Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Role of Microglia in Psychostimulant Addiction

Author(s): Maria Carolina Machado da Silva, Lia Parada Iglesias, Eduardo Candelario-Jalil, Habibeh Khoshbouei, Fabrício Araujo Moreira and Antônio Carlos Pinheiro de Oliveira*

Volume 21, Issue 2, 2023

Published on: 08 December, 2022

Page: [235 - 259] Pages: 25

DOI: 10.2174/1570159X21666221208142151

Price: $65

Abstract

The use of psychostimulant drugs can modify brain function by inducing changes in the reward system, mainly due to alterations in dopaminergic and glutamatergic transmissions in the mesocorticolimbic pathway. However, the etiopathogenesis of addiction is a much more complex process. Previous data have suggested that microglia and other immune cells are involved in events associated with neuroplasticity and memory, which are phenomena that also occur in addiction. Nevertheless, how dependent is the development of addiction on the activity of these cells? Although the mechanisms are not known, some pathways may be involved. Recent data have shown psychoactive substances may act directly on immune cells, alter their functions and induce various inflammatory mediators that modulate synaptic activity. These could, in turn, be involved in the pathological alterations that occur in substance use disorder. Here, we extensively review the studies demonstrating how cocaine and amphetamines modulate microglial number, morphology, and function. We also describe the effect of these substances in the production of inflammatory mediators and a possible involvement of some molecular signaling pathways, such as the toll-like receptor 4. Although the literature in this field is scarce, this review compiles the knowledge on the neuroimmune axis that is involved in the pathogenesis of addiction, and suggests some pharmacological targets for the development of pharmacotherapy.

Graphical Abstract

[1]
Olive, M.F.; Taylor; Lewis The neurocircuitry of illicit psychostimulant addiction: acute and chronic effects in humans. Subst. Abuse Rehabil., 2013, 4, 29-43.
[http://dx.doi.org/10.2147/SAR.S39684] [PMID: 24648786]
[2]
McFarland, K.; Kalivas, P.W. The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J. Neurosci., 2001, 21(21), 8655-8663.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08655.2001] [PMID: 11606653]
[3]
Volkow, N.D.; Michaelides, M.; Baler, R. The neuroscience of drug reward and addiction. Physiol. Rev., 2019, 99(4), 2115-2140.
[http://dx.doi.org/10.1152/physrev.00014.2018] [PMID: 31507244]
[4]
World Drug Report 2021 (United Nations publication, Sales No. E.21.XI.8)
[5]
Hasin, D.S.; O’Brien, C.P.; Auriacombe, M.; Borges, G.; Bucholz, K.; Budney, A.; Compton, W.M.; Crowley, T.; Ling, W.; Petry, N.M.; Schuckit, M.; Grant, B.F. DSM-5 criteria for substance use disorders: recommendations and rationale. Am. J. Psychiatry, 2013, 170(8), 834-851.
[http://dx.doi.org/10.1176/appi.ajp.2013.12060782] [PMID: 23903334]
[6]
Di Chiara, G.; Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. USA, 1988, 85(14), 5274-5278.
[http://dx.doi.org/10.1073/pnas.85.14.5274] [PMID: 2899326]
[7]
Miller, D.R.; Guenther, D.T.; Maurer, A.P.; Hansen, C.A.; Zalesky, A.; Khoshbouei, H. Dopamine transporter is a master regulator of dopaminergic neural network connectivity. J. Neurosci., 2021, 41(25), 5453-5470.
[http://dx.doi.org/10.1523/JNEUROSCI.0223-21.2021] [PMID: 33980544]
[8]
Partilla, J.S.; Dempsey, A.G.; Nagpal, A.S.; Blough, B.E.; Baumann, M.H.; Rothman, R.B. Interaction of amphetamines and related compounds at the vesicular monoamine transporter. J. Pharmacol. Exp. Ther., 2006, 319(1), 237-246.
[http://dx.doi.org/10.1124/jpet.106.103622] [PMID: 16835371]
[9]
Goodwin, J.S.; Larson, G.A.; Swant, J.; Sen, N.; Javitch, J.A.; Zahniser, N.R.; De Felice, L.J.; Khoshbouei, H. Amphetamine and methamphetamine differentially affect dopamine transporters in vitro and in vivo. J. Biol. Chem., 2009, 284(5), 2978-2989.
[http://dx.doi.org/10.1074/jbc.M805298200] [PMID: 19047053]
[10]
Lin, M.; Sambo, D.; Khoshbouei, H. Methamphetamine regulation of firing activity of dopamine neurons. J. Neurosci., 2016, 36(40), 10376-10391.
[http://dx.doi.org/10.1523/JNEUROSCI.1392-16.2016] [PMID: 27707972]
[11]
Sambo, D.O.; Lebowitz, J.J.; Khoshbouei, H. The sigma-1 receptor as a regulator of dopamine neurotransmission: A potential therapeutic target for methamphetamine addiction. Pharmacol. Ther., 2018, 186, 152-167.
[http://dx.doi.org/10.1016/j.pharmthera.2018.01.009] [PMID: 29360540]
[12]
Khoshbouei, H.; Wang, H.; Lechleiter, J.D.; Javitch, J.A.; Galli, A. Amphetamine-induced dopamine efflux. A voltage-sensitive and intracellular Na+-dependent mechanism. J. Biol. Chem., 2003, 278(14), 12070-12077.
[http://dx.doi.org/10.1074/jbc.M212815200] [PMID: 12556446]
[13]
Saha, K.; Sambo, D.; Richardson, B.D.; Lin, L.M.; Butler, B.; Villarroel, L.; Khoshbouei, H. Intracellular methamphetamine prevents the dopamine-induced enhancement of neuronal firing. J. Biol. Chem., 2014, 289(32), 22246-22257.
[http://dx.doi.org/10.1074/jbc.M114.563056] [PMID: 24962577]
[14]
Richardson, B.D.; Saha, K.; Krout, D.; Cabrera, E.; Felts, B.; Henry, L.K.; Swant, J.; Zou, M.F.; Newman, A.H.; Khoshbouei, H. Membrane potential shapes regulation of dopamine transporter trafficking at the plasma membrane. Nat. Commun., 2016, 7(1), 10423.
[http://dx.doi.org/10.1038/ncomms10423] [PMID: 26804245]
[15]
Andrianarivelo, A.; Saint-Jour, E.; Walle, R.; Trifilieff, P.; Vanhoutte, P. Modulation and functions of dopamine receptor heteromers in drugs of abuse-induced adaptations. Neuropharmacology, 2019, 152, 42-50.
[http://dx.doi.org/10.1016/j.neuropharm.2018.12.003] [PMID: 30529032]
[16]
Nestler, E.J. Transcriptional mechanisms of drug addiction. Clin. Psychopharmacol. Neurosci., 2012, 10(3), 136-143.
[http://dx.doi.org/10.9758/cpn.2012.10.3.136] [PMID: 23430970]
[17]
Teague, C.D.; Nestler, E.J. Key transcription factors mediating cocaine-induced plasticity in the nucleus accumbens. Mol. Psychiatry, 2021, 27, 687-709.
[http://dx.doi.org/10.1038/s41380-021-01163-5]
[18]
Russo, S.J.; Wilkinson, M.B.; Mazei-Robison, M.S.; Dietz, D.M.; Maze, I.; Krishnan, V.; Renthal, W.; Graham, A.; Birnbaum, S.G.; Green, T.A.; Robison, B.; Lesselyong, A.; Perrotti, L.I.; Bolaños, C.A.; Kumar, A.; Clark, M.S.; Neumaier, J.F.; Neve, R.L.; Bhakar, A.L.; Barker, P.A.; Nestler, E.J. Nuclear factor kappa B signaling regulates neuronal morphology and cocaine reward. J. Neurosci., 2009, 29(11), 3529-3537.
[http://dx.doi.org/10.1523/JNEUROSCI.6173-08.2009] [PMID: 19295158]
[19]
Pulipparacharuvil, S.; Renthal, W.; Hale, C.F.; Taniguchi, M.; Xiao, G.; Kumar, A.; Russo, S.J.; Sikder, D.; Dewey, C.M.; Davis, M.M.; Greengard, P.; Nairn, A.C.; Nestler, E.J.; Cowan, C.W. Cocaine regulates MEF2 to control synaptic and behavioral plasticity. Neuron, 2008, 59(4), 621-633.
[http://dx.doi.org/10.1016/j.neuron.2008.06.020] [PMID: 18760698]
[20]
Krasnova, I.N.; Chiflikyan, M.; Justinova, Z.; McCoy, M.T.; Ladenheim, B.; Jayanthi, S.; Quintero, C.; Brannock, C.; Barnes, C.; Adair, J.E.; Lehrmann, E.; Kobeissy, F.H.; Gold, M.S.; Becker, K.G.; Goldberg, S.R.; Cadet, J.L. CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat. Neurobiol. Dis., 2013, 58, 132-143.
[http://dx.doi.org/10.1016/j.nbd.2013.05.009] [PMID: 23726845]
[21]
Dong, Y.; Taylor, J.R.; Wolf, M.E.; Shaham, Y. Circuit and synaptic plasticity mechanisms of drug relapse. J. Neurosci., 2017, 37(45), 10867-10876.
[http://dx.doi.org/10.1523/JNEUROSCI.1821-17.2017] [PMID: 29118216]
[22]
Wolf, M.E. Synaptic mechanisms underlying persistent cocaine craving. Nat. Rev. Neurosci., 2016, 17(6), 351-365.
[http://dx.doi.org/10.1038/nrn.2016.39] [PMID: 27150400]
[23]
Argilli, E.; Sibley, D.R.; Malenka, R.C.; England, P.M.; Bonci, A. Mechanism and time course of cocaine-induced long-term potentiation in the ventral tegmental area. J. Neurosci., 2008, 28(37), 9092-9100.
[http://dx.doi.org/10.1523/JNEUROSCI.1001-08.2008] [PMID: 18784289]
[24]
Dong, Y.; Saal, D.; Thomas, M.; Faust, R.; Bonci, A.; Robinson, T.; Malenka, R.C. Cocaine-induced potentiation of synaptic strength in dopamine neurons: Behavioral correlates in GluRA(-/-) mice. Proc. Natl. Acad. Sci. USA, 2004, 101(39), 14282-14287.
[http://dx.doi.org/10.1073/pnas.0401553101] [PMID: 15375209]
[25]
Zinsmaier, A.K.; Dong, Y.; Huang, Y.H. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. Mol. Psychiatry, 2022, 27(1), 669-686.
[http://dx.doi.org/10.1038/s41380-021-01112-2] [PMID: 33963288]
[26]
Kopec, A.M.; Smith, C.J.; Ayre, N.R.; Sweat, S.C.; Bilbo, S.D. Microglial dopamine receptor elimination defines sex-specific nucleus accumbens development and social behavior in adolescent rats. Nat. Commun., 2018, 9, 1-16.
[http://dx.doi.org/10.1038/s41467-018-06118-z]
[27]
Smith, B.L.; Laaker, C.J.; Lloyd, K.R.; Hiltz, A.R.; Reyes, T.M. Adolescent microglia play a role in executive function in male mice exposed to perinatal high fat diet. Brain Behav. Immun., 2020, 84, 80-89.
[http://dx.doi.org/10.1016/j.bbi.2019.11.010] [PMID: 31765789]
[28]
Catale, C.; Lo Iacono, L.; Martini, A.; Heil, C.; Guatteo, E.; Mercuri, N.B. Early life social stress causes sex- and region-dependent dopaminergic changes that are prevented by minocycline. Mol. Neurobiol., 2022, 59, 3913-3932.
[http://dx.doi.org/10.1007/s12035-022-02830-6]
[29]
Lo Iacono, L.; Catale, C.; Martini, A.; Valzania, A.; Viscomi, M.T.; Chiurchiù, V.; Guatteo, E.; Bussone, S.; Perrone, F.; Di Sabato, P.; Aricò, E.; D’Argenio, A.; Troisi, A.; Mercuri, N.B.; Maccarrone, M.; Puglisi-Allegra, S.; Casella, P.; Carola, V. From traumatic childhood to cocaine abuse: The critical function of the immune system. Biol. Psychiatry, 2018, 84(12), 905-916.
[http://dx.doi.org/10.1016/j.biopsych.2018.05.022] [PMID: 30029767]
[30]
Liu, Y.; Zhou, L.J.; Wang, J.; Li, D.; Ren, W.J.; Peng, J.; Wei, X.; Xu, T.; Xin, W.J.; Pang, R.P.; Li, Y.Y.; Qin, Z.H.; Murugan, M.; Mattson, M.P.; Wu, L.J.; Liu, X.G. TNF-α differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J. Neurosci., 2017, 37(4), 871-881.
[http://dx.doi.org/10.1523/JNEUROSCI.2235-16.2016] [PMID: 28123022]
[31]
Ji, K.; Akgul, G.; Wollmuth, L.P.; Tsirka, S.E. Microglia actively regulate the number of functional synapses. PLoS One, 2013, 8(2), e56293.
[http://dx.doi.org/10.1371/journal.pone.0056293] [PMID: 23393609]
[32]
Riazi, K.; Galic, M.A.; Kentner, A.C.; Reid, A.Y.; Sharkey, K.A.; Pittman, Q.J. Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J. Neurosci., 2015, 35(12), 4942-4952.
[http://dx.doi.org/10.1523/JNEUROSCI.4485-14.2015] [PMID: 25810524]
[33]
Basilico, B.; Ferrucci, L.; Ratano, P.; Golia, M.T.; Grimaldi, A.; Rosito, M.; Ferretti, V.; Reverte, I.; Sanchini, C.; Marrone, M.C.; Giubettini, M.; De Turris, V.; Salerno, D.; Garofalo, S.; St-Pierre, M.K.; Carrier, M.; Renzi, M.; Pagani, F.; Modi, B.; Raspa, M.; Scavizzi, F.; Gross, C.T.; Marinelli, S.; Tremblay, M.È.; Caprioli, D.; Maggi, L.; Limatola, C.; Di Angelantonio, S.; Ragozzino, D. Microglia control glutamatergic synapses in the adult mouse hippocampus. Glia, 2022, 70(1), 173-195.
[http://dx.doi.org/10.1002/glia.24101] [PMID: 34661306]
[34]
Domercq, M.; Vázquez-Villoldo, N.; Matute, C. Neurotransmitter signaling in the pathophysiology of microglia. Front. Cell. Neurosci., 2013, 7, 49.
[http://dx.doi.org/10.3389/fncel.2013.00049] [PMID: 23626522]
[35]
Yan, Y.; Jiang, W.; Liu, L.; Wang, X.; Ding, C.; Tian, Z.; Zhou, R. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell, 2015, 160(1-2), 62-73.
[http://dx.doi.org/10.1016/j.cell.2014.11.047] [PMID: 25594175]
[36]
Lewitus, G.M.; Konefal, S.C.; Greenhalgh, A.D.; Pribiag, H.; Augereau, K.; Stellwagen, D. Microglial TNF-α suppresses cocaine-induced plasticity and behavioral sensitization. Neuron, 2016, 90(3), 483-491.
[http://dx.doi.org/10.1016/j.neuron.2016.03.030] [PMID: 27112496]
[37]
Canedo, T.; Portugal, C.C.; Socodato, R.; Almeida, T.O.; Terceiro, A.F.; Bravo, J. Astrocyte-derived TNF and glutamate critically modulate microglia activation by methamphetamine. Neuropsychopharmacol, 2021, 46(13), 2358-2370.
[http://dx.doi.org/10.1038/s41386-021-01139-7]
[38]
Kettenmann, H.; Hanisch, U.K.; Noda, M.; Verkhratsky, A. Physiology of Microglia. Physiol. Rev., 2011, 91(2), 461-553.
[http://dx.doi.org/10.1152/physrev.00011.2010] [PMID: 21527731]
[39]
Prinz, M.; Jung, S.; Priller, J. Microglia biology: One century of evolving concepts. Cell, 2019, 179(2), 292-311.
[http://dx.doi.org/10.1016/j.cell.2019.08.053] [PMID: 31585077]
[40]
Frank, M.G.; Fonken, L.K.; Watkins, L.R.; Maier, S.F. Microglia: Neuroimmune-sensors of stress. Semin. Cell Dev. Biol., 2019, 94, 176-185.
[http://dx.doi.org/10.1016/j.semcdb.2019.01.001] [PMID: 30638704]
[41]
Grabert, K.; Michoel, T.; Karavolos, M.H.; Clohisey, S.; Kenneth Baillie, J. Stevens, MP Microglial brain region−dependent diversity and selective regional sensitivities to aging. Nat. Neurosci., 2016, 19(3), 504-516.
[http://dx.doi.org/10.1038/nn.4222]
[42]
Nimmerjahn, A.; Kirchhoff, F.; Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 2005, 308(5726), 1314-1318.
[http://dx.doi.org/10.1126/science.1110647] [PMID: 15831717]
[43]
Rodríguez-Gómez, J.A.; Kavanagh, E.; Engskog-Vlachos, P.; Engskog, M.K.R.; Herrera, A.J.; Espinosa-Oliva, A.M.; Joseph, B.; Hajji, N.; Venero, J.L.; Burguillos, M.A. Microglia: Agents of the CNS Pro-Inflammatory Response. Cells, 2020, 9(7), 1717.
[http://dx.doi.org/10.3390/cells9071717] [PMID: 32709045]
[44]
de Oliveira, A.C.P.; Yousif, N.M.; Bhatia, H.S.; Hermanek, J.; Huell, M.; Fiebich, B.L. Poly(I:C) increases the expression of mPGES-1 and COX-2 in rat primary microglia. J. Neuroinflammation, 2016, 13(1), 11.
[http://dx.doi.org/10.1186/s12974-015-0473-7] [PMID: 26780827]
[45]
Shaerzadeh, F.; Phan, L.; Miller, D.; Dacquel, M.; Hachmeister, W.; Hansen, C.; Bechtle, A.; Tu, D.; Martcheva, M.; Foster, T.C.; Kumar, A.; Streit, W.J.; Khoshbouei, H. Microglia senescence occurs in both substantia nigra and ventral tegmental area. Glia, 2020, 68(11), 2228-2245.
[http://dx.doi.org/10.1002/glia.23834] [PMID: 32275335]
[46]
Fernández-Arjona, M.M.; Grondona, J.M.; Granados-Durán, P.; Fernández-Llebrez, P.; López-Ávalos, M.D. Microglia morphological categorization in a rat model of neuroinflammation by hierarchical cluster and principal components analysis. Front. Cell. Neurosci., 2017, 11, 235.
[http://dx.doi.org/10.3389/fncel.2017.00235] [PMID: 28848398]
[47]
Rao, Y.; Du, S.; Yang, B.; Wang, Y.; Li, Y.; Li, R.; Zhou, T.; Du, X.; He, Y.; Wang, Y.; Zhou, X.; Yuan, T.F.; Mao, Y.; Peng, B. NeuroD1 induces microglial apoptosis and cannot induce microglia-to-neuron cross-lineage reprogramming. Neuron, 2021, 109(24), 4094-4108.e5.
[http://dx.doi.org/10.1016/j.neuron.2021.11.008] [PMID: 34875233]
[48]
Takayama, F.; Hayashi, Y.; Wu, Z.; Liu, Y.; Nakanishi, H. Diurnal dynamic behavior of microglia in response to infected bacteria through the UDP-P2Y6 receptor system. Sci. Rep., 2016, 6(1), 1-10.
[http://dx.doi.org/10.1038/srep30006]
[49]
Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.; Locati, M.; Mantovani, A.; Martinez, F.O.; Mege, J.L.; Mosser, D.M.; Natoli, G.; Saeij, J.P.; Schultze, J.L.; Shirey, K.A.; Sica, A.; Suttles, J.; Udalova, I.; van Ginderachter, J.A.; Vogel, S.N.; Wynn, T.A. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity, 2014, 41(1), 14-20.
[http://dx.doi.org/10.1016/j.immuni.2014.06.008] [PMID: 25035950]
[50]
Martinez, F.O.; Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep., 2014, 6, 13.
[http://dx.doi.org/10.12703/P6-13] [PMID: 24669294]
[51]
Ransohoff, R.M. A polarizing question: do M1 and M2 microglia exist? Nat. Neurosci., 2016, 19(8), 987-991.
[http://dx.doi.org/10.1038/nn.4338] [PMID: 27459405]
[52]
Ginhoux, F.; Schultze, J.L.; Murray, P.J.; Ochando, J.; Biswas, S.K. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat. Immunol., 2015, 17(1), 34-40.
[http://dx.doi.org/10.1038/ni.3324]
[53]
Stratoulias, V.; Venero, J.L.; Tremblay, M.È.; Joseph, B. Microglial subtypes: diversity within the microglial community. EMBO J., 2019, 38(17), e101997.
[http://dx.doi.org/10.15252/embj.2019101997] [PMID: 31373067]
[54]
Zhou, M.; Cornell, J.; Salinas, S.; Huang, H-Y. Microglia regulation of synaptic plasticity and learning and memory. Neural Regen. Res., 2022, 17(4), 705-716.
[http://dx.doi.org/10.4103/1673-5374.322423] [PMID: 34472455]
[55]
Nguyen, P.T.; Dorman, L.C.; Pan, S.; Vainchtein, I.D.; Han, R.T.; Nakao-Inoue, H.; Taloma, S.E.; Barron, J.J.; Molofsky, A.B.; Kheirbek, M.A.; Molofsky, A.V. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell, 2020, 182(2), 388-403.e15.
[http://dx.doi.org/10.1016/j.cell.2020.05.050] [PMID: 32615087]
[56]
Wallace, J.; Lord, J.; Dissing-Olesen, L.; Stevens, B.; Murthy, V.N. Microglial depletion disrupts normal functional development of adult-born neurons in the olfactory bulb. eLife, 2020, 9, e50531.
[http://dx.doi.org/10.7554/eLife.50531] [PMID: 32150529]
[57]
Cheadle, L.; Rivera, S.A.; Phelps, J.S.; Ennis, K.A.; Stevens, B.; Burkly, L.C.; Lee, W.C.A.; Greenberg, M.E. Sensory experience engages microglia to shape neural connectivity through a non-phagocytic mechanism. Neuron, 2020, 108(3), 451-468.e9.
[http://dx.doi.org/10.1016/j.neuron.2020.08.002] [PMID: 32931754]
[58]
Salter, M.W.; Stevens, B. Microglia emerge as central players in brain disease. Nat. Med., 2017, 23(9), 1018-1027.
[http://dx.doi.org/10.1038/nm.4397]
[59]
Coomey, R.; Stowell, R.; Majewska, A.; Tropea, D. The role of microglia in neurodevelopmental disorders and their therapeutics. Curr. Top. Med. Chem., 2020, 20(4), 272-276.
[http://dx.doi.org/10.2174/1568026620666200221172619] [PMID: 32091337]
[60]
Reshef, R.; Kudryavitskaya, E.; Shani-Narkiss, H.; Isaacson, B.; Rimmerman, N.; Mizrahi, A.; Yirmiya, R. The role of microglia and their CX3CR1 signaling in adult neurogenesis in the olfactory bulb. eLife, 2017, 6, e30809.
[http://dx.doi.org/10.7554/eLife.30809] [PMID: 29251592]
[61]
Bertot, C.; Groc, L.; Avignone, E. Role of CX3CR1 signaling on the maturation of GABAergic transmission and neuronal network activity in the neonate hippocampus. Neuroscience, 2019, 406, 186-201.
[http://dx.doi.org/10.1016/j.neuroscience.2019.03.006] [PMID: 30872165]
[62]
Stellwagen, D.; Malenka, R.C. Synaptic scaling mediated by glial TNF-α. Nat, 2006, 440(7087), 1054-1059.
[http://dx.doi.org/10.1038/nature04671]
[63]
Clark, A.K.; Gruber-Schoffnegger, D.; Drdla-Schutting, R.; Gerhold, K.J.; Malcangio, M.; Sandkühler, J. Selective activation of microglia facilitates synaptic strength. J. Neurosci., 2015, 35(11), 4552-4570.
[http://dx.doi.org/10.1523/JNEUROSCI.2061-14.2015] [PMID: 25788673]
[64]
Chen, Z.; Jalabi, W.; Hu, W.; Park, H.J.; Gale, J.T.; Kidd, G.J. Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nat. Commun., 2014, 5(1), 1-12.
[http://dx.doi.org/10.1038/ncomms5486]
[65]
Tremblay, M.È.; Lowery, R.L.; Majewska, A.K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol., 2010, 8(11), e1000527.
[http://dx.doi.org/10.1371/journal.pbio.1000527] [PMID: 21072242]
[66]
Schafer, D.P.; Lehrman, E.K.; Kautzman, A.G.; Koyama, R.; Mardinly, A.R.; Yamasaki, R.; Ransohoff, R.M.; Greenberg, M.E.; Barres, B.A.; Stevens, B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron, 2012, 74(4), 691-705.
[http://dx.doi.org/10.1016/j.neuron.2012.03.026] [PMID: 22632727]
[67]
Wang, C; Yue, H; Hu, Z; Shen, Y; Ma, J; Li, J Microglia mediate forgetting via complement-dependent synaptic elimination. Science (80- ), 2020, 367, 688-694.
[http://dx.doi.org/10.1126/science.aaz2288]
[68]
Lehrman, E.K.; Wilton, D.K.; Litvina, E.Y.; Welsh, C.A.; Chang, S.T.; Frouin, A.; Walker, A.J.; Heller, M.D.; Umemori, H.; Chen, C.; Stevens, B. CD47 Protects synapses from excess microglia-mediated pruning during development. Neuron, 2018, 100(1), 120-134.e6.
[http://dx.doi.org/10.1016/j.neuron.2018.09.017] [PMID: 30308165]
[69]
Chamera, K.; Trojan, E. Szuster-Głuszczak, M.; Basta-Kaim, A. The Potential role of dysfunctions in neuron-microglia communication in the pathogenesis of brain disorders. Curr. Neuropharmacol., 2020, 18(5), 408-430.
[http://dx.doi.org/10.2174/1570159X17666191113101629] [PMID: 31729301]
[70]
Liu, C.; Shen, Y.; Tang, Y.; Gu, Y. The role of N-glycosylation of CD200-CD200R1 interaction in classical microglial activation. J. Inflamm. (Lond.), 2018, 15(1), 28.
[http://dx.doi.org/10.1186/s12950-018-0205-8] [PMID: 30574022]
[71]
Feng, D.; Huang, A.; Yan, W.; Chen, D. CD200 dysfunction in neuron contributes to synaptic deficits and cognitive impairment. Biochem. Biophys. Res. Commun., 2019, 516(4), 1053-1059.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.134] [PMID: 31277944]
[72]
Pluvinage, J.V.; Haney, M.S.; Smith, B.A.H.; Sun, J.; Iram, T.; Bonanno, L. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nat, 2019, 568(7751), 187-192.
[http://dx.doi.org/10.1038/s41586-019-1088-4]
[73]
Mott, R.T.; Ait-Ghezala, G.; Town, T.; Mori, T.; Vendrame, M.; Zeng, J.; Ehrhart, J.; Mullan, M.; Tan, J. Neuronal expression of CD22: Novel mechanism for inhibiting microglial proinflammatory cytokine production. Glia, 2004, 46(4), 369-379.
[http://dx.doi.org/10.1002/glia.20009] [PMID: 15095367]
[74]
Aires, V.; Coulon-Bainier, C.; Pavlovic, A.; Ebeling, M.; Schmucki, R.; Schweitzer, C.; Kueng, E.; Gutbier, S.; Harde, E. CD22 Blockage restores age-related impairments of microglia surveillance capacity. Front. Immunol., 2021, 12, 684430.
[http://dx.doi.org/10.3389/fimmu.2021.684430] [PMID: 34140954]
[75]
Meng, H.L.; Li, X.X.; Chen, Y.T.; Yu, L.J.; Zhang, H.; Lao, J.M.; Zhang, X.; Xu, Y. Neuronal soluble fas ligand drives M1-microglia polarization after cerebral ischemia. CNS Neurosci. Ther., 2016, 22(9), 771-781.
[http://dx.doi.org/10.1111/cns.12575] [PMID: 27283206]
[76]
Zuliani, C.; Kleber, S.; Klussmann, S.; Wenger, T.; Kenzelmann, M.; Schreglmann, N.; Martinez, A.; del Rio, J.A.; Soriano, E.; Vodrazka, P.; Kuner, R.; Groene, H-J.; Herr, I.; Krammer, P.H.; Martin-Villalba, A. Control of neuronal branching by the death receptor CD95 (Fas/Apo-1). Cell Death Differ., 2006, 13(1), 31-40.
[http://dx.doi.org/10.1038/sj.cdd.4401720] [PMID: 16003386]
[77]
Reich, A.; Spering, C.; Schulz, J.B. Death receptor Fas (CD95) signaling in the central nervous system: tuning neuroplasticity? Trends Neurosci., 2008, 31(9), 478-486.
[http://dx.doi.org/10.1016/j.tins.2008.06.007] [PMID: 18676032]
[78]
Parkhurst, C.N.; Yang, G.; Ninan, I.; Savas, J.N.; Yates, J.R., III; Lafaille, J.J.; Hempstead, B.L.; Littman, D.R.; Gan, W.B. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell, 2013, 155(7), 1596-1609.
[http://dx.doi.org/10.1016/j.cell.2013.11.030] [PMID: 24360280]
[79]
Lim, S.H.; Park, E.; You, B.; Jung, Y.; Park, A.R.; Park, S.G.; Lee, J.R. Neuronal synapse formation induced by microglia and interleukin 10. PLoS One, 2013, 8(11), e81218.
[http://dx.doi.org/10.1371/journal.pone.0081218] [PMID: 24278397]
[80]
Fontaine, R.H.; Cases, O.; Lelièvre, V.; Mesplès, B.; Renauld, J.C.; Loron, G. IL-9/IL-9 receptor signaling selectively protects cortical neurons against developmental apoptosis. Cell Death Differ., 2008, 15(10), 1542-1552.
[http://dx.doi.org/10.1038/cdd.2008.79]
[81]
Aw, E.; Zhang, Y.; Carroll, M. Microglial responses to peripheral type 1 interferon. J. Neuroinflammation, 2020, 17(1), 340.
[http://dx.doi.org/10.1186/s12974-020-02003-z] [PMID: 33183319]
[82]
Yli-Karjanmaa, M.; Larsen, K.S.; Fenger, C.D.; Kristensen, L.K.; Martin, N.A.; Jensen, P.T.; Breton, A.; Nathanson, L.; Nielsen, P.V.; Lund, M.C.; Carlsen, S.L.; Gramsbergen, J.B.; Finsen, B.; Stubbe, J.; Frich, L.H.; Stolp, H.; Brambilla, R.; Anthony, D.C.; Meyer, M.; Lambertsen, K.L. TNF deficiency causes alterations in the spatial organization of neurogenic zones and alters the number of microglia and neurons in the cerebral cortex. Brain Behav. Immun., 2019, 82, 279-297.
[http://dx.doi.org/10.1016/j.bbi.2019.08.195] [PMID: 31505254]
[83]
Sipe, G.O.; Lowery, R.L.; Tremblay, M.; Kelly, E.A.; Lamantia, C.E.; Majewska, A.K. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat. Commun., 2016, 7(1), 1-15.
[http://dx.doi.org/10.1038/ncomms10905]
[84]
Stowell, R.D.; Sipe, G.O.; Dawes, R.P.; Batchelor, H.N.; Lordy, K.A.; Whitelaw, B.S. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat. Neurosci., 2019, 22(11), 1782-1792.
[http://dx.doi.org/10.1038/s41593-019-0514-0]
[85]
Pascual, O.; Ben Achour, S.; Rostaing, P.; Triller, A.; Bessis, A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc. Natl. Acad. Sci. USA, 2012, 109(4), E197-E205.
[http://dx.doi.org/10.1073/pnas.1111098109] [PMID: 22167804]
[86]
Geraghty, A.C.; Gibson, E.M.; Ghanem, R.A.; Greene, J.J.; Ocampo, A.; Goldstein, A.K.; Ni, L.; Yang, T.; Marton, R.M. Paşca, S.P.; Greenberg, M.E.; Longo, F.M.; Monje, M. Loss of adaptive myelination contributes to methotrexate chemotherapy-related cognitive impairment. Neuron, 2019, 103(2), 250-265.e8.
[http://dx.doi.org/10.1016/j.neuron.2019.04.032] [PMID: 31122677]
[87]
Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci., 2019, 13, 363.
[http://dx.doi.org/10.3389/fncel.2019.00363] [PMID: 31440144]
[88]
Harley, S.B.R.; Willis, E.F.; Shaikh, S.N.; Blackmore, D.G.; Sah, P.; Ruitenberg, M.J.; Bartlett, P.F.; Vukovic, J. Selective ablation of BDNF from microglia reveals novel roles in self-renewal and hippocampal neurogenesis. J. Neurosci., 2021, 41(19), 4172-4186.
[http://dx.doi.org/10.1523/JNEUROSCI.2539-20.2021] [PMID: 33785644]
[89]
Coull, J.A.M.; Beggs, S.; Boudreau, D.; Boivin, D.; Tsuda, M.; Inoue, K.; Gravel, C.; Salter, M.W.; De Koninck, Y. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature, 2005, 438(7070), 1017-1021.
[http://dx.doi.org/10.1038/nature04223] [PMID: 16355225]
[90]
Ferrini, F.; Trang, T.; Mattioli, T.A.M.; Laffray, S.; Del’Guidice, T.; Lorenzo, L.E.; Castonguay, A.; Doyon, N.; Zhang, W.; Godin, A.G.; Mohr, D.; Beggs, S.; Vandal, K.; Beaulieu, J.M.; Cahill, C.M.; Salter, M.W.; De Koninck, Y. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl− homeostasis. Nat. Neurosci., 2013, 16(2), 183-192.
[http://dx.doi.org/10.1038/nn.3295] [PMID: 23292683]
[91]
Taylor, A.M.W.; Castonguay, A.; Ghogha, A.; Vayssiere, P.; Pradhan, A.A.A.; Xue, L.; Mehrabani, S.; Wu, J.; Levitt, P.; Olmstead, M.C.; De Koninck, Y.; Evans, C.J.; Cahill, C.M. Neuroimmune regulation of GABAergic neurons within the ventral tegmental area during withdrawal from chronic morphine. Neuropsychopharmacology, 2016, 41(4), 949-959.
[http://dx.doi.org/10.1038/npp.2015.221] [PMID: 26202104]
[92]
Cotto, B.; Li, H.; Tuma, R.F.; Ward, S.J.; Langford, D. Cocaine-mediated activation of microglia and microglial MeCP2 and BDNF production. Neurobiol. Dis., 2018, 117, 28-41.
[http://dx.doi.org/10.1016/j.nbd.2018.05.017] [PMID: 29859319]
[93]
Wu, S.Y.; Pan, B.S.; Tsai, S.F.; Chiang, Y.T.; Huang, B.M.; Mo, F.E.; Kuo, Y.M. BDNF reverses aging-related microglial activation. J. Neuroinflammation, 2020, 17(1), 210.
[http://dx.doi.org/10.1186/s12974-020-01887-1] [PMID: 32664974]
[94]
Ferrini, F.; De Koninck, Y. Microglia control neuronal network excitability via BDNF signalling. Neural Plast., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/429815] [PMID: 24089642]
[95]
Gupta, N.; Jadhav, S.; Tan, K.L.; Saw, G.; Mallilankaraman, K.B.; Dheen, S.T. miR-142-3p regulates BDNF expression in activated rodent microglia through its target CAMK2A. Front. Cell. Neurosci., 2020, 14, 132.
[http://dx.doi.org/10.3389/fncel.2020.00132] [PMID: 32508597]
[96]
Saw, G.; Krishna, K.; Gupta, N.; Soong, T.W.; Mallilankaraman, K.; Sajikumar, S.; Dheen, S.T. Epigenetic regulation of microglial phosphatidylinositol 3‐kinase pathway involved in long‐term potentiation and synaptic plasticity in rats. Glia, 2020, 68(3), 656-669.
[http://dx.doi.org/10.1002/glia.23748] [PMID: 31702864]
[97]
Zhou, L.J.; Peng, J.; Xu, Y.N.; Zeng, W.J.; Zhang, J.; Wei, X.; Mai, C.L.; Lin, Z.J.; Liu, Y.; Murugan, M.; Eyo, U.B.; Umpierre, A.D.; Xin, W.J.; Chen, T.; Li, M.; Wang, H.; Richardson, J.R.; Tan, Z.; Liu, X.G.; Wu, L.J. Microglia are indispensable for synaptic plasticity in the spinal dorsal horn and chronic pain. Cell Rep., 2019, 27(13), 3844-3859.e6.
[http://dx.doi.org/10.1016/j.celrep.2019.05.087] [PMID: 31242418]
[98]
Long, T.; He, W.; Pan, Q.; Zhang, S.; Zhang, D.; Qin, G.; Chen, L.; Zhou, J. Microglia P2X4R-BDNF signalling contributes to central sensitization in a recurrent nitroglycerin-induced chronic migraine model. J. Headache Pain, 2020, 21(1), 4.
[http://dx.doi.org/10.1186/s10194-019-1070-4] [PMID: 31937253]
[99]
Zhang, X.; Xu, P.; Li, C.; Zhu, W.; Wu, S.; Yu, A.; Ding, Y.; Wang, Q.; Zhang, Z. Spinal microglial P2X4 receptor-brain-derived neurotrophic factor signaling regulates nicotine withdrawal-induced hyperalgesia. Neuroreport, 2017, 28(6), 339-347.
[http://dx.doi.org/10.1097/WNR.0000000000000769] [PMID: 28306606]
[100]
Guo, L.; Zhang, Y.; Lv, Q.; Zhang, Z. Nicotine induces P2X4 receptor, interleukin-1 beta, and brain-derived neurotrophic factor expression in BV2 microglia cells. Neuroreport, 2020, 31(18), 1249-1255.
[http://dx.doi.org/10.1097/WNR.0000000000001546] [PMID: 33165201]
[101]
Zhao, Y.N.; Wang, F.; Fan, Y.X.; Ping, G.F.; Yang, J.Y.; Wu, C.F. Activated microglia are implicated in cognitive deficits, neuronal death, and successful recovery following intermittent ethanol exposure. Behav. Brain Res., 2013, 236(1), 270-282.
[http://dx.doi.org/10.1016/j.bbr.2012.08.052] [PMID: 22985845]
[102]
Gofman, L.; Fernandes, N.C.; Potula, R. Relative role of AKT, ERK and CREB in alcohol-induced microglia P2X4R receptor expression. Alcohol Alcohol., 2016, 51(6), 647-654.
[http://dx.doi.org/10.1093/alcalc/agw009] [PMID: 26946194]
[103]
Warden, A.S.; Wolfe, S.A.; Khom, S.; Varodayan, F.P.; Patel, R.R.; Steinman, M.Q.; Bajo, M.; Montgomery, S.E.; Vlkolinsky, R.; Nadav, T.; Polis, I.; Roberts, A.J.; Mayfield, R.D.; Harris, R.A.; Roberto, M. Microglia control escalation of drinking in alcohol-dependent mice: genomic and synaptic drivers. Biol. Psychiatry, 2020, 88(12), 910-921.
[http://dx.doi.org/10.1016/j.biopsych.2020.05.011] [PMID: 32680583]
[104]
Doggui, R.; Elsawy, W.; Conti, A.A.; Baldacchino, A. Association between chronic psychoactive substances use and systemic inflammation: A systematic review and meta-analysis. Neurosci. Biobehav. Rev., 2021, 125, 208-220.
[http://dx.doi.org/10.1016/j.neubiorev.2021.02.031] [PMID: 33639179]
[105]
Stamatovich, S.N.; Lopez-Gamundi, P.; Suchting, R.; Colpo, G.D.; Walss-Bass, C.; Lane, S.D.; Schmitz, J.M.; Wardle, M.C. Plasma pro- and anti-inflammatory cytokines may relate to cocaine use, cognitive functioning, and depressive symptoms in cocaine use disorder. Am. J. Drug Alcohol Abuse, 2021, 47(1), 52-64.
[http://dx.doi.org/10.1080/00952990.2020.1828439] [PMID: 33119414]
[106]
Stolyarova, A.; Thompson, A.B.; Barrientos, R.M. Izquierdo, A reductions in frontocortical cytokine levels are associated with long-lasting alterations in reward valuation after methamphetamine. Neuropsychopharmacol, 2014, 40(5), 1234-1242.
[http://dx.doi.org/10.1038/npp.2014.309]
[107]
Taylor, A.M.W.; Castonguay, A.; Taylor, A.J.; Murphy, N.P.; Ghogha, A.; Cook, C.; Xue, L.; Olmstead, M.C.; De Koninck, Y.; Evans, C.J.; Cahill, C.M. Microglia disrupt mesolimbic reward circuitry in chronic pain. J. Neurosci., 2015, 35(22), 8442-8450.
[http://dx.doi.org/10.1523/JNEUROSCI.4036-14.2015] [PMID: 26041913]
[108]
Douma, E.H.; de Kloet, E.R. Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci. Biobehav. Rev., 2020, 108, 48-77.
[http://dx.doi.org/10.1016/j.neubiorev.2019.10.015] [PMID: 31666179]
[109]
Wang, J.; Lai, S.; Li, G.; Zhou, T.; Wang, B.; Cao, F.; Chen, T.; Zhang, X.; Chen, Y. Microglial activation contributes to depressive-like behavior in dopamine D3 receptor knockout mice. Brain Behav. Immun., 2020, 83, 226-238.
[http://dx.doi.org/10.1016/j.bbi.2019.10.016] [PMID: 31626970]
[110]
Wang, J.; Jia, Y.; Li, G.; Wang, B.; Zhou, T.; Zhu, L.; Chen, T.; Chen, Y. The dopamine receptor D3 regulates lipopolysaccharide-induced depressive-like behavior in mice. Int. J. Neuropsychopharmacol., 2018, 21(5), 448-460.
[http://dx.doi.org/10.1093/ijnp/pyy005] [PMID: 29390063]
[111]
Jarvis, R.; Tamashiro-Orrego, A.; Promes, V.; Tu, L.; Shi, J.; Yang, Y. Cocaine self-administration and extinction inversely alter neuron to glia exosomal dynamics in the nucleus accumbens. Front. Cell. Neurosci., 2020, 13, 581.
[http://dx.doi.org/10.3389/fncel.2019.00581] [PMID: 31998080]
[112]
Costa, B.M.; Yao, H.; Yang, L.; Buch, S. Role of endoplasmic reticulum (ER) stress in cocaine-induced microglial cell death. J. Neuroimmune Pharmacol., 2013, 8(3), 705-714.
[http://dx.doi.org/10.1007/s11481-013-9438-8] [PMID: 23404095]
[113]
Chivero, E.T.; Liao, K.; Niu, F.; Tripathi, A.; Tian, C.; Buch, S.; Hu, G. Engineered extracellular vesicles loaded with miR-124 Attenuate cocaine-mediated activation of microglia. Front. Cell Dev. Biol., 2020, 8, 573.
[http://dx.doi.org/10.3389/fcell.2020.00573] [PMID: 32850781]
[114]
Chivero, E.T.; Sil, S.; Singh, S.; Thangaraj, A.; Gordon, L.; Evah-Nzoughe, G.B.; Ferguson, N.; Callen, S.; Buch, S. Protective role of Lactobacillus rhamnosus probiotic in reversing cocaine-induced oxidative stress, glial activation and locomotion in mice. J. Neuroimmune Pharmacol., 2021, 17(1-2), 6275.
[http://dx.doi.org/10.1007/s11481-021-10020-9] [PMID: 34628571]
[115]
Brown, K.T.; Levis, S.C.; O’Neill, C.E.; Northcutt, A.L.; Fabisiak, T.J.; Watkins, L.R.; Bachtell, R.K. Innate immune signaling in the ventral tegmental area contributes to drug-primed reinstatement of cocaine seeking. Brain Behav. Immun., 2018, 67, 130-138.
[http://dx.doi.org/10.1016/j.bbi.2017.08.012] [PMID: 28813640]
[116]
Chivero, E.T.; Thangaraj, A.; Tripathi, A.; Periyasamy, P.; Guo, M.L.; Buch, S. NLRP3 inflammasome blockade reduces cocaine-induced microglial activation and neuroinflammation. Mol. Neurobiol., 2021, 58(5), 2215-2230.
[http://dx.doi.org/10.1007/s12035-020-02184-x] [PMID: 33417223]
[117]
Liao, K.; Guo, M.; Niu, F.; Yang, L.; Callen, S.E.; Buch, S. Cocaine-mediated induction of microglial activation involves the ER stress-TLR2 axis. J. Neuroinflammation, 2016, 13(1), 33.
[http://dx.doi.org/10.1186/s12974-016-0501-2] [PMID: 26860188]
[118]
da Silva, M.C.M.; Gomes, G.F.; de Barros Fernandes, H.; da Silva, A.M.; Teixeira, A.L. Moreira, FA Inhibition of CSF1R, a receptor involved in microglia viability, alters behavioral and molecular changes induced by cocaine. Sci. Rep., 2021, 11(1), 1-15.
[http://dx.doi.org/10.1038/s41598-021-95059-7]
[119]
Thangaraj, A.; Periyasamy, P.; Guo, M.L.; Chivero, E.T.; Callen, S.; Buch, S. Mitigation of cocaine-mediated mitochondrial damage, defective mitophagy and microglial activation by superoxide dismutase mimetics. Autophagy, 2020, 16(2), 289-312.
[http://dx.doi.org/10.1080/15548627.2019.1607686] [PMID: 30990365]
[120]
Burkovetskaya, M.E.; Small, R.; Guo, L.; Buch, S.; Guo, M.L. Cocaine self-administration differentially activates microglia in the mouse brain. Neurosci. Lett., 2020, 728, 134951.
[http://dx.doi.org/10.1016/j.neulet.2020.134951] [PMID: 32278944]
[121]
Smith, H.R.; Beveridge, T.J.R.; Nader, S.H.; Nader, M.A.; Porrino, L.J. Regional elevations in microglial activation and cerebral glucose utilization in frontal white matter tracts of rhesus monkeys following prolonged cocaine self-administration. Brain Struct. Funct., 2019, 224(4), 1417-1428.
[http://dx.doi.org/10.1007/s00429-019-01846-4] [PMID: 30747315]
[122]
Narendran, R.; Lopresti, B.J.; Mason, N.S.; Deuitch, L.; Paris, J.; Himes, M.L.; Kodavali, C.V.; Nimgaonkar, V.L. Cocaine abuse in humans is not associated with increased microglial activation: an 18-kDa translocator protein positron emission tomography imaging study with [11C]PBR28. J. Neurosci., 2014, 34(30), 9945-9950.
[http://dx.doi.org/10.1523/JNEUROSCI.0928-14.2014] [PMID: 25057196]
[123]
Little, K.Y.; Ramssen, E.; Welchko, R.; Volberg, V.; Roland, C.J.; Cassin, B. Decreased brain dopamine cell numbers in human cocaine users. Psychiatry Res., 2009, 168(3), 173-180.
[http://dx.doi.org/10.1016/j.psychres.2008.10.034] [PMID: 19233481]
[124]
Linker, K.E.; Gad, M.; Tawadrous, P.; Cano, M.; Green, K.N.; Wood, M.A.; Leslie, F.M. Microglial activation increases cocaine self-administration following adolescent nicotine exposure. Nat. Commun., 2020, 11(1), 306.
[http://dx.doi.org/10.1038/s41467-019-14173-3] [PMID: 31949158]
[125]
Northcutt, A.L.; Hutchinson, M.R.; Wang, X.; Baratta, M.V.; Hiranita, T.; Cochran, T.A.; Pomrenze, M.B.; Galer, E.L.; Kopajtic, T.A.; Li, C.M.; Amat, J.; Larson, G.; Cooper, D.C.; Huang, Y.; O’Neill, C.E.; Yin, H.; Zahniser, N.R.; Katz, J.L.; Rice, K.C.; Maier, S.F.; Bachtell, R.K.; Watkins, L.R. DAT isn’t all that: cocaine reward and reinforcement require Toll-like receptor 4 signaling. Mol. Psychiatry, 2015, 20(12), 1525-1537.
[http://dx.doi.org/10.1038/mp.2014.177] [PMID: 25644383]
[126]
Chen, H.; Uz, T.; Manev, H. Minocycline affects cocaine sensitization in mice. Neurosci. Lett., 2009, 452(3), 258-261.
[http://dx.doi.org/10.1016/j.neulet.2009.01.078] [PMID: 19348734]
[127]
Poland, R.S.; Hahn, Y.K.; Knapp, P.E.; Beardsley, P.M.; Bowers, M.S. Ibudilast attenuates expression of behavioral sensitization to cocaine in male and female rats. Neuropharmacology, 2016, 109, 281-292.
[http://dx.doi.org/10.1016/j.neuropharm.2016.06.024] [PMID: 27343385]
[128]
Metz, V.E.; Jones, J.D.; Manubay, J.; Sullivan, M.A.; Mogali, S.; Segoshi, A.; Madera, G.; Johnson, K.W.; Comer, S.D. Effects of ibudilast on the subjective, reinforcing, and analgesic effects of oxycodone in recently detoxified adults with opioid dependence. Neuropsychopharmacology, 2017, 42(9), 1825-1832.
[http://dx.doi.org/10.1038/npp.2017.70] [PMID: 28393896]
[129]
Mu, L.; Liu, X.; Yu, H.; Hu, M.; Friedman, V.; Kelly, T.J.; Zhao, L.; Liu, Q. Ibudilast attenuates cocaine self-administration and prime- and cue-induced reinstatement of cocaine seeking in rats. Neuropharmacology, 2021, 201, 108830.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108830] [PMID: 34626665]
[130]
Periyasamy, P.; Liao, K.; Kook, Y.H.; Niu, F.; Callen, S.E.; Guo, M.L.; Buch, S. Cocaine-mediated downregulation of miR-124 activates microglia by targeting KLF4 and TLR4 signaling. Mol. Neurobiol., 2018, 55(4), 3196-3210.
[http://dx.doi.org/10.1007/s12035-017-0584-5] [PMID: 28478506]
[131]
Zhu, C.; Tao, H.; Rong, S.; Xiao, L.; Li, X.; Jiang, S.; Guo, B.; Wang, L.; Ding, J.; Gao, C.; Chang, H.; Sun, T.; Wang, F. Glucagon-like peptide-1 analog exendin-4 ameliorates cocaine-mediated behavior by inhibiting toll-like receptor 4 signaling in mice. Front. Pharmacol., 2021, 12, 694476.
[http://dx.doi.org/10.3389/fphar.2021.694476] [PMID: 34349653]
[132]
Kashima, D.T.; Grueter, B.A. Toll-like receptor 4 deficiency alters nucleus accumbens synaptic physiology and drug reward behavior. Proc. Natl. Acad. Sci. USA, 2017, 114(33), 8865-8870.
[http://dx.doi.org/10.1073/pnas.1705974114] [PMID: 28760987]
[133]
Zhu, R.; Bu, Q.; Fu, D.; Shao, X.; Jiang, L.; Guo, W.; Chen, B.; Liu, B.; Hu, Z.; Tian, J.; Zhao, Y.; Cen, X. Toll-like receptor 3 modulates the behavioral effects of cocaine in mice. J. Neuroinflammation, 2018, 15(1), 93.
[http://dx.doi.org/10.1186/s12974-018-1130-8] [PMID: 29571298]
[134]
Guo, M.L.; Chivero, E.T.; Callen, S.E.; Buch, S. NLRP3 inflammasome is involved in cocaine-mediated potentiation on behavioral changes in CX3CR1-deficient mice. J. Pers. Med., 2021, 11(10), 963.
[http://dx.doi.org/10.3390/jpm11100963] [PMID: 34683104]
[135]
Steinkellner, T.; Freissmuth, M.; Sitte, H.H.; Montgomery, T. The ugly side of amphetamines: short- and long-term toxicity of 3,4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’), methamphetamine and d-amphetamine. Biol. Chem., 2011, 392(1-2), 103-115.
[http://dx.doi.org/10.1515/bc.2011.016] [PMID: 21194370]
[136]
Gou, H. sun, D.; Hao, L.; An, M.; Xie, B.; Cong, B.; Ma, C.; Wen, D. Cholecystokinin-8 attenuates methamphetamine-induced inflammatory activation of microglial cells through CCK2 receptor. Neurotoxicology, 2020, 81, 70-79.
[http://dx.doi.org/10.1016/j.neuro.2020.09.001] [PMID: 32916201]
[137]
Yang, T.; Zang, S.; Wang, Y.; Zhu, Y.; Jiang, L.; Chen, X.; Zhang, X.; Cheng, J.; Gao, R.; Xiao, H.; Wang, J. Methamphetamine induced neuroinflammation in mouse brain and microglial cell line BV2: Roles of the TLR4/TRIF/Peli1 signaling axis. Toxicol. Lett., 2020, 333, 150-158.
[http://dx.doi.org/10.1016/j.toxlet.2020.07.028] [PMID: 32768653]
[138]
Wan, F.; Zang, S.; Yu, G.; Xiao, H.; Wang, J.; Tang, J.; Ginkgolide, B. Ginkgolide B suppresses methamphetamine-induced microglial activation through TLR4-NF-κB signaling pathway in BV2 cells. Neurochem. Res., 2017, 42(10), 2881-2891.
[http://dx.doi.org/10.1007/s11064-017-2309-6] [PMID: 28712049]
[139]
Wang, B.; Chen, T.; Wang, J.; Jia, Y.; Ren, H.; Wu, F.; Hu, M.; Chen, Y. Methamphetamine modulates the production of interleukin-6 and tumor necrosis factor-alpha via the cAMP/PKA/CREB signaling pathway in lipopolysaccharide-activated microglia. Int. Immunopharmacol., 2018, 56, 168-178.
[http://dx.doi.org/10.1016/j.intimp.2018.01.024] [PMID: 29414647]
[140]
Tocharus, J.; Khonthun, C.; Chongthammakun, S.; Govitrapong, P. Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines. J. Pineal Res., 2010, 48(4), 347-352.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00761.x] [PMID: 20374443]
[141]
Xu, E.; Liu, J.; Liu, H.; Wang, X.; Xiong, H. Inflammasome activation by methamphetamine potentiates lipopolysaccharide stimulation of IL-1β production in microglia. J. Neuroimmune Pharmacol., 2018, 13(2), 237-253.
[http://dx.doi.org/10.1007/s11481-018-9780-y] [PMID: 29492824]
[142]
Wang, J.; Qian, W.; Liu, J.; Zhao, J.; Yu, P.; Jiang, L.; Zhou, J.; Gao, R.; Xiao, H. Effect of methamphetamine on the microglial damage: role of potassium channel Kv1.3. PLoS One, 2014, 9(2), e88642.
[http://dx.doi.org/10.1371/journal.pone.0088642] [PMID: 24533129]
[143]
Yue, X.; Qiao, D.; Wang, A.; Tan, X.; Li, Y.; Liu, C.; Wang, H. CD200 attenuates methamphetamine-induced microglial activation and dopamine depletion. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2012, 32(3), 415-421.
[http://dx.doi.org/10.1007/s11596-012-0072-0] [PMID: 22684568]
[144]
Shanks, R.A.; Anderson, J.R.; Taylor, J.R.; Lloyd, S.A. Amphetamine and methamphetamine have a direct and differential effect on BV2 microglia cells. Bull. Exp. Biol. Med., 2012, 154(2), 228-232.
[http://dx.doi.org/10.1007/s10517-012-1919-x] [PMID: 23330132]
[145]
Yu, G.; Song, Y.; Xie, C.; Tao, L.; Wan, F.; Jiang, L.; Wang, J.; Tang, J. MiR-142a-3p and miR-155-5p reduce methamphetamine-induced inflammation: Role of the target protein Peli1. Toxicol. Appl. Pharmacol., 2019, 370, 145-153.
[http://dx.doi.org/10.1016/j.taap.2019.03.019] [PMID: 30914375]
[146]
Shen, K.; Zhang, Y.; Lv, X.; Chen, X.; Zhou, R.; Nguyen, L.K.; Wu, X.; Yao, H. Molecular mechanisms involving sigma-1 receptor in cell apoptosis of BV-2 microglial cells induced by methamphetamine. CNS Neurol. Disord. Drug Targets, 2016, 15(7), 857-865.
[http://dx.doi.org/10.2174/1871527315666160518122816] [PMID: 27189473]
[147]
Chao, J.; Zhang, Y.; Du, L.; Zhou, R.; Wu, X.; Shen, K. Molecular mechanisms underlying the involvement of the sigma-1 receptor in methamphetamine-mediated microglial polarization. Sci. Rep., 2017, 7(1), 1-13.
[http://dx.doi.org/10.1038/s41598-017-11065-8]
[148]
Sharikova, A.V.; Quaye, E.; Park, J.Y.; Maloney, M.C.; Desta, H.; Thiyagarajan, R.; Seldeen, K.L.; Parikh, N.U.; Sandhu, P.; Khmaladze, A.; Troen, B.R.; Schwartz, S.A.; Mahajan, S.D. Methamphetamine induces apoptosis of microglia via the intrinsic mitochondrial-dependent pathway. J. Neuroimmune Pharmacol., 2018, 13(3), 396-411.
[http://dx.doi.org/10.1007/s11481-018-9787-4] [PMID: 29644532]
[149]
Gonçalves, J.; Ribeiro, C.F.; Malva, J.O.; Silva, A.P. Protective role of neuropeptide YY2 receptors in cell death and microglial response following methamphetamine injury. Eur. J. Neurosci., 2012, 36(9), 3173-3183.
[http://dx.doi.org/10.1111/j.1460-9568.2012.08232.x] [PMID: 22805317]
[150]
Frank, M.G.; Adhikary, S.; Sobesky, J.L.; Weber, M.D.; Watkins, L.R.; Maier, S.F. The danger-associated molecular pattern HMGB1 mediates the neuroinflammatory effects of methamphetamine. Brain Behav. Immun., 2016, 51, 99-108.
[http://dx.doi.org/10.1016/j.bbi.2015.08.001] [PMID: 26254235]
[151]
Vargas, A.M.; Rivera-Rodriguez, D.E.; Martinez, L.R. Methamphetamine alters the TLR4 signaling pathway, NF-κB activation, and pro-inflammatory cytokine production in LPS-challenged NR-9460 microglia-like cells. Mol. Immunol., 2020, 121, 159-166.
[http://dx.doi.org/10.1016/j.molimm.2020.03.013] [PMID: 32222586]
[152]
Huang, Y.N.; Wu, C.H.; Lin, T.C.; Wang, J.Y. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity. Toxicol. Appl. Pharmacol., 2009, 240(3), 315-326.
[http://dx.doi.org/10.1016/j.taap.2009.06.021] [PMID: 19576919]
[153]
Kawasaki, T.; Ishihara, K.; Ago, Y.; Nakamura, S.; Itoh, S.; Baba, A.; Matsuda, T. Protective effect of the radical scavenger edaravone against methamphetamine-induced dopaminergic neurotoxicity in mouse striatum. Eur. J. Pharmacol., 2006, 542(1-3), 92-99.
[http://dx.doi.org/10.1016/j.ejphar.2006.05.012] [PMID: 16784740]
[154]
Mendieta, L.; Granado, N.; Aguilera, J.; Tizabi, Y.; Moratalla, R.; Fragment, C. Fragment C domain of tetanus toxin mitigates methamphetamine neurotoxicity and its motor consequences in mice. Int. J. Neuropsychopharmacol., 2016, 19(8), pyw021.
[http://dx.doi.org/10.1093/ijnp/pyw021] [PMID: 26945022]
[155]
Dang, D.K.; Shin, E.J.; Nam, Y.; Ryoo, S.; Jeong, J.H.; Jang, C.G.; Nabeshima, T.; Hong, J.S.; Kim, H.C. Apocynin prevents mitochondrial burdens, microglial activation, and pro-apoptosis induced by a toxic dose of methamphetamine in the striatum of mice via inhibition of p47phox activation by ERK. J. Neuroinflammation, 2016, 13(1), 12.
[http://dx.doi.org/10.1186/s12974-016-0478-x] [PMID: 26780950]
[156]
Shin, E.J.; Shin, S.W.; Nguyen, T.T.L.; Park, D.H.; Wie, M.B.; Jang, C.G.; Nah, S.Y.; Yang, B.W.; Ko, S.K.; Nabeshima, T.; Kim, H.C. Ginsenoside Re rescues methamphetamine-induced oxidative damage, mitochondrial dysfunction, microglial activation, and dopaminergic degeneration by inhibiting the protein kinase Cδ gene. Mol. Neurobiol., 2014, 49(3), 1400-1421.
[http://dx.doi.org/10.1007/s12035-013-8617-1] [PMID: 24430743]
[157]
Robson, M.J.; Turner, R.C.; Naser, Z.J.; McCurdy, C.R.; Huber, J.D.; Matsumoto, R.R. SN79, a sigma receptor ligand, blocks methamphetamine-induced microglial activation and cytokine upregulation. Exp. Neurol., 2013, 247, 134-142.
[http://dx.doi.org/10.1016/j.expneurol.2013.04.009] [PMID: 23631864]
[158]
Kikuchi-Utsumi, K.; Ishizaka, M.; Matsumura, N.; Watabe, M.; Aoyama, K.; Sasakawa, N.; Nakaki, T. Involvement of the α(1D)-adrenergic receptor in methamphetamine-induced hyperthermia and neurotoxicity in rats. Neurotox. Res., 2013, 24(2), 130-138.
[http://dx.doi.org/10.1007/s12640-012-9369-9] [PMID: 23283760]
[159]
Granado, N.; Lastres-Becker, I.; Ares-Santos, S.; Oliva, I.; Martin, E.; Cuadrado, A.; Moratalla, R. Nrf2 deficiency potentiates methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum. Glia, 2011, 59(12), 1850-1863.
[http://dx.doi.org/10.1002/glia.21229] [PMID: 21882243]
[160]
Buchanan, J.B.; Sparkman, N.L.; Johnson, R.W. A neurotoxic regimen of methamphetamine exacerbates the febrile and neuroinflammatory response to a subsequent peripheral immune stimulus. J. Neuroinflammation, 2010, 7(1), 82.
[http://dx.doi.org/10.1186/1742-2094-7-82] [PMID: 21092194]
[161]
Bowyer, J.F.; Tranter, K.M.; Sarkar, S.; George, N.I.; Hanig, J.P.; Kelly, K.A.; Michalovicz, L.T.; Miller, D.B.; O’Callaghan, J.P. Corticosterone and exogenous glucose alter blood glucose levels, neurotoxicity, and vascular toxicity produced by methamphetamine. J. Neurochem., 2017, 143(2), 198-213.
[http://dx.doi.org/10.1111/jnc.14143] [PMID: 28792619]
[162]
Carmena, A.; Granado, N.; Ares-Santos, S.; Alberquilla, S.; Tizabi, Y.; Moratalla, R. Methamphetamine-induced toxicity in indusium griseum of mice is associated with astro- and microgliosis. Neurotox. Res., 2015, 27(3), 209-216.
[http://dx.doi.org/10.1007/s12640-014-9505-9] [PMID: 25492248]
[163]
Bowyer, J.F.; Sarkar, S.; Tranter, K.M.; Hanig, J.P.; Miller, D.B.; O’Callaghan, J.P. Vascular-directed responses of microglia produced by methamphetamine exposure: indirect evidence that microglia are involved in vascular repair? J. Neuroinflammation, 2016, 13(1), 64.
[http://dx.doi.org/10.1186/s12974-016-0526-6] [PMID: 26970737]
[164]
Dang, D.K.; Shin, E.J.; Kim, D.J.; Tran, H.Q.; Jeong, J.H.; Jang, C.G.; Ottersen, O.P.; Nah, S.Y.; Hong, J.S.; Nabeshima, T.; Kim, H.C. PKCδ-dependent p47phox activation mediates methamphetamine-induced dopaminergic neurotoxicity. Free Radic. Biol. Med., 2018, 115, 318-337.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.12.018] [PMID: 29269308]
[165]
Zhang, Y.; Shen, K.; Bai, Y.; Lv, X.; Huang, R.; Zhang, W.; Chao, J.; Nguyen, L.K.; Hua, J.; Gan, G.; Hu, G.; Yao, H. Mir143 -BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy: Implications for methamphetamine-mediated neurotoxicity. Autophagy, 2016, 12(9), 1538-1559.
[http://dx.doi.org/10.1080/15548627.2016.1191723] [PMID: 27464000]
[166]
Friend, D.M.; Keefe, K.A. Glial reactivity in resistance to methamphetamine-induced neurotoxicity. J. Neurochem., 2013, 125(4), 566-574.
[http://dx.doi.org/10.1111/jnc.12201] [PMID: 23414433]
[167]
Gonçalves, J.; Baptista, S.; Martins, T.; Milhazes, N.; Borges, F.; Ribeiro, C.F.; Malva, J.O.; Silva, A.P. Methamphetamine-induced neuroinflammation and neuronal dysfunction in the mice hippocampus: preventive effect of indomethacin. Eur. J. Neurosci., 2010, 31(2), 315-326.
[http://dx.doi.org/10.1111/j.1460-9568.2009.07059.x] [PMID: 20074221]
[168]
Asanuma, M.; Miyazaki, I.; Higashi, Y.; Tsuji, T.; Ogawa, N. Specific gene expression and possible involvement of inflammation in methamphetamine-induced neurotoxicity. Ann. N. Y. Acad. Sci., 2004, 1025(1), 69-75.
[http://dx.doi.org/10.1196/annals.1316.009] [PMID: 15542702]
[169]
Zhang, L.; Shirayama, Y.; Shimizu, E.; Iyo, M.; Hashimoto, K. Protective effects of minocycline on 3,4-methylenedioxymeth-amphetamine-induced neurotoxicity in serotonergic and dopaminergic neurons of mouse brain. Eur. J. Pharmacol., 2006, 544(1-3), 1-9.
[http://dx.doi.org/10.1016/j.ejphar.2006.05.047] [PMID: 16859675]
[170]
Hozumi, H.; Asanuma, M.; Miyazaki, I.; Fukuoka, S.; Kikkawa, Y.; Kimoto, N.; Kitamura, Y.; Sendo, T.; Kita, T.; Gomita, Y. Protective effects of interferon-γ against methamphetamine-induced neurotoxicity. Toxicol. Lett., 2008, 177(2), 123-129.
[http://dx.doi.org/10.1016/j.toxlet.2008.01.005] [PMID: 18282668]
[171]
Wang, X.; Northcutt, A.L.; Cochran, T.A.; Zhang, X.; Fabisiak, T.J.; Haas, M.E.; Amat, J.; Li, H.; Rice, K.C.; Maier, S.F.; Bachtell, R.K.; Hutchinson, M.R.; Watkins, L.R. Methamphetamine activates toll-like receptor 4 to induce central immune signaling within the ventral tegmental area and contributes to extracellular dopamine increase in the nucleus accumbens shell. ACS Chem. Neurosci., 2019, 10(8), 3622-3634.
[http://dx.doi.org/10.1021/acschemneuro.9b00225] [PMID: 31282647]
[172]
Asanuma, M.; Tsuji, T.; Miyazaki, I.; Miyoshi, K.; Ogawa, N. Methamphetamine-induced neurotoxicity in mouse brain is attenuated by ketoprofen, a non-steroidal anti-inflammatory drug. Neurosci. Lett., 2003, 352(1), 13-16.
[http://dx.doi.org/10.1016/j.neulet.2003.08.015] [PMID: 14615038]
[173]
Thomas, D.M.; Kuhn, D.M. MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity. Brain Res., 2005, 1050(1-2), 190-198.
[http://dx.doi.org/10.1016/j.brainres.2005.05.049] [PMID: 15987631]
[174]
Thomas, D.M.; Kuhn, D.M. Attenuated microglial activation mediates tolerance to the neurotoxic effects of methamphetamine. J. Neurochem., 2005, 92(4), 790-797.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02906.x] [PMID: 15686480]
[175]
Thomas, D.M.; Francescutti-Verbeem, D.M.; Kuhn, D.M. The newly synthesized pool of dopamine determines the severity of methamphetamine-induced neurotoxicity. J. Neurochem., 2008, 105(3), 605-616.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05155.x] [PMID: 18088364]
[176]
Thomas, D.M.; Francescutti-Verbeem, D.M.; Kuhn, D.M. Methamphetamine-induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling. J. Neurochem., 2008, 106(2), 696-705.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05421.x] [PMID: 18410508]
[177]
Kuhn, D.M.; Francescutti-Verbeem, D.M.; Thomas, D.M. Dopamine disposition in the presynaptic process regulates the severity of methamphetamine-induced neurotoxicity. Ann. N. Y. Acad. Sci., 2008, 1139(1), 118-126.
[http://dx.doi.org/10.1196/annals.1432.026] [PMID: 18991856]
[178]
Thomas, D.M.; Walker, P.D.; Benjamins, J.A.; Geddes, T.J.; Kuhn, D.M. Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J. Pharmacol. Exp. Ther., 2004, 311(1), 1-7.
[http://dx.doi.org/10.1124/jpet.104.070961] [PMID: 15163680]
[179]
Thomas, D.M.; Francescutti-Verbeem, D.M.; Kuhn, D.M. Increases in cytoplasmic dopamine compromise the normal resistance of the nucleus accumbens to methamphetamine neurotoxicity. J. Neurochem., 2009, 109(6), 1745-1755.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06094.x] [PMID: 19457119]
[180]
Thanos, P.K.; Kim, R.; Delis, F.; Ananth, M.; Chachati, G.; Rocco, M.J.; Masad, I.; Muniz, J.A.; Grant, S.C.; Gold, M.S.; Cadet, J.L.; Volkow, N.D. Chronic methamphetamine effects on brain structure and function in rats. PLoS One, 2016, 11(6), e0155457.
[http://dx.doi.org/10.1371/journal.pone.0155457] [PMID: 27275601]
[181]
Fantegrossi, W.E.; Ciullo, J.R.; Wakabayashi, K.T.; De La Garza, R., II; Traynor, J.R.; Woods, J.H. A comparison of the physiological, behavioral, neurochemical and microglial effects of methamphetamine and 3,4-methylenedioxymethamphetamine in the mouse. Neuroscience, 2008, 151(2), 533-543.
[http://dx.doi.org/10.1016/j.neuroscience.2007.11.007] [PMID: 18082974]
[182]
Escubedo, E.; Guitart, L.; Sureda, F.X.; Jiménez, A.; Pubill, D.; Pallàs, M.; Camins, A.; Camarasa, J. Microgliosis and down-regulation of adenosine transporter induced by methamphetamine in rats. Brain Res., 1998, 814(1-2), 120-126.
[http://dx.doi.org/10.1016/S0006-8993(98)01065-8] [PMID: 9838075]
[183]
Sriram, K.; Miller, D.B.; O’Callaghan, J.P. Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. J. Neurochem., 2006, 96(3), 706-718.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03566.x] [PMID: 16405514]
[184]
Namyen, J.; Permpoonputtana, K.; Nopparat, C.; Tocharus, J.; Tocharus, C.; Govitrapong, P. Protective effects of melatonin on methamphetamine-induced blood-brain barrier dysfunction in rat model. Neurotox. Res., 2020, 37(3), 640-660.
[http://dx.doi.org/10.1007/s12640-019-00156-1] [PMID: 31900895]
[185]
Lloyd, S.A.; Corkill, B.; Bruster, M.C.; Roberts, R.L.; Shanks, R.A. Chronic methamphetamine exposure significantly decreases microglia activation in the arcuate nucleus. J. Chem. Neuroanat., 2017, 82, 5-11.
[http://dx.doi.org/10.1016/j.jchemneu.2017.03.001] [PMID: 28323108]
[186]
Marchese, N.A.; Occhieppo, V.B.; Basmadjian, O.M.; Casarsa, B.S.; Baiardi, G.; Bregonzio, C. Angiotensin II modulates amphetamine‐induced glial and brain vascular responses, and attention deficit via angiotensin type 1 receptor: Evidence from brain regional sensitivity to amphetamine. Eur. J. Neurosci., 2020, 51(4), 1026-1041.
[http://dx.doi.org/10.1111/ejn.14605] [PMID: 31646669]
[187]
Thomas, D.M.; Dowgiert, J.; Geddes, T.J.; Francescutti-Verbeem, D.; Liu, X.; Kuhn, D.M. Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neurosci. Lett., 2004, 367(3), 349-354.
[http://dx.doi.org/10.1016/j.neulet.2004.06.065] [PMID: 15337264]
[188]
Bowyer, J.F.; Peterson, S.L.; Rountree, R.L.; Tor-Agbidye, J.; Wang, G.J. Neuronal degeneration in rat forebrain resulting from d-amphetamine-induced convulsions is dependent on seizure severity and age. Brain Res., 1998, 809(1), 77-90.
[http://dx.doi.org/10.1016/S0006-8993(98)00846-4] [PMID: 9795148]
[189]
Shin, E.J.; Dang, D.K.; Tran, H.Q.; Nam, Y.; Jeong, J.H.; Lee, Y.H.; Park, K.T.; Lee, Y.S.; Jang, C.G.; Hong, J.S.; Nabeshima, T.; Kim, H.C. PKCδ knockout mice are protected from para-methoxymethamphetamine-induced mitochondrial stress and associated neurotoxicity in the striatum of mice. Neurochem. Int., 2016, 100, 146-158.
[http://dx.doi.org/10.1016/j.neuint.2016.09.008] [PMID: 27623093]
[190]
Nguyen, P.T.; Dang, D.K.; Tran, H.Q.; Shin, E.J.; Jeong, J.H.; Nah, S.Y.; Cho, M.C.; Lee, Y.S.; Jang, C.G.; Kim, H.C. Methiopropamine, a methamphetamine analogue, produces neurotoxicity via dopamine receptors. Chem. Biol. Interact., 2019, 305, 134-147.
[http://dx.doi.org/10.1016/j.cbi.2019.03.017] [PMID: 30922767]
[191]
Lopez-Rodriguez, A.B.; Llorente-Berzal, A.; Garcia-Segura, L.M.; Viveros, M.P. Sex-dependent long-term effects of adolescent exposure to THC and/or MDMA on neuroinflammation and serotoninergic and cannabinoid systems in rats. Br. J. Pharmacol., 2014, 171(6), 1435-1447.
[http://dx.doi.org/10.1111/bph.12519] [PMID: 24236988]
[192]
Rubio-Araiz, A.; Perez-Hernandez, M.; Urrutia, A.; Porcu, F.; Borcel, E.; Gutierrez-Lopez, M.D.; O’Shea, E.; Colado, M.I. 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier integrity through a mechanism involving P2X7 receptors. Int. J. Neuropsychopharmacol., 2014, 17(8), 1243-1255.
[http://dx.doi.org/10.1017/S1461145714000145] [PMID: 24626059]
[193]
Torres, E.; Gutierrez-Lopez, M.D.; Borcel, E.; Peraile, I.; Mayado, A.; O’Shea, E.; Colado, M.I. Evidence that MDMA (‘ecstasy’) increases cannabinoid CB2 receptor expression in microglial cells: role in the neuroinflammatory response in rat brain. J. Neurochem., 2010, 113(1), 67-78.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06578.x] [PMID: 20067581]
[194]
Orio, L.; O’Shea, E.; Sanchez, V.; Pradillo, J.M.; Escobedo, I.; Camarero, J.; Moro, M.A.; Green, A.R.; Colado, M.I. 3,4‐Methylenedioxymethamphetamine increases interleukin‐1β levels and activates microglia in rat brain: studies on the relationship with acute hyperthermia and 5‐HT depletion. J. Neurochem., 2004, 89(6), 1445-1453.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02443.x] [PMID: 15189347]
[195]
Ruiz-Medina, J.; Pinto-Xavier, A.; Rodríguez-Arias, M.; Miñarro, J.; Valverde, O. Influence of chronic caffeine on MDMA-induced behavioral and neuroinflammatory response in mice. Psychopharmacology (Berl.), 2013, 226(2), 433-444.
[http://dx.doi.org/10.1007/s00213-012-2918-3] [PMID: 23187789]
[196]
Frau, L.; Simola, N.; Plumitallo, A.; Morelli, M. Microglial and astroglial activation by 3,4-methylenedioxymethamphetamine (MDMA) in mice depends on S(+) enantiomer and is associated with an increase in body temperature and motility. J. Neurochem., 2013, 124(1), 69-78.
[http://dx.doi.org/10.1111/jnc.12060] [PMID: 23083295]
[197]
Ruiz-Medina, J.; Ledent, C.; Carretón, O.; Valverde, O. The A2a adenosine receptor modulates the reinforcement efficacy and neurotoxicity of MDMA. J. Psychopharmacol., 2011, 25(4), 550-564.
[http://dx.doi.org/10.1177/0269881110389210] [PMID: 21262860]
[198]
Costa, G.; Porceddu, P.; Serra, M.; Casu, M.; Schiano, V.; Napolitano, F.; Pinna, A.; Usiello, A.; Morelli, M. Lack of rhes increases mdma-induced neuroinflammation and dopamine neuron degeneration: Role of gender and age. Int. J. Mol. Sci., 2019, 20(7), 1556.
[http://dx.doi.org/10.3390/ijms20071556] [PMID: 30925704]
[199]
Khairnar, A.; Plumitallo, A.; Frau, L.; Schintu, N.; Morelli, M. Caffeine enhances astroglia and microglia reactivity induced by 3,4-methylenedioxymethamphetamine (‘ecstasy’) in mouse brain. Neurotox. Res., 2010, 17(4), 435-439.
[http://dx.doi.org/10.1007/s12640-009-9125-y] [PMID: 19882200]
[200]
Frau, L.; Simola, N.; Porceddu, P.F.; Morelli, M. Effect of crowding, temperature and age on glia activation and dopaminergic neurotoxicity induced by MDMA in the mouse brain. Neurotoxicology, 2016, 56, 127-138.
[http://dx.doi.org/10.1016/j.neuro.2016.07.008] [PMID: 27451954]
[201]
Orio, L.; Llopis, N.; Torres, E.; Izco, M.; O’Shea, E.; Colado, M.I. A study on the mechanisms by which minocycline protects against MDMA (‘ecstasy’)-induced neurotoxicity of 5-HT cortical neurons. Neurotox. Res., 2010, 18(2), 187-199.
[http://dx.doi.org/10.1007/s12640-009-9120-3] [PMID: 19777321]
[202]
Costa, G.; Frau, L.; Wardas, J.; Pinna, A.; Plumitallo, A.; Morelli, M. MPTP-induced dopamine neuron degeneration and glia activation is potentiated in MDMA-pretreated mice. Mov. Disord., 2013, 28(14), 1957-1965.
[http://dx.doi.org/10.1002/mds.25646] [PMID: 24108425]
[203]
Costa, G.; Simola, N.; Morelli, M. MDMA administration during adolescence exacerbates MPTP-induced cognitive impairment and neuroinflammation in the hippocampus and prefrontal cortex. Psychopharmacology (Berl.), 2014, 231(20), 4007-4018.
[http://dx.doi.org/10.1007/s00213-014-3536-z] [PMID: 24687411]
[204]
Masai, K.; Kuroda, K.; Isooka, N.; Kikuoka, R.; Murakami, S.; Kamimai, S.; Wang, D.; Liu, K.; Miyazaki, I.; Nishibori, M.; Asanuma, M. Neuroprotective effects of anti-high mobility group box-1 monoclonal antibody against methamphetamine-induced dopaminergic neurotoxicity. Neurotox. Res., 2021, 39(5), 1511-1523.
[http://dx.doi.org/10.1007/s12640-021-00402-5] [PMID: 34417986]
[205]
Campeão, M.; Fernandes, L.; Pita, I.R.; Lemos, C.; Ali, S.F.; Carvalho, F.; Rodrigues-Santos, P.; Fontes-Ribeiro, C.A.; Soares, E.; Viana, S.D.; Pereira, F.C. Acute MDPV binge paradigm on mice emotional behavior and glial signature. Pharmaceuticals (Basel), 2021, 14(3), 271.
[http://dx.doi.org/10.3390/ph14030271] [PMID: 33809599]
[206]
Raineri, M.; Gonzalez, B.; Goitia, B.; Garcia-Rill, E.; Krasnova, I.N.; Cadet, J.L.; Urbano, F.J.; Bisagno, V. Modafinil abrogates methamphetamine-induced neuroinflammation and apoptotic effects in the mouse striatum. PLoS One, 2012, 7(10), e46599.
[http://dx.doi.org/10.1371/journal.pone.0046599] [PMID: 23056363]
[207]
McConnell, S.E.A.; O’Banion, M.K.; Cory-Slechta, D.A.; Olschowka, J.A.; Opanashuk, L.A. Characterization of binge-dosed methamphetamine-induced neurotoxicity and neuroinflammation. Neurotoxicology, 2015, 50, 131-141.
[http://dx.doi.org/10.1016/j.neuro.2015.08.006] [PMID: 26283213]
[208]
Guilarte, T.R.; Nihei, M.K.; McGlothan, J.L.; Howard, A.S. Methamphetamine-induced deficits of brain monoaminergic neuronal markers: distal axotomy or neuronal plasticity. Neuroscience, 2003, 122(2), 499-513.
[http://dx.doi.org/10.1016/S0306-4522(03)00476-7] [PMID: 14614914]
[209]
LaVoie, M.J.; Card, J.P.; Hastings, T.G. Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity. Exp. Neurol., 2004, 187(1), 47-57.
[http://dx.doi.org/10.1016/j.expneurol.2004.01.010] [PMID: 15081587]
[210]
Blaker, A.L.; Rodriguez, E.A.; Yamamoto, B.K. Neurotoxicity to dopamine neurons after the serial exposure to alcohol and methamphetamine: Protection by COX-2 antagonism. Brain Behav. Immun., 2019, 81, 317-328.
[http://dx.doi.org/10.1016/j.bbi.2019.06.028] [PMID: 31228610]
[211]
Takashima, Y.; Fannon, M.J.; Galinato, M.H.; Steiner, N.L.; An, M.; Zemljic-Harpf, A.E.; Somkuwar, S.S.; Head, B.P.; Mandyam, C.D. Neuroadaptations in the dentate gyrus following contextual cued reinstatement of methamphetamine seeking. Brain Struct. Funct., 2018, 223(5), 2197-2211.
[http://dx.doi.org/10.1007/s00429-018-1615-3] [PMID: 29441405]
[212]
Herndon, J.M.; Cholanians, A.B.; Lau, S.S.; Monks, T.J. Glial cell response to 3,4-(+/-)-methylenedioxymethamphetamine and its metabolites. Toxicol. Sci., 2014, 138(1), 130-138.
[http://dx.doi.org/10.1093/toxsci/kft275] [PMID: 24299738]
[213]
Mahmoudiasl, G.R.; Abbaszadeh, H.A.; Rezaei-Tavirani, M.; Abdollahifar, M.A.; Sadeghi, Y.; Khoramgah, M.S.; Niknazar, S.; Darabi, S. Postmortem Study of Molecular and Histological Changes in the CA1 Hippocampal Region of Chronic Methamphetamine User. Iran. J. Pharm. Res., 2019, 18(4), 2067-2082.
[http://dx.doi.org/10.22037/IJPR.2019.15483.13123] [PMID: 32184870]
[214]
Kitamura, O.; Takeichi, T.; Wang, E.L.; Tokunaga, I.; Ishigami, A.; Kubo, S. Microglial and astrocytic changes in the striatum of methamphetamine abusers. Leg. Med. (Tokyo), 2010, 12(2), 57-62.
[http://dx.doi.org/10.1016/j.legalmed.2009.11.001] [PMID: 20110187]
[215]
Sekine, Y.; Ouchi, Y.; Sugihara, G.; Takei, N.; Yoshikawa, E.; Nakamura, K.; Iwata, Y.; Tsuchiya, K.J.; Suda, S.; Suzuki, K.; Kawai, M.; Takebayashi, K.; Yamamoto, S.; Matsuzaki, H.; Ueki, T.; Mori, N.; Gold, M.S.; Cadet, J.L. Methamphetamine causes microglial activation in the brains of human abusers. J. Neurosci., 2008, 28(22), 5756-5761.
[http://dx.doi.org/10.1523/JNEUROSCI.1179-08.2008] [PMID: 18509037]
[216]
Rathitharan, G.; Truong, J.; Tong, J.; McCluskey, T.; Meyer, J.H.; Mizrahi, R.; Warsh, J.; Rusjan, P.; Kennedy, J.L.; Houle, S.; Kish, S.J.; Boileau, I. Microglia imaging in methamphetamine use disorder: a positron emission tomography study with the 18 kDa translocator protein radioligand [F‐18]FEPPA. Addict. Biol., 2021, 26(1), e12876.
[http://dx.doi.org/10.1111/adb.12876] [PMID: 32017280]
[217]
Bohnert, S.; Georgiades, K.; Monoranu, C.M.; Bohnert, M.; Büttner, A.; Ondruschka, B. Quantitative evidence of suppressed TMEM119 microglial immunohistochemistry in fatal morphine intoxications. Int. J. Legal Med., 2021, 135(6), 2315-2322.
[http://dx.doi.org/10.1007/s00414-021-02699-5] [PMID: 34553260]
[218]
Kays, J.S.; Yamamoto, B.K. Evaluation of microglia/macrophage cells from rat striatum and prefrontal cortex reveals differential expression of inflammatory-related mRNA after methamphetamine. Brain Sci., 2019, 9(12), 340.
[http://dx.doi.org/10.3390/brainsci9120340] [PMID: 31775383]
[219]
Zhang, X.; Wang, Y.; Wang, H.; Li, H.; Zhang, T.; Peng, Y.; Wang, X. Exploring methamphetamine nonenantioselectively targeting toll-like receptor 4/myeloid differentiation protein 2 by in silico simulations and wet-lab techniques. J. Chem. Inf. Model., 2020, 60(3), 1607-1613.
[http://dx.doi.org/10.1021/acs.jcim.9b01040] [PMID: 31935095]
[220]
Wires, E.S.; Alvarez, D.; Dobrowolski, C.; Wang, Y.; Morales, M.; Karn, J.; Harvey, B.K. Methamphetamine activates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and induces human immunodeficiency virus (HIV) transcription in human microglial cells. J. Neurovirol., 2012, 18(5), 400-410.
[http://dx.doi.org/10.1007/s13365-012-0103-4] [PMID: 22618514]
[221]
Xie, X.L.; Zhou, W.T.; Zhang, K.K.; Chen, L.J.; Wang, Q. METH-Induced Neurotoxicity Is Alleviated by Lactulose Pretreatment Through Suppressing Oxidative Stress and Neuroinflammation in Rat Striatum. Front. Neurosci., 2018, 12, 802.
[http://dx.doi.org/10.3389/fnins.2018.00802] [PMID: 30450033]
[222]
Du, S.H.; Qiao, D.F.; Chen, C.X.; Chen, S.; Liu, C.; Lin, Z.; Wang, H.; Xie, W.B. Toll-like receptor 4 mediates methamphetamine-induced neuroinflammation through caspase-11 signaling pathway in astrocytes. Front. Mol. Neurosci., 2017, 10, 409.
[http://dx.doi.org/10.3389/fnmol.2017.00409] [PMID: 29311802]
[223]
Lwin, T.; Yang, J.L.; Ngampramuan, S.; Viwatpinyo, K.; Chancharoen, P.; Veschsanit, N.; Pinyomahakul, J.; Govitrapong, P.; Mukda, S. Melatonin ameliorates methamphetamine-induced cognitive impairments by inhibiting neuroinflammation via suppression of the TLR4/MyD88/NFκB signaling pathway in the mouse hippocampus. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 111, 110109.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110109] [PMID: 32941923]
[224]
Snider, S.E.; Hendrick, E.S.; Beardsley, P.M. Glial cell modulators attenuate methamphetamine self-administration in therat. Eur. J. Pharmacol., 2013, 701(1-3), 124-130.
[http://dx.doi.org/10.1016/j.ejphar.2013.01.016] [PMID: 23375937]
[225]
Snider, S.E.; Vunck, S.A.; van den Oord, E.J.C.G.; Adkins, D.E.; McClay, J.L.; Beardsley, P.M. The glial cell modulators, ibudilast and its amino analog, AV1013, attenuate methamphetamine locomotor activity and its sensitization in mice. Eur. J. Pharmacol., 2012, 679(1-3), 75-80.
[http://dx.doi.org/10.1016/j.ejphar.2012.01.013] [PMID: 22306241]
[226]
Drouin-Ouellet, J.; Brownell, A.L.; Saint-Pierre, M.; Fasano, C.; Emond, V.; Trudeau, L.E.; Lévesque, D.; Cicchetti, F. Neuroinflammation is associated with changes in glial mGluR5 expression and the development of neonatal excitotoxic lesions. Glia, 2011, 59(2), 188-199.
[http://dx.doi.org/10.1002/glia.21086] [PMID: 21125661]
[227]
Giovanoli, S.; Engler, H.; Engler, A.; Richetto, J.; Feldon, J.; Riva, M.A.; Schedlowski, M.; Meyer, U. Preventive effects of minocycline in a neurodevelopmental two-hit model with relevance to schizophrenia. Transl. Psychiatry, 2016, 6(4), e772.
[http://dx.doi.org/10.1038/tp.2016.38] [PMID: 27045842]
[228]
Worley, M.J.; Heinzerling, K.G.; Roche, D.J.O.; Shoptaw, S.; Shoptaw, S. Ibudilast attenuates subjective effects of methamphetamine in a placebo-controlled inpatient study. Drug Alcohol Depend., 2016, 162, 245-250.
[http://dx.doi.org/10.1016/j.drugalcdep.2016.02.036] [PMID: 26993372]
[229]
Li, M.J.; Briones, M.S.; Heinzerling, K.G.; Kalmin, M.M.; Shoptaw, S.J. Ibudilast attenuates peripheral inflammatory effects of methamphetamine in patients with methamphetamine use disorder. Drug Alcohol Depend., 2020, 206, 107776.
[http://dx.doi.org/10.1016/j.drugalcdep.2019.107776] [PMID: 31812878]
[230]
Tanibuchi, Y.; Shimagami, M.; Fukami, G.; Sekine, Y.; Iyo, M.; Hashimoto, K. A case of methamphetamine use disorder treated with the antibiotic drug minocycline. Gen. Hosp. Psychiatry, 2010, 32(5), 559.e1-559.e3.
[http://dx.doi.org/10.1016/j.genhosppsych.2009.12.005] [PMID: 20851278]
[231]
Heinzerling, K.G.; Briones, M.; Thames, A.D.; Hinkin, C.H.; Zhu, T.; Wu, Y.N.; Shoptaw, S.J. Randomized, placebo-controlled trial of targeting neuroinflammation with ibudilast to treat methamphetamine use disorder. J. Neuroimmune Pharmacol., 2020, 15(2), 238-248.
[http://dx.doi.org/10.1007/s11481-019-09883-w] [PMID: 31820289]
[232]
Burns, A.; Ciborowski, P. Acute exposure to methamphetamine alters TLR9-mediated cytokine expression in human macrophage. Immunobiology, 2016, 221(2), 199-207.
[http://dx.doi.org/10.1016/j.imbio.2015.09.006] [PMID: 26387832]
[233]
Du, L.; Shen, K.; Bai, Y.; Chao, J.; Hu, G.; Zhang, Y.; Yao, H. Involvement of NLRP3 inflammasome in methamphetamine-induced microglial activation through miR-143/PUMA axis. Toxicol. Lett., 2019, 301, 53-63.
[http://dx.doi.org/10.1016/j.toxlet.2018.10.020] [PMID: 30394308]
[234]
Fernandes, N.C.; Sriram, U.; Gofman, L.; Cenna, J.M.; Ramirez, S.H.; Potula, R. Methamphetamine alters microglial immune function through P2X7R signaling. J. Neuroinflammation, 2016, 13(1), 91.
[http://dx.doi.org/10.1186/s12974-016-0553-3] [PMID: 27117066]
[235]
Bhattacharya, A.; Wang, Q.; Ao, H.; Shoblock, J.R.; Lord, B.; Aluisio, L.; Fraser, I.; Nepomuceno, D.; Neff, R.A.; Welty, N.; Lovenberg, T.W.; Bonaventure, P.; Wickenden, A.D.; Letavic, M.A. Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567. Br. J. Pharmacol., 2013, 170(3), 624-640.
[http://dx.doi.org/10.1111/bph.12314] [PMID: 23889535]
[236]
Tristão, F.S.M.; Lazzarini, M.; Martin, S.; Amar, M.; Stühmer, W.; Kirchhoff, F.; Gomes, L.A.C.; Lanfumey, L.; Prediger, R.D.; Sepulveda, J.E.; Del-Bel, E.A.; Raisman-Vozari, R. CX3CR1 disruption differentially influences dopaminergic neuron degeneration in parkinsonian mice depending on the neurotoxin and route of administration. Neurotox. Res., 2016, 29(3), 364-380.
[http://dx.doi.org/10.1007/s12640-015-9557-5] [PMID: 26403659]
[237]
Wisor, J.P.; Schmidt, M.A.; Clegern, W.C. Cerebral microglia mediate sleep/wake and neuroinflammatory effects of methamphetamine. Brain Behav. Immun., 2011, 25(4), 767-776.
[http://dx.doi.org/10.1016/j.bbi.2011.02.002] [PMID: 21333736]
[238]
Bravo, J.; Ribeiro, I.; Terceiro, A.F.; Andrade, E.B.; Portugal, C.C.; Lopes, I.M.; Azevedo, M.M.; Sousa, M.; Lopes, C.D.F.; Lobo, A.C.; Canedo, T.; Relvas, J.B.; Summavielle, T. Neuron-microglia contact-dependent mechanisms attenuate methamphetamine-induced microglia reactivity and enhance neuronal plasticity. Cells, 2022, 11(3), 355.
[http://dx.doi.org/10.3390/cells11030355] [PMID: 35159165]
[239]
Ladenheim, B.; Krasnova, I.N.; Deng, X.; Oyler, J.M.; Polettini, A.; Moran, T.H.; Huestis, M.A.; Cadet, J.L. Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6. Mol. Pharmacol., 2000, 58(6), 1247-1256.
[http://dx.doi.org/10.1124/mol.58.6.1247] [PMID: 11093760]
[240]
Zalcman, S.; Savina, I.; Wise, R.A. Interleukin-6 increases sensitivity to the locomotor-stimulating effects of amphetamine in rats. Brain Res., 1999, 847(2), 276-283.
[http://dx.doi.org/10.1016/S0006-8993(99)02063-6] [PMID: 10575098]
[241]
Kohno, M.; Loftis, J.M.; Huckans, M.; Dennis, L.E.; McCready, H.; Hoffman, W.F. The relationship between interleukin-6 and functional connectivity in methamphetamine users. Neurosci. Lett., 2018, 677, 49-54.
[http://dx.doi.org/10.1016/j.neulet.2018.04.037] [PMID: 29689344]
[242]
Lin, K.Y.; Cherng, C.G.; Yang, F.R.; Lin, L.C.; Lu, R.B.; Yu, L. Memantine abolishes the formation of cocaine-induced conditioned place preference possibly via its IL-6-modulating effect in medial prefrontal cortex. Behav. Brain Res., 2011, 220(1), 126-131.
[http://dx.doi.org/10.1016/j.bbr.2011.01.031] [PMID: 21277908]
[243]
Nakajima, A.; Yamada, K.; Nagai, T.; Uchiyama, T.; Miyamoto, Y.; Mamiya, T.; He, J.; Nitta, A.; Mizuno, M.; Tran, M.H.; Seto, A.; Yoshimura, M.; Kitaichi, K.; Hasegawa, T.; Saito, K.; Yamada, Y.; Seishima, M.; Sekikawa, K.; Kim, H.C.; Nabeshima, T. Role of tumor necrosis factor-alpha in methamphetamine-induced drug dependence and neurotoxicity. J. Neurosci., 2004, 24(9), 2212-2225.
[http://dx.doi.org/10.1523/JNEUROSCI.4847-03.2004] [PMID: 14999072]
[244]
Liśkiewicz, A.; Przybyła, M.; Park, M.; Liśkiewicz, D.; Nowacka-Chmielewska, M.; Małecki, A.; Barski, J.; Lewin-Kowalik, J.; Toborek, M. Methamphetamine-associated cognitive decline is attenuated by neutralizing IL-1 signaling. Brain Behav. Immun., 2019, 80, 247-254.
[http://dx.doi.org/10.1016/j.bbi.2019.03.016] [PMID: 30885840]
[245]
Schmidt, E.D.; Tilders, F.J.H.; Binnekade, R.; Schoffelmeer, A.N.M.; De Vries, T.J. Stressor- or drug-induced sensitization of the corticosterone response is not critically involved in the long-term expression of behavioural sensitization to amphetamine. Neuroscience, 1999, 92(1), 343-352.
[http://dx.doi.org/10.1016/S0306-4522(98)00725-8] [PMID: 10392855]
[246]
Coelho-Santos, V.; Gonçalves, J.; Fontes-Ribeiro, C.; Silva, A.P. Prevention of methamphetamine-induced microglial cell death by TNF-α and IL-6 through activation of the JAK-STAT pathway. J. Neuroinflammation, 2012, 9(1), 565.
[http://dx.doi.org/10.1186/1742-2094-9-103] [PMID: 22642790]
[247]
Mao, J.T.; Zhu, L.X.; Sharma, S.; Chen, K.; Huang, M.; Santiago, S.J.; Gulsurd, J.; Tashkin, D.P.; Dubinett, S.M. Cocaine inhibits human endothelial cell IL-8 production: The role of transforming growth factor-β. Cell. Immunol., 1997, 181(1), 38-43.
[http://dx.doi.org/10.1006/cimm.1997.1185] [PMID: 9344494]
[248]
Gancarz-Kausch, A.M.; Schroeder, G.L.; Panganiban, C.; Adank, D.; Humby, M.S.; Kausch, M.A.; Clark, S.D.; Dietz, D.M. Transforming growth factor beta receptor 1 is increased following abstinence from cocaine self-administration, but not cocaine sensitization. PLoS One, 2013, 8(12), e83834.
[http://dx.doi.org/10.1371/journal.pone.0083834] [PMID: 24386286]
[249]
Werner, C.T.; Mitra, S.; Auerbach, B.D.; Wang, Z.J.; Martin, J.A.; Stewart, A.F.; Gobira, P.H.; Iida, M.; An, C.; Cobb, M.M.; Caccamise, A.; Salvi, R.J.; Neve, R.L.; Gancarz, A.M.; Dietz, D.M. Neuroadaptations in the dorsal hippocampus underlie cocaine seeking during prolonged abstinence. Proc. Natl. Acad. Sci. USA, 2020, 117(42), 26460-26469.
[http://dx.doi.org/10.1073/pnas.2006133117] [PMID: 33020308]
[250]
Niu, F.; Liao, K.; Hu, G.; Sil, S.; Callen, S.; Guo, M.; Yang, L.; Buch, S. Cocaine-induced release of CXCL10 from pericytes regulates monocyte transmigration into the CNS. J. Cell Biol., 2019, 218(2), 700-721.
[http://dx.doi.org/10.1083/jcb.201712011] [PMID: 30626719]
[251]
Sil, S.; Niu, F.; Tom, E.; Liao, K.; Periyasamy, P.; Buch, S. Cocaine mediated neuroinflammation: Role of dysregulated autophagy inpericytes. Mol. Neurobiol., 2019, 56(5), 3576-3590.
[http://dx.doi.org/10.1007/s12035-018-1325-0] [PMID: 30151726]
[252]
Shen, S.; Zhao, J.; Dai, Y.; Chen, F.; Zhang, Z.; Yu, J.; Wang, K. Methamphetamine-induced alterations in intestinal mucosal barrier function occur via the microRNA-181c/TNF-α/tight junction axis. Toxicol. Lett., 2020, 321, 73-82.
[http://dx.doi.org/10.1016/j.toxlet.2019.12.020] [PMID: 31862507]
[253]
Parikh, N.U.; Aalinkeel, R.; Reynolds, J.L.; Nair, B.B.; Sykes, D.E.; Mammen, M.J.; Schwartz, S.A.; Mahajan, S.D. Galectin-1 suppresses methamphetamine induced neuroinflammation in human brain microvascular endothelial cells: Neuroprotective role in maintaining blood brain barrier integrity. Brain Res., 2015, 1624, 175-187.
[http://dx.doi.org/10.1016/j.brainres.2015.07.033] [PMID: 26236024]
[254]
Coelho-Santos, V.; Leitão, R.A.; Cardoso, F.L.; Palmela, I.; Rito, M.; Barbosa, M.; Brito, M.A.; Fontes-Ribeiro, C.A.; Silva, A.P. The TNF-α/NF-κB signaling pathway has a key role in methamphetamine-induced blood-brain barrier dysfunction. J. Cereb. Blood Flow Metab., 2015, 35(8), 1260-1271.
[http://dx.doi.org/10.1038/jcbfm.2015.59] [PMID: 25899299]
[255]
DiCaro, D.; Lee, H.H.; Belisario, C.; Ramos, R.L.; Martinez, L.R. Combination of acute intravenous methamphetamine injection and LPS challenge facilitate leukocyte infiltration into the central nervous system of C57BL/6 mice. Int. Immunopharmacol., 2019, 75, 105751.
[http://dx.doi.org/10.1016/j.intimp.2019.105751] [PMID: 31319359]
[256]
Levandowski, M.L.; Hess, A.R.B.; Grassi-Oliveira, R.; de Almeida, R.M.M. Plasma interleukin-6 and executive function in crack cocaine-dependent women. Neurosci. Lett., 2016, 628, 85-90.
[http://dx.doi.org/10.1016/j.neulet.2016.06.023] [PMID: 27297769]
[257]
Feng, L.; He, W.; Lin, S.; Ruan, Y.; Yuan, C.; Qiu, H.; Ren, W.; He, J. The association between interleukin‐8 levels and the development of withdrawal symptoms during methamphetamine abstinence. Hum. Psychopharmacol., 2020, 35(4), e2736.
[http://dx.doi.org/10.1002/hup.2736] [PMID: 32352600]
[258]
Araos, P.; Pedraz, M.; Serrano, A.; Lucena, M.; Barrios, V.; García-Marchena, N.; Campos-Cloute, R.; Ruiz, J.J.; Romero, P.; Suárez, J.; Baixeras, E.; de la Torre, R.; Montesinos, J.; Guerri, C.; Rodríguez-Arias, M.; Miñarro, J.; Martínez-Riera, R.; Torrens, M.; Chowen, J.A.; Argente, J.; Mason, B.J.; Pavón, F.J.; Rodríguez de Fonseca, F. Plasma profile of pro-inflammatory cytokines and chemokines in cocaine users under outpatient treatment: influence of cocaine symptom severity and psychiatric co-morbidity. Addict. Biol., 2015, 20(4), 756-772.
[http://dx.doi.org/10.1111/adb.12156] [PMID: 24854157]
[259]
Montesinos, J.; Castilla-Ortega, E.; Sánchez-Marín, L.; Montagud-Romero, S.; Araos, P.; Pedraz, M.; Porras-Perales, Ó.; García-Marchena, N.; Serrano, A.; Suárez, J.; Baixeras, E.; Rodríguez-Arias, M.; Santín, L.J.; Miñarro, J.; Guerri, C.; Rodríguez de Fonseca, F.; Pavón, F.J. Cocaine-induced changes in CX3CL1 and inflammatory signaling pathways in the hippocampus: Association with IL1β. Neuropharmacology, 2020, 162, 107840.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107840] [PMID: 31704270]
[260]
Saika, F.; Matsuzaki, S.; Kobayashi, D.; Kiguchi, N.; Kishioka, S. Chemokine CXCL1 is responsible for cocaine-induced reward in mice. Neuropsychopharmacol. Rep., 2018, 38(3), 145-148.
[http://dx.doi.org/10.1002/npr2.12018] [PMID: 30175527]
[261]
Trocello, J.M.; Rostene, W.; Melik-Parsadaniantz, S.; Godefroy, D.; Roze, E.; Kitabgi, P.; Kuziel, W.A.; Chalon, S.; Caboche, J.; Apartis, E. Implication of CCR2 chemokine receptor in cocaine-induced sensitization. J. Mol. Neurosci., 2011, 44(3), 147-151.
[http://dx.doi.org/10.1007/s12031-011-9508-4] [PMID: 21424761]
[262]
Saika, F.; Kiguchi, N.; Wakida, N.; Kobayashi, D.; Fukazawa, Y.; Matsuzaki, S.; Kishioka, S. Upregulation of CCL7 and CCL2 in reward system mediated through dopamine D1 receptor signaling underlies methamphetamine-induced place preference in mice. Neurosci. Lett., 2018, 665, 33-37.
[http://dx.doi.org/10.1016/j.neulet.2017.11.042] [PMID: 29174638]
[263]
Wakida, N.; Kiguchi, N.; Saika, F.; Nishiue, H.; Kobayashi, Y.; Kishioka, S. CC-chemokine ligand 2 facilitates conditioned place preference to methamphetamine through the activation of dopamine systems. J. Pharmacol. Sci., 2014, 125(1), 68-73.
[http://dx.doi.org/10.1254/jphs.14032FP] [PMID: 24748435]
[264]
Kelly, K.A.; Miller, D.B.; Bowyer, J.F.; O’Callaghan, J.P. Chronic exposure to corticosterone enhances the neuroinflammatory and neurotoxic responses to methamphetamine. J. Neurochem., 2012, 122(5), 995-1009.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07864.x] [PMID: 22776046]
[265]
Li, J.; Deng, G.; Wang, H.; Yang, M.; Yang, R.; Li, X. Interleukin-1β pre-treated bone marrow stromal cells alleviate neuropathic pain through CCL7-mediated inhibition of microglial activation in the spinal cord. Sci. Rep., 2017, 7(1), 1-15.
[http://dx.doi.org/10.1038/srep42260]
[266]
Trecki, J.; Unterwald, E.M. Modulation of cocaine-induced activity by intracerebral administration of CXCL12. Neuroscience, 2009, 161(1), 13-22.
[http://dx.doi.org/10.1016/j.neuroscience.2009.03.027] [PMID: 19303923]
[267]
Westwell-Roper, C.; Stewart, S.E. Commentary: Neurobiology and therapeutic potential of cyclooxygenase-2 (COX-2) inhibitors for inflammation in neuropsychiatric disorders. Front. Psychiatry, 2020, 11, 264.
[http://dx.doi.org/10.3389/fpsyt.2020.00264] [PMID: 32425818]
[268]
Avila, J.A.; Zanca, R.M.; Shor, D.; Paleologos, N.; Alliger, A.A.; Figueiredo-Pereira, M.E.; Serrano, P.A. Chronic voluntary oral methamphetamine induces deficits in spatial learning and hippocampal protein kinase Mzeta with enhanced astrogliosis and cyclooxygenase-2 levels. Heliyon, 2018, 4(2), e00509.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00509] [PMID: 29560440]
[269]
Zhang, X.; Dong, F.; Mayer, G.E.; Bruch, D.C.; Ren, J.; Culver, B. Selective inhibition of cyclooxygenase-2 exacerbates methamphetamine-induced dopamine depletion in the striatum in rats. Neuroscience, 2007, 150(4), 950-958.
[http://dx.doi.org/10.1016/j.neuroscience.2007.09.059] [PMID: 17988800]
[270]
Phan, D.H.; Shin, E.J.; Jeong, J.H.; Tran, H.Q.; Sharma, N.; Nguyen, B.T.; Jung, T.W.; Nah, S.Y.; Saito, K.; Nabeshima, T.; Kim, H.C. Lithium attenuates d‐amphetamine‐induced hyperlocomotor activity in mice via inhibition of interaction between cyclooxygenase‐2 and indoleamine‐2,3‐dioxygenase. Clin. Exp. Pharmacol. Physiol., 2020, 47(5), 790-797.
[http://dx.doi.org/10.1111/1440-1681.13243] [PMID: 31883280]
[271]
Toledano, A.; Álvarez, M.I.; Caballero, I.; Carmona, P.; De Miguel, E. Immunohistochemical increase in cyclooxygenase-2 without apoptosis in different brain areas of subchronic nicotine- and d-amphetamine-treated rats. J. Neural Transm. (Vienna), 2008, 115(8), 1093-1108.
[http://dx.doi.org/10.1007/s00702-008-0040-9] [PMID: 18351285]
[272]
Reid, M.S.; Ho, L.B.; Hsu, K.; Fox, L.; Tolliver, B.K.; Adams, J.U.; Franco, A.; Berger, S.P. Evidence for the involvement of cyclooxygenase activity in the development of cocaine sensitization. Pharmacol. Biochem. Behav., 2002, 71(1-2), 37-54.
[http://dx.doi.org/10.1016/S0091-3057(01)00614-1] [PMID: 11812506]
[273]
Ross, B.M.; Brooks, R.J.; Lee, M.; Kalasinsky, K.S.; Vorce, S.P.; Seeman, M.; Fletcher, P.J.; Turenne, S.D. Cyclooxygenase inhibitor modulation of dopamine-related behaviours. Eur. J. Pharmacol., 2002, 450(2), 141-151.
[http://dx.doi.org/10.1016/S0014-2999(02)02104-0] [PMID: 12206852]
[274]
Anggadiredja, K.; Nakamichi, M.; Hiranita, T.; Tanaka, H.; Shoyama, Y.; Watanabe, S.; Yamamoto, T. Endocannabinoid system modulates relapse to methamphetamine seeking: possible mediation by the arachidonic acid cascade. Neuropsychopharmacology, 2004, 29(8), 1470-1478.
[http://dx.doi.org/10.1038/sj.npp.1300454] [PMID: 15085091]
[275]
Reid, M.S.; Angrist, B.; Baker, S.; Woo, C.; Schwartz, M.; Montgomery, A.; Majewska, D.; Robinson, J.; Rotrosen, J. A placebo-controlled screening trial of celecoxib for the treatment of cocaine dependence. Addiction, 2005, 100(Suppl. 1), 32-42.
[http://dx.doi.org/10.1111/j.1360-0443.2005.00989.x] [PMID: 15730348]
[276]
Eichhorn, E.J.; Demian, S.E.; Alvarez, L.G.; Willard, J.E.; Molina, S.; Bartula, L.L.; Dale Prince, M.; Inman, L.R.; Grayburn, P.A.; Myers, S.I. Cocaine-induced alterations in prostaglandin production in rabbit aorta. J. Am. Coll. Cardiol., 1992, 19(3), 696-703.
[http://dx.doi.org/10.1016/S0735-1097(10)80295-5] [PMID: 1538030]
[277]
Cejtin, H.E.; Parsons, M.T.; Wilson, L., Jr Cocaine use and its effect on umbilical artery prostacyclin production. Prostaglandins, 1990, 40(3), 249-257.
[http://dx.doi.org/10.1016/0090-6980(90)90013-L] [PMID: 2247615]
[278]
Cook, J.L.; Randalla, C.L. Cocaine does not affect prostacyclin, thromboxane or prostaglandin E production in human umbilical veins. Drug Alcohol Depend., 1996, 41(2), 113-118.
[http://dx.doi.org/10.1016/0376-8716(96)01229-X] [PMID: 8809499]
[279]
Schwarz, R.D.; Uretsky, N.J.; Bianchine, J.R. Prostaglandin inhibition of amphetamine-induced circling in mice. Psychopharmacology (Berl.), 1982, 78(4), 317-321.
[http://dx.doi.org/10.1007/BF00433733] [PMID: 6818591]
[280]
Poddubiuk, Z.M.; Kleinrok, Z. A comparison of the central actions of prostaglandins A1, E1, E2, F1α and F2α in the rat. Psychopharmacology, 1976, 50(1), 95-102.
[http://dx.doi.org/10.1007/BF00634162]
[281]
Bloss, J.L.; Singer, G.H. Neuropharmacological and behavioral evaluation of prostaglandin E2 and 11-thiol-11-desoxy prostaglandin E2 in the mouse and rat. Psychopharmacology (Berl.), 1978, 57(3), 295-302.
[http://dx.doi.org/10.1007/BF00426754] [PMID: 97712]
[282]
Kitaoka, S.; Furuyashiki, T.; Nishi, A.; Shuto, T.; Koyasu, S.; Matsuoka, T.; Miyasaka, M.; Greengard, P.; Narumiya, S. Prostaglandin E2 acts on EP1 receptor and amplifies both dopamine D1 and D2 receptor signaling in the striatum. J. Neurosci., 2007, 27(47), 12900-12907.
[http://dx.doi.org/10.1523/JNEUROSCI.3257-07.2007] [PMID: 18032663]
[283]
Chang, S.L.; Bersig, J.; Felix, B.; Fiala, M.; House, S.D. Chronic cocaine alters hemodynamics and leukocyte-endothelial interactions in rat mesenteric venules. Life Sci., 2000, 66(24), 2357-2369.
[http://dx.doi.org/10.1016/S0024-3205(00)00566-X] [PMID: 10864098]
[284]
Cearley, C.N.; Blindheim, K.; Sorg, B.A.; Krueger, J.M.; Churchill, L. Acute cocaine increases interleukin-1β mRNA and immunoreactive cells in the cortex and nucleus accumbens. Neurochem. Res., 2011, 36(4), 686-692.
[http://dx.doi.org/10.1007/s11064-011-0410-9] [PMID: 21399909]
[285]
Narvaez, J.C.M.; Magalhães, P.V.; Fries, G.R.; Colpo, G.D.; Czepielewski, L.S.; Vianna, P.; Chies, J.A.B.; Rosa, A.R.; Von Diemen, L.; Vieta, E.; Pechansky, F.; Kapczinski, F. Peripheral toxicity in crack cocaine use disorders. Neurosci. Lett., 2013, 544, 80-84.
[http://dx.doi.org/10.1016/j.neulet.2013.03.045] [PMID: 23597759]
[286]
Roodsari, S.K.; Cheng, Y.; Reed, K.M.; Wellman, L.L.; Sanford, L.D.; Kim, W-K. Sleep disturbance alters cocaine-induced locomotor activity: Involvement of striatal neuroimmune and dopamine signaling. Biomed, 2022, 10, 1161.
[http://dx.doi.org/10.3390/biomedicines10051161]
[287]
Maza-Quiroga, R.; García-Marchena, N.; Romero-Sanchiz, P.; Barrios, V.; Pedraz, M.; Serrano, A.; Nogueira-Arjona, R.; Ruiz, J.J.; Soria, M.; Campos, R.; Chowen, J.A.; Argente, J.; Torrens, M.; López-Gallardo, M.; Marco, E.M.; Rodríguez de Fonseca, F.; Pavón, F.J.; Araos, P. Evaluation of plasma cytokines in patients with cocaine use disorders in abstinence identifies transforming growth factor alpha (TGFα) as a potential biomarker of consumption and dual diagnosis. PeerJ, 2017, 5, e3926.
[http://dx.doi.org/10.7717/peerj.3926] [PMID: 29038767]
[288]
Gupta, K.; Sharma, R.; Singh, V.; Masoomi, R.; Dileepan, K.N.; He, J.; Smith, D.D.; Dawn, B.; Grasing, K. Intravenous cocaine results in an acute decrease in levels of biomarkers of vascular Inflammation in humans. Cardiovasc. Toxicol., 2018, 18(4), 295-303.
[http://dx.doi.org/10.1007/s12012-017-9440-0] [PMID: 29372505]
[289]
Moreira, F.P.; Medeiros, J.R.C.; Lhullier, A.C.; Souza, L.D.M.; Jansen, K.; Portela, L.V.; Lara, D.R.; Silva, R.A.; Wiener, C.D.; Oses, J.P. Cocaine abuse and effects in the serum levels of cytokines IL-6 and IL-10. Drug Alcohol Depend., 2016, 158, 181-185.
[http://dx.doi.org/10.1016/j.drugalcdep.2015.11.024] [PMID: 26679059]
[290]
Rofael, H.Z.; Turkall, R.M.; Abdel-Rahman, M.S. Effect of ketamine on cocaine-induced immunotoxicity in rats. Int. J. Toxicol., 2003, 22(5), 343-358.
[http://dx.doi.org/10.1177/109158180302200503] [PMID: 14555406]
[291]
Gan, X.; Zhang, L.; Newton, T.; Chang, S.L.; Ling, W.; Kermani, V.; Berger, O.; Graves, M.C.; Fiala, M. Cocaine infusion increases interferon-gamma and decreases interleukin-10 in cocaine-dependent subjects. Clin. Immunol. Immunopathol., 1998, 89(2), 181-190.
[http://dx.doi.org/10.1006/clin.1998.4607] [PMID: 9787120]
[292]
Fox, H.C.; D’Sa, C.; Kimmerling, A.; Siedlarz, K.M.; Tuit, K.L.; Stowe, R.; Sinha, R. Immune system inflammation in cocaine dependent individuals: implications for medications development. Hum. Psychopharmacol., 2012, 27(2), 156-166.
[http://dx.doi.org/10.1002/hup.1251] [PMID: 22389080]
[293]
Gan, X.; Zhang, L.; Berger, O.; Stins, M.F.; Way, D.; Taub, D.D.; Chang, S.L.; Kim, K.S.; House, S.D.; Weinand, M.; Witte, M.; Graves, M.C.; Fiala, M. Cocaine enhances brain endothelial adhesion molecules and leukocyte migration. Clin. Immunol., 1999, 91(1), 68-76.
[http://dx.doi.org/10.1006/clim.1998.4683] [PMID: 10219256]
[294]
Kuo, S.C.; Yeh, Y.W.; Chen, C.Y.; Huang, C.C.; Ho, P.S.; Liang, C.S.; Lin, C.L.; Yeh, T.C.; Tsou, C.C.; Yang, B.Z.; Lu, R.B.; Huang, S.Y. Differential effect of the DRD3 genotype on inflammatory cytokine responses during abstinence in amphetamine-dependent women. Psychoneuroendocrinology, 2018, 97, 37-46.
[http://dx.doi.org/10.1016/j.psyneuen.2018.06.023] [PMID: 30005280]
[295]
House, R.V.; Thomas, P.T.; Bhargava, H.N. Comparison of immune functional parameters following in vitro exposure to natural and synthetic amphetamines. Immunopharmacol. Immunotoxicol., 1994, 16(1), 1-21.
[http://dx.doi.org/10.3109/08923979409029897] [PMID: 8169319]
[296]
Valvassori, S.S.; Dal-Pont, G.C.; Tonin, P.T.; Varela, R.B.; Ferreira, C.L.; Gava, F.F.; Andersen, M.L.; Soares, J.C.; Quevedo, J. Coadministration of lithium and celecoxib attenuates the behavioral alterations and inflammatory processes induced by amphetamine in an animal model of mania. Pharmacol. Biochem. Behav., 2019, 183, 56-63.
[http://dx.doi.org/10.1016/j.pbb.2019.05.009] [PMID: 31158395]
[297]
Valvassori, S.S.; Resende, W.R.; Varela, R.B.; Arent, C.O.; Gava, F.F.; Peterle, B.R.; Dal-Pont, G.C.; Carvalho, A.F.; Andersen, M.L.; Quevedo, J. The effects of histone deacetylase inhibition on the levels of cerebral cytokines in an animal model of mania induced by dextroamphetamine. Mol. Neurobiol., 2018, 55(2), 1430-1439.
[http://dx.doi.org/10.1007/s12035-017-0384-y] [PMID: 28168425]
[298]
Valvassori, S.S.; Tonin, P.T.; Varela, R.B.; Carvalho, A.F.; Mariot, E.; Amboni, R.T.; Bianchini, G.; Andersen, M.L.; Quevedo, J. Lithium modulates the production of peripheral and cerebral cytokines in an animal model of mania induced by dextroamphetamine. Bipolar Disord., 2015, 17(5), 507-517.
[http://dx.doi.org/10.1111/bdi.12299] [PMID: 25929806]
[299]
Liu, X.; Silverstein, P.S.; Singh, V.; Shah, A.; Qureshi, N.; Kumar, A. Methamphetamine increases LPS-mediated expression of IL-8, TNF-α and IL-1β in human macrophages through common signaling pathways. PLoS One, 2012, 7(3), e33822.
[http://dx.doi.org/10.1371/journal.pone.0033822] [PMID: 22479453]
[300]
Gebhard, C.; Breitenstein, A.; Akhmedov, A.; Gebhard, C.E.; Camici, G.G.; Lüscher, T.F.; Tanner, F.C. Amphetamines induce tissue factor and impair tissue factor pathway inhibitor: role of dopamine receptor type 4. Eur. Heart J., 2010, 31(14), 1780-1791.
[http://dx.doi.org/10.1093/eurheartj/ehp598] [PMID: 20118172]
[301]
Gonçalves, J.; Martins, T.; Ferreira, R.; Milhazes, N.; Borges, F.; Ribeiro, C.F.; Malva, J.O.; Macedo, T.R.; Silva, A.P. Methamphetamine-induced early increase of IL-6 and TNF-alpha mRNA expression in the mouse brain. Ann. N. Y. Acad. Sci., 2008, 1139(1), 103-111.
[http://dx.doi.org/10.1196/annals.1432.043] [PMID: 18991854]
[302]
Re, G.F.; Jia, J.; Xu, Y.; Zhang, Z.; Xie, Z.R.; Kong, D.; Lu, D.; Li, Y.; Peng, Q.Y.; Yu, J.; Kuang, Y.Q.; Wang, K.H. Dynamics and correlations in multiplex immune profiling reveal persistent immune inflammation in male drug users after withdrawal. Int. Immunopharmacol., 2022, 107, 108696.
[http://dx.doi.org/10.1016/j.intimp.2022.108696] [PMID: 35303506]
[303]
Seminerio, M.J.; Robson, M.J.; McCurdy, C.R.; Matsumoto, R.R. Sigma receptor antagonists attenuate acute methamphetamine-induced hyperthermia by a mechanism independent of IL-1β mRNA expression in the hypothalamus. Eur. J. Pharmacol., 2012, 691(1-3), 103-109.
[http://dx.doi.org/10.1016/j.ejphar.2012.07.029] [PMID: 22820108]
[304]
Yamaguchi, T.; Kuraishi, Y.; Minami, M.; Yabuuchi, K.; Satoh, M. Involvement of central β-adrenoceptors in the induction of hypothalamic interleukin-1β mRNA by methamphetamine. Neurosci. Res., 1991, 12(3), 432-439.
[http://dx.doi.org/10.1016/0168-0102(91)90074-9] [PMID: 1686311]
[305]
Yamaguchi, T.; Kuraishi, Y.; Minami, M.; Nakai, S.; Hirai, Y.; Satoh, M. Methamphetamine-induced expression of interleukin-1β mRNA in the rat hypothalamus. Neurosci. Lett., 1991, 128(1), 90-92.
[http://dx.doi.org/10.1016/0304-3940(91)90766-M] [PMID: 1922954]
[306]
Park, J.H.; Seo, Y.H.; Jang, J.H.; Jeong, C.H.; Lee, S.; Park, B. Asiatic acid attenuates methamphetamine-induced neuroinflammation and neurotoxicity through blocking of NF-kB/STAT3/ERK and mitochondria-mediated apoptosis pathway. J. Neuroinflammation, 2017, 14(1), 240.
[http://dx.doi.org/10.1186/s12974-017-1009-0] [PMID: 29228978]
[307]
Beirami, E.; Oryan, S.; Seyedhosseini Tamijani, S.M.; Ahmadiani, A.; Dargahi, L. Intranasal insulin treatment alleviates methamphetamine induced anxiety-like behavior and neuroinflammation. Neurosci. Lett., 2017, 660, 122-129.
[http://dx.doi.org/10.1016/j.neulet.2017.09.026] [PMID: 28917981]
[308]
Shah, A.; Silverstein, P.S.; Singh, D.P.; Kumar, A. Involvement of metabotropic glutamate receptor 5, AKT/PI3K Signaling and NF-κB pathway in methamphetamine-mediated increase in IL-6 and IL-8 expression in astrocytes. J. Neuroinflammation, 2012, 9(1), 52.
[http://dx.doi.org/10.1186/1742-2094-9-52] [PMID: 22420994]
[309]
Luo, Y.; He, H.; Ou, Y.; Zhou, Y.; Fan, N. Elevated serum levels of TNF‐α IL‐6, and IL‐18 in chronic methamphetamine users. Hum. Psychopharmacol., 2022, 37(1), e2810.
[http://dx.doi.org/10.1002/hup.2810] [PMID: 34432333]
[310]
Kobeissy, F.H.; Shakkour, Z.; Hayek, S.E.; Mohamed, W.; Gold, M.S.; Wang, K.K.W. Elevation of pro-inflammatory and anti-inflammatory cytokines in rat serum after acute methamphetamine treatment and traumatic brain injury. J. Mol. Neurosci., 2022, 72(1), 158-168.
[http://dx.doi.org/10.1007/s12031-021-01886-8] [PMID: 34542809]
[311]
Wongprayoon, P.; Govitrapong, P. Melatonin attenuates methamphetamine-induced neuroinflammation through the melatonin receptor in the SH-SY5Y cell line. Neurotoxicology, 2015, 50, 122-130.
[http://dx.doi.org/10.1016/j.neuro.2015.08.008] [PMID: 26283214]
[312]
Lai, Y.T.; Tsai, Y.P.N.; Cherng, C.G.; Ke, J.J.; Ho, M.C.; Tsai, C.W.; Yu, L. Lipopolysaccharide mitagates methamphetamine-induced striatal dopamine depletion via modulating local TNF-α and dopamine transporter expression. J. Neural Transm. (Vienna), 2009, 116(4), 405-415.
[http://dx.doi.org/10.1007/s00702-009-0204-2] [PMID: 19271121]
[313]
Lee, Y.W.; Hennig, B.; Yao, J.; Toborek, M. Methamphetamine induces AP-1 and NF-?B binding and transactivation in human brain endothelial cells. J. Neurosci. Res., 2001, 66(4), 583-591.
[http://dx.doi.org/10.1002/jnr.1248] [PMID: 11746378]
[314]
Johansson, E.M.; García-Gutiérrez, M.S.; Moscoso-Castro, M.; Manzanares, J.; Valverde, O. Reduced Contextual Discrimination following Alcohol Consumption or MDMA Administration in Mice. PLoS One, 2015, 10(11), e0142978.
[http://dx.doi.org/10.1371/journal.pone.0142978] [PMID: 26566284]
[315]
Mayado, A.; Torres, E.; Gutierrez-Lopez, M.D.; Colado, M.I.; O’Shea, E. Increased interleukin-1β levels following low dose MDMA induces tolerance against the 5-HT neurotoxicity produced by challenge MDMA. J. Neuroinflammation, 2011, 8(1), 165.
[http://dx.doi.org/10.1186/1742-2094-8-165] [PMID: 22114930]
[316]
Connor, T.J.; Kelly, J.P.; Leonard, B.E. An assessment of the acute effects of the serotonin releasers methylenedioxymethamphetamine, methylenedioxyamphetamine and fenfluramine on immunity in rats. Immunopharmacology, 2000, 46(3), 223-235.
[http://dx.doi.org/10.1016/S0162-3109(99)00180-0] [PMID: 10741902]
[317]
House, R.V.; Thomas, P.T.; Bhargava, H.N. Selective modulation of immune function resulting from in vitro exposure to methylenedioxymethamphetamine (Ecstasy). Toxicology, 1995, 96(1), 59-69.
[http://dx.doi.org/10.1016/0300-483X(94)02955-T] [PMID: 7863512]
[318]
Pacifici, R.; Pichini, S.; Zuccaro, P.; Farré, M.; Segura, M.; Ortuño, J.; Di Carlo, S.; Bacosi, A.; Roset, P.N.; Segura, J.; de la Torre, R. Paroxetine inhibits acute effects of 3,4-methylenedioxymetham-phetamine on the immune system in humans. J. Pharmacol. Exp. Ther., 2004, 309(1), 285-292.
[http://dx.doi.org/10.1124/jpet.103.061374] [PMID: 14722327]
[319]
Frau, L.; Costa, G.; Porceddu, P.F.; Khairnar, A.; Castelli, M.P.; Ennas, M.G.; Madeddu, C.; Wardas, J.; Morelli, M. Influence of caffeine on 3,4-methylenedioxymethamphetamine-induced dopaminergic neuron degeneration and neuroinflammation is age-dependent. J. Neurochem., 2016, 136(1), 148-162.
[http://dx.doi.org/10.1111/jnc.13377] [PMID: 26442661]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy