J.; Frithsen, I.; Player, M. Relationship of polychlorinated biphenyls with type 2 diabetes and hypertension. J. Environ. Monit., 2011, 13(2), 241-251.
[http://dx.doi.org/10.1039/C0EM00400F] [PMID: 21127808]
[113]
Olsen, H.; Enan, E.; Matsumura, F. Regulation of glucose transport in the NIH 3T3 L1 preadipocyte cell line by TCDD. Environ. Health Perspect., 1994, 102(5), 454-458.
[http://dx.doi.org/10.1289/ehp.94102454] [PMID: 8593848]
[114]
Rahmani, S.; Pour Khalili, N.; Khan, F.; Hassani, S.; Ghafour-Boroujerdi, E.; Abdollahi, M.; Bisphenol, A.; Bisphenol, A. What lies beneath its induced diabetes and the epigenetic modulation? Life Sci., 2018, 214, 136-144.
[http://dx.doi.org/10.1016/j.lfs.2018.10.044] [PMID: 30359670]
[115]
Borst, S.E. The role of TNF-α in insulin resistance. Endocr. J., 2004, 23(2-3), 177-182.
[http://dx.doi.org/10.1385/ENDO:23:2-3:177] [PMID: 15146098]
[116]
Wang, C.; Petriello, M.C.; Zhu, B.; Hennig, B. PCB 126 induces monocyte/macrophage polarization and inflammation through AhR and NF-κB pathways. Toxicol. Appl. Pharmacol., 2019, 367, 71-81.
[http://dx.doi.org/10.1016/j.taap.2019.02.006] [PMID: 30768972]
[117]
Baker, N.A.; Karounos, M.; English, V.; Fang, J.; Wei, Y.; Stromberg, A.; Sunkara, M.; Morris, A.J.; Swanson, H.I.; Cassis, L.A. Coplanar polychlorinated biphenyls impair glucose homeostasis in lean C57BL/6 mice and mitigate beneficial effects of weight loss on glucose ho-meostasis in obese mice. Environ. Health Perspect., 2013, 121(1), 105-110.
[http://dx.doi.org/10.1289/ehp.1205421] [PMID: 23099484]
[118]
Salek-Maghsoudi, A.; Hassani, S.; Momtaz, S.; Shadboorestan, A.; Ganjali, M.R.; Ghahremani, M.H.; Hosseini, R.; Norouzi, P.; Abdollahi, M. Biochemical and molecular evidence on the role of vaspin in early detection of the insulin resistance in a rat model of high-fat diet and use of diazinon. Toxicology, 2019, 411, 1-14.
[http://dx.doi.org/10.1016/j.tox.2018.10.014] [PMID: 30359674]
[119]
Wu, H.; Yu, W.; Meng, F.; Mi, J.; Peng, J.; Liu, J.; Zhang, X.; Hai, C.; Wang, X. Polychlorinated biphenyls-153 induces metabolic dysfun-ction through activation of ROS/NF-κB signaling via downregulation of HNF1b. Redox Biol., 2017, 12, 300-310.
[http://dx.doi.org/10.1016/j.redox.2017.02.026] [PMID: 28285191]
[120]
Mesnier, A.; Champion, S.; Louis, L.; Sauzet, C.; May, P.; Portugal, H.; Benbrahim, K.; Abraldes, J.; Alessi, M.C.; Amiot-Carlin, M.J.; Peiretti, F.; Piccerelle, P.; Nalbone, G.; Villard, P.H. The transcriptional effects of PCB118 and PCB153 on the liver, adipose tissue, muscle and colon of mice: highlighting of Glut4 and Lipin1 as main target genes for PCB induced metabolic disorders. PLoS One, 2015, 10(6), e0128847.
[http://dx.doi.org/10.1371/journal.pone.0128847] [PMID: 26086818]
[121]
Lin, M.; Wu, T.; Sun, L.; Lin, J.J.; Zuo, Z.; Wang, C. Aroclor 1254 causes atrophy of exocrine pancreas in mice and the mechanism invol-ved. Environ. Toxicol., 2016, 31(6), 671-678.
[http://dx.doi.org/10.1002/tox.22079] [PMID: 25409620]
[122]
Donat-Vargas, C.; Gea, A.; Sayon-Orea, C.; Carlos, S.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Association between dietary intakes of PCBs and the risk of obesity: the SUN project. J. Epidemiol. Community Health, 2014, 68(9), 834-841.
[http://dx.doi.org/10.1136/jech-2013-203752] [PMID: 24759782]
[123]
Uemura, H.; Arisawa, K.; Hiyoshi, M.; Kitayama, A.; Takami, H.; Sawachika, F.; Dakeshita, S.; Nii, K.; Satoh, H.; Sumiyoshi, Y.; Morina-ga, K.; Kodama, K.; Suzuki, T.; Nagai, M.; Suzuki, T. Prevalence of metabolic syndrome associated with body burden levels of dioxin and related compounds among Japan’s general population. Environ. Health Perspect., 2009, 117(4), 568-573.
[http://dx.doi.org/10.1289/ehp.0800012] [PMID: 19440495]
[124]
Ben Hassine, S.; Hammami, B.; Ben Ameur, W.; El Megdiche, Y.; Barhoumi, B.; El Abidi, R.; Driss, M.R. Concentrations of organochlori-ne pesticides and polychlorinated biphenyls in human serum and their relation with age, gender, and BMI for the general population of Bi-zerte, Tunisia. Environ. Sci. Pollut. Res. Int., 2014, 21(10), 6303-6313.
[http://dx.doi.org/10.1007/s11356-013-1480-9] [PMID: 23338993]
[125]
Dirinck, E.; Jorens, P.G.; Covaci, A.; Geens, T.; Roosens, L.; Neels, H.; Mertens, I.; van Gaal, L. Obesity and persistent organic pollutants: possible obesogenic effect of organochlorine pesticides and polychlorinated biphenyls. Obesity, 2011, 19(4), 709-714.
[http://dx.doi.org/10.1038/oby.2010.133] [PMID: 20559302]
[126]
Mullerova, D.; Kopecky, J.; Matejkova, D.; Muller, L.; Rosmus, J.; Racek, J.; Sefrna, F.; Opatrna, S.; Kuda, O.; Matejovic, M. Negative association between plasma levels of adiponectin and polychlorinated biphenyl 153 in obese women under non-energy-restrictive regime. Int. J. Obes., 2008, 32(12), 1875-1878.
[http://dx.doi.org/10.1038/ijo.2008.169] [PMID: 18825156]
[127]
Dirinck, E.L.; Dirtu, A.C.; Govindan, M.; Covaci, A.; Van Gaal, L.F.; Jorens, P.G. Exposure to persistent organic pollutants: relationship with abnormal glucose metabolism and visceral adiposity. Diabetes Care, 2014, 37(7), 1951-1958.
[http://dx.doi.org/10.2337/dc13-2329] [PMID: 24963112]
[128]
Arsenescu, V.; Arsenescu, R.I.; King, V.; Swanson, H.; Cassis, L.A. Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ. Health Perspect., 2008, 116(6), 761-768.
[http://dx.doi.org/10.1289/ehp.10554] [PMID: 18560532]
[129]
Lee, D.H.; Steffes, M.W.; Sjödin, A.; Jones, R.S.; Needham, L.L.; Jacobs, D.R., Jr Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity, dyslipidemia, and insulin resistance among people free of diabetes. PLoS One, 2011, 6(1), e15977.
[http://dx.doi.org/10.1371/journal.pone.0015977] [PMID: 21298090]
[130]
Lee, D.H.; Porta, M.; Jacobs, D.R., Jr; Vandenberg, L.N. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr. Rev., 2014, 35(4), 557-601.
[http://dx.doi.org/10.1210/er.2013-1084] [PMID: 24483949]
[131]
Raffetti, E.; Donato, F.; De Palma, G.; Leonardi, L.; Sileo, C.; Magoni, M. Polychlorinated biphenyls (PCBs) and risk of hypertension: A population-based cohort study in a North Italian highly polluted area. Sci. Total Environ., 2020, 714, 136660.
[http://dx.doi.org/10.1016/j.scitotenv.2020.136660] [PMID: 32018953]
[132]
Donat-Vargas, C.; Åkesson, A.; Tornevi, A.; Wennberg, M.; Sommar, J.; Kiviranta, H.; Rantakokko, P.; Bergdahl, I.A. Persistent organoch-lorine pollutants in plasma, blood pressure, and hypertension in a longitudinal study. Hypertension, 2018, 71(6), 1258-1268.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.10691] [PMID: 29712742]
[133]
Pavuk, M.; Serio, T.C.; Cusack, C.; Cave, M.; Rosenbaum, P.F.; Birnbaum, L.S. Hypertension in relation to dioxins and polychlorinated biphenyls from the Anniston Community Health Survey follow-Up. Environ. Health Perspect., 2019, 127(12), 127007.
[http://dx.doi.org/10.1289/EHP5272] [PMID: 31858832]
[134]
Raffetti, E.; Donat-Vargas, C.; Mentasti, S.; Chinotti, A.; Donato, F. Association between exposure to polychlorinated biphenyls and risk of hypertension: A systematic review and meta-analysis. Chemosphere, 2020, 255, 126984.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126984] [PMID: 32679627]
[135]
Bergkvist, C.; Berglund, M.; Glynn, A.; Julin, B.; Wolk, A.; Åkesson, A. Dietary exposure to polychlorinated biphenyls and risk of myo-cardial infarction in men — A population-based prospective cohort study. Environ. Int., 2016, 88, 9-14.
[http://dx.doi.org/10.1016/j.envint.2015.11.020] [PMID: 26690540]
[136]
Bergkvist, C.; Berglund, M.; Glynn, A.; Wolk, A.; Åkesson, A. Dietary exposure to polychlorinated biphenyls and risk of myocardial infarction — A population-based prospective cohort study. Int. J. Cardiol., 2015, 183, 242-248.
[http://dx.doi.org/10.1016/j.ijcard.2015.01.055] [PMID: 25679993]
[137]
Donat-Vargas, C.; Bellavia, A.; Berglund, M.; Glynn, A.; Wolk, A.; Åkesson, A. Cardiovascular and cancer mortality in relation to dietary polychlorinated biphenyls and marine polyunsaturated fatty acids: a nutritional‐toxicological aspect of fish consumption. J. Intern. Med., 2020, 287(2), 197-209.
[http://dx.doi.org/10.1111/joim.12995] [PMID: 31628875]
[138]
Fiolet, T.; Mahamat-Saleh, Y.; Frenoy, P.; Kvaskoff, M.; Romana Mancini, F. Background exposure to polychlorinated biphenyls and all-cause, cancer-specific, and cardiovascular-specific mortality: A systematic review and meta-analysis. Environ. Int., 2021, 154, 106663.
[http://dx.doi.org/10.1016/j.envint.2021.106663] [PMID: 34082240]
[139]
Aminov, Z.; Carpenter, D.O. Serum concentrations of persistent organic pollutants and the metabolic syndrome in Akwesasne Mohawks, a Native American community. Environ. Pollut., 2020, 260, 114004.
[http://dx.doi.org/10.1016/j.envpol.2020.114004] [PMID: 32004963]
[140]
Wang, Y.; Hu, C.; Fang, T.; Jin, Y.; Wu, R. Perspective on prenatal polychlorinated biphenyl exposure and the development of the progeny nervous system. (Review). Int. J. Mol. Med., 2021, 48(2), 150.
[http://dx.doi.org/10.3892/ijmm.2021.4983] [PMID: 34132363]
[141]
Tanner, E.M.; Bloom, M.S.; Kannan, K.; Lynch, J.; Wang, W.; Yucel, R.; Fitzgerald, E.F. A longitudinal study of polychlorinated bip-henyls and neuropsychological function among older adults from New York State. Int. J. Hyg. Environ. Health, 2020, 223(1), 1-9.
[http://dx.doi.org/10.1016/j.ijheh.2019.10.012] [PMID: 31706927]
[142]
Dickerson, A.S.; Ransome, Y.; Karlsson, O. Human prenatal exposure to polychlorinated biphenyls (PCBs) and risk behaviors in adoles-cence. Environ. Int., 2019, 129, 247-255.
[http://dx.doi.org/10.1016/j.envint.2019.04.051] [PMID: 31146159]
[143]
Guo, J.Y.; Wang, M.Z.; Wang, M.S.; Sun, T.; Wei, F.H.; Yu, X.T.; Wang, C.; Xu, Y.Y.; Wang, L. The undervalued effects of polychlori-nated biphenyl exposure on breast cancer. Clin. Breast Cancer, 2020, 20(1), 12-18.
[http://dx.doi.org/10.1016/j.clbc.2019.07.005] [PMID: 31521536]
[144]
Ruder, A.M.; Hein, M.J.; Hopf, N.B.; Waters, M.A. Cancer incidence among capacitor manufacturing workers exposed to polychlorinated biphenyls. Am. J. Ind. Med., 2017, 60(2), 198-207.
[http://dx.doi.org/10.1002/ajim.22657] [PMID: 28059454]
[145]
Fiore, M.; Oliveri Conti, G.; Caltabiano, R.; Buffone, A.; Zuccarello, P.; Cormaci, L.; Cannizzaro, M.A.; Ferrante, M. Role of emerging environmental risk factors in thyroid cancer: a brief review. Int. J. Environ. Res. Public Health, 2019, 16(7), 1185.
[http://dx.doi.org/10.3390/ijerph16071185] [PMID: 30986998]
[146]
Georgiadis, P.; Gavriil, M.; Rantakokko, P.; Ladoukakis, E.; Botsivali, M.; Kelly, R.S.; Bergdahl, I.A.; Kiviranta, H.; Vermeulen, R.C.H.; Spaeth, F.; Hebbels, D.G.A.J.; Kleinjans, J.C.S.; de Kok, T.M.C.M.; Palli, D.; Vineis, P.; Kyrtopoulos, S.A. DNA methylation profiling im-plicates exposure to PCBs in the pathogenesis of B-cell chronic lymphocytic leukemia. Environ. Int., 2019, 126, 24-36.
[http://dx.doi.org/10.1016/j.envint.2019.01.068] [PMID: 30776747]
[147]
Petersen, M.; Halling, J.; Jørgensen, N.; Nielsen, F.; Grandjean, P.; Jensen, T.; Weihe, P. Reproductive function in a population of young Faroese men with elevated exposure to polychlorinated biphenyls (PCBs) and perfluorinated alkylate substances (PFAS). Int. J. Environ. Res. Public Health, 2018, 15(9), 1880.
[http://dx.doi.org/10.3390/ijerph15091880] [PMID: 30200252]
[148]
Neblett, M.F., II; Curtis, S.W.; Gerkowicz, S.A.; Spencer, J.B.; Terrell, M.L.; Jiang, V.S.; Marder, M.E.; Barr, D.B.; Marcus, M.; Smith, A.K. Examining reproductive health outcomes in females exposed to polychlorinated biphenyl and polybrominated biphenyl. Sci. Rep., 2020, 10(1), 3314.
[http://dx.doi.org/10.1038/s41598-020-60234-9] [PMID: 32094419]
[149]
Hassani, S.; Maqbool, F.; Salek-Maghsoudi, A.; Rahmani, S.; Shadboorestan, A.; Nili-Ahmadabadi, A.; Amini, M.; Norouzi, P.; Abdollahi, M. Alteration of hepatocellular antioxidant gene expression pattern and biomarkers of oxidative damage in diazinon-induced acute toxicity in Wistar rat: A time-course mechanistic study. EXCLI J., 2018, 17, 57-71.
[PMID: 29383019]
[150]
Wang, Y.; Hollis-Hansen, K.; Ren, X.; Qiu, Y.; Qu, W. Do environmental pollutants increase obesity risk in humans? Obes. Rev., 2016, 17(12), 1179-1197.
[http://dx.doi.org/10.1111/obr.12463] [PMID: 27706898]
[151]
Imbeault, P.; Chevrier, J.; Dewailly, É.; Ayotte, P.; Després, J.P.; Tremblay, A.; Mauriège, P. Increase in plasma pollutant levels in respon-se to weight loss in humans is related to in vitro subcutaneous adipocyte basal lipolysis. Int. J. Obes., 2001, 25(11), 1585-1591.
[http://dx.doi.org/10.1038/sj.ijo.0801817] [PMID: 11753575]
[152]
Valvi, D.; Mendez, M.A.; Martinez, D.; Grimalt, J.O.; Torrent, M.; Sunyer, J.; Vrijheid, M. Prenatal concentrations of polychlorinated bip-henyls, DDE, and DDT and overweight in children: a prospective birth cohort study. Environ. Health Perspect., 2012, 120(3), 451-457.
[http://dx.doi.org/10.1289/ehp.1103862] [PMID: 22027556]
[153]
Wang, X.; Wu, H.; Yu, W.; Liu, J.; Peng, J.; Liao, N.; Zhang, J.; Zhang, X.; Hai, C. Hepatocyte nuclear factor 1b is a novel negative regula-tor of white adipocyte differentiation. Cell Death Differ., 2017, 24(9), 1588-1597.
[http://dx.doi.org/10.1038/cdd.2017.85] [PMID: 28622294]
[154]
Liu, C.W.; Tsai, H.C.; Huang, C.C.; Tsai, C.Y.; Su, Y.B.; Lin, M.W.; Lee, K.C.; Hsieh, Y.C.; Li, T.H.; Huang, S.F.; Yang, Y.Y.; Hou, M.C.; Lin, H.C.; Lee, F.Y.; Lee, S.D. Effects and mechanisms of caffeine to improve immunological and metabolic abnormalities in diet-induced obese rats. Am. J. Physiol. Endocrinol. Metab., 2018, 314(5), E433-E447.
[http://dx.doi.org/10.1152/ajpendo.00094.2017] [PMID: 29118012]
[155]
Donat-Vargas, C.; Moreno-Franco, B.; Laclaustra, M.; Sandoval-Insausti, H.; Jarauta, E.; Guallar-Castillon, P. Exposure to dietary polych-lorinated biphenyls and dioxins, and its relationship with subclinical coronary atherosclerosis: The Aragon Workers’ Health Study. Environ. Int., 2020, 136, 105433.
[http://dx.doi.org/10.1016/j.envint.2019.105433] [PMID: 31918334]
[156]
Hassani, S.; Momtaz, S.; Vakhshiteh, F.; Maghsoudi, A.S.; Ganjali, M.R.; Norouzi, P.; Abdollahi, M. Biosensors and their applications in detection of organophosphorus pesticides in the environment. Arch. Toxicol., 2017, 91(1), 109-130.
[http://dx.doi.org/10.1007/s00204-016-1875-8] [PMID: 27761595]
[157]
Dara, T.; Vatanara, A.; Sharifzadeh, M.; Khani, S.; Vakilinezhad, M.A.; Vakhshiteh, F.; Nabi Meybodi, M.; Sadegh Malvajerd, S.; Hassani, S.; Mosaddegh, M.H. Improvement of memory deficits in the rat model of Alzheimer’s disease by erythropoietin-loaded solid lipid nano-particles. Neurobiol. Learn. Mem., 2019, 166, 107082.
[http://dx.doi.org/10.1016/j.nlm.2019.107082] [PMID: 31493483]
[158]
Taghizadeh, G.; Pourahmad, J.; Mehdizadeh, H.; Foroumadi, A.; Torkaman-Boutorabi, A.; Hassani, S.; Naserzadeh, P.; Shariatmadari, R.; Gholami, M.; Rouini, M.R.; Sharifzadeh, M. Protective effects of physical exercise on MDMA-induced cognitive and mitochondrial im-pairment. Free Radic. Biol. Med., 2016, 99, 11-19.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.07.018] [PMID: 27451936]
[159]
Sanadgol, N.; Barati, M.; Houshmand, F.; Hassani, S.; Clarner, T. shahlaei, M.; Golab, F. Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period. Pharmacol. Rep., 2020, 72(3), 641-658.
[http://dx.doi.org/10.1007/s43440-019-00019-8] [PMID: 32048246]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy