Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Receptors for Advanced Glycation End Products (RAGE): Promising Targets Aiming at the Treatment of Neurodegenerative Conditions

Author(s): Suélyn Koerich, Gabriela Machado Parreira, Douglas Lamounier de Almeida, Rafael Pinto Vieira* and Antônio Carlos Pinheiro de Oliveira*

Volume 21, Issue 2, 2023

Published on: 07 December, 2022

Page: [219 - 234] Pages: 16

DOI: 10.2174/1570159X20666220922153903

Price: $65

Abstract

Advanced glycation end products (AGEs) are compounds formed after the non-enzymatic addition of reducing sugars to lipids, proteins, and nucleic acids. They are associated with the development of various clinical complications observed in diabetes and cardiovascular diseases, such as retinopathy, nephropathy, diabetic neuropathy, and others. In addition, compelling evidence indicates that these molecules participate in the progression of neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Multiple cellular and molecular alterations triggered by AGEs that could alter homeostasis have been identified. One of the main targets for AGE signaling is the receptor for advanced glycation end-products (RAGE). Importantly, this receptor is the target of not only AGEs, but also amyloid β peptides, HMGB1 (high-mobility group box-1), members of the S100 protein family, and glycosaminoglycans. The activation of this receptor induces intracellular signaling cascades that are involved in pathological processes and cell death. Therefore, RAGE represents a key target for pharmacological interventions in neurodegenerative diseases. This review will discuss the various effects of AGEs and RAGE activation in the pathophysiology of neurodegenerative diseases, as well as the currently available pharmacological tools and promising drug candidates.

Keywords: AGEs, neuroinflammation, neurodegeneration, drug development, RAGE, Alzheimer’s disease, Parkinson’ s disease, oxidative stress

Graphical Abstract

[1]
Dugger, B.N.; Dickson, D.W. Pathology of Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[2]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[3]
Webers, A.; Heneka, M.T.; Gleeson, P.A. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease. Immunol. Cell Biol., 2020, 98(1), 28-41.
[http://dx.doi.org/10.1111/imcb.12301] [PMID: 31654430]
[4]
Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic neuropathy. Nat. Rev. Dis. Primers, 2019, 5(1), 41.
[http://dx.doi.org/10.1038/s41572-019-0092-1] [PMID: 31197153]
[5]
Sergi, D.; Boulestin, H.; Campbell, F.M.; Williams, L.M. The role of dietary advanced glycation end products in metabolic dysfunction. Mol. Nutr. Food Res., 2021, 65(1), 1900934.
[http://dx.doi.org/10.1002/mnfr.201900934] [PMID: 32246887]
[6]
Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol., 2014, 18(1), 1-14.
[http://dx.doi.org/10.4196/kjpp.2014.18.1.1] [PMID: 24634591]
[7]
Hanyu, H. Diabetes-Related Dementia; , 2019, pp. 147-160.
[http://dx.doi.org/10.1007/978-981-13-3540-2_8]
[8]
Bilova, T.; Paudel, G.; Shilyaev, N.; Schmidt, R.; Brauch, D.; Tarakhovskaya, E.; Milrud, S.; Smolikova, G.; Tissier, A.; Vogt, T.; Sinz, A.; Brandt, W.; Birkemeyer, C.; Wessjohann, L.A.; Frolov, A. Global proteomic analysis of advanced glycation end products in the Arabidopsis proteome provides evidence for age-related glycation hot spots. J. Biol. Chem., 2017, 292(38), 15758-15776.
[http://dx.doi.org/10.1074/jbc.M117.794537] [PMID: 28611063]
[9]
Indyk, D. Bronowicka-Szydełko, A.; Gamian, A.; Kuzan, A. Advanced glycation end products and their receptors in serum of patients with type 2 diabetes. Sci. Rep., 2021, 11(1), 13264.
[http://dx.doi.org/10.1038/s41598-021-92630-0] [PMID: 34168187]
[10]
Hodge, J.E. The Amadori Rearrangement; , 1955, 10, pp. 169-205.
[http://dx.doi.org/10.1016/S0096-5332(08)60392-6]
[11]
Hunt, J.V.; Dean, R.T.; Wolff, S.P. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem. J., 1988, 256(1), 205-212.
[http://dx.doi.org/10.1042/bj2560205] [PMID: 2851978]
[12]
Perrone, A.; Giovino, A.; Benny, J.; Martinelli, F. Advanced glycation end products (AGEs): Biochemistry, signaling, analytical methods, and epigenetic effects. Oxid. Med. Cell. Longev., 2020, 2020, 1-18.
[http://dx.doi.org/10.1155/2020/3818196] [PMID: 32256950]
[13]
Wolff, S.P.; Dean, R.T. Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochem. J., 1987, 245(1), 243-250.
[http://dx.doi.org/10.1042/bj2450243] [PMID: 3117042]
[14]
Kawamura, S. Seventy Years of the Maillard Reaction; , 1983, pp. 3-18.
[http://dx.doi.org/10.1021/bk-1983-0215.ch001.]
[15]
Schiff, H. Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen. Justus Liebigs Ann. Chem., 1864, 131(1), 118-119.
[http://dx.doi.org/10.1002/jlac.18641310113]
[16]
Daraie, M.; Heravi, M.M.; Rangraz, Y.; Besharati, Z. Pd NPs supported on halloysite functionalized with Schiff base as an efficient catalyst for Sonogashira reaction. Sci. Rep., 2021, 11(1), 6223.
[http://dx.doi.org/10.1038/s41598-021-85821-2] [PMID: 33737708]
[17]
Omer, A.M.; Eweida, B.Y.; Tamer, T.M.; Soliman, H.M.A.; Ali, S.M.; Zaatot, A.A.; Mohy-Eldin, M.S. Removal of oil spills by novel developed amphiphilic chitosan-g-citronellal schiff base polymer. Sci. Rep., 2021, 11(1), 19879.
[http://dx.doi.org/10.1038/s41598-021-99241-9] [PMID: 34615906]
[18]
Peng, C.; Wang, Y.; Tan, S.; Cheng, G. Preparation of chitosan derivatives. Synthesis of N-Schiff base type and N-secondary amino type chitosan-crown ethers. Polym. J., 1998, 30(10), 843-845.
[http://dx.doi.org/10.1295/polymj.30.843]
[19]
Adsule, S.; Barve, V.; Chen, D.; Ahmed, F.; Dou, Q.P.; Padhye, S.; Sarkar, F.H. Novel Schiff base copper complexes of quinoline-2 carboxaldehyde as proteasome inhibitors in human prostate cancer cells. J. Med. Chem., 2006, 49(24), 7242-7246.
[http://dx.doi.org/10.1021/jm060712l] [PMID: 17125278]
[20]
Bilyj, J.K.; Silajew, N.V.; Bernhardt, P.V. Nickel coordination chemistry of bis(dithiocarbazate) Schiff base ligands; metal and ligand centred redox reactions. Dalton Trans., 2021, 50(2), 612-623.
[http://dx.doi.org/10.1039/D0DT03204B] [PMID: 33320137]
[21]
Rhodes, J. Evidence for an intercellular covalent reaction essential in antigen-specific T cell activation. J. Immunol., 1989, 143(5), 1482-1489.
[PMID: 2474600]
[22]
Rihova, B.; Etrych, T.; Pechar, M.; Jelinkova, M.; Štastný, M.; Hovorka, O. Kovář M.; Ulbrich, K. Doxorubicin bound to a HPMA copolymer carrier through hydrazone bond is effective also in a cancer cell line with a limited content of lysosomes. J. Control. Release, 2001, 74(1-3), 225-232.
[http://dx.doi.org/10.1016/S0168-3659(01)00320-0] [PMID: 11489498]
[23]
Rodney, R.; de Assis, D. Almeida, O.A.; Luiz, P.S.; Aparecida N.R., R.; Burgarelli L, E.; Corrêa, S, V.; Marques, M., M.; Per-digão F. S.; Martins, T.M.; Salgado F. R.; Renato, M.C.; Antônio, Miranda, F.L.; Lucio, S. N.; Beraldo, H.; Simão Macha-do, F. 4-Chlorophenylthioacetone-derived thiosemicarbazones as potent antitrypanosomal drug candidates: Investigations on the mode of action. Bioorg. Chem., 2021, 113, 105018.
[http://dx.doi.org/10.1016/j.bioorg.2021.105018] [PMID: 34098396]
[24]
Vieira, R.P.; Thompson, J.R.; Beraldo, H.; Storr, T. Partial conversion of thioamide into nitrile in a copper(II) complex of 2,6-diacetylpyridine bis(thiosemicarbazone), a drug prototype for Alzheimer’s disease. Acta Crystallogr. C Struct. Chem., 2015, 71(6), 430-434.
[http://dx.doi.org/10.1107/S205322961500813X] [PMID: 26044321]
[25]
Chow, M.J.; Licona, C.; Yuan Qiang Wong, D.; Pastorin, G.; Gaiddon, C.; Ang, W.H. Discovery and investigation of anticancer ruthenium-arene Schiff-base complexes via water-promoted combinatorial three-component assembly. J. Med. Chem., 2014, 57(14), 6043-6059.
[http://dx.doi.org/10.1021/jm500455p] [PMID: 25023617]
[26]
Gomes, L.M.F.; Vieira, R.P.; Jones, M.R.; Wang, M.C.P.; Dyrager, C.; Souza-Fagundes, E.M.; Da Silva, J.G.; Storr, T.; Beraldo, H. 8-Hydroxyquinoline Schiff-base compounds as antioxidants and modulators of copper-mediated Aβ peptide aggregation. J. Inorg. Biochem., 2014, 139, 106-116.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.04.011] [PMID: 25019963]
[27]
Inotsume, N.; Nakano, M. Hydrolytic behavior of dantrolene in acidic media at body temperature. Int. J. Pharm., 1983, 17(2-3), 357-360.
[http://dx.doi.org/10.1016/0378-5173(83)90047-9]
[28]
Lange, J.L.; Hayne, D.J.; Roselt, P.; McLean, C.A.; White, J.M.; Donnelly, P.S. A gallium(III) Schiff base-curcumin complex that binds to amyloid-β plaques. J. Inorg. Biochem., 2016, 162, 274-279.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.02.029] [PMID: 26988571]
[29]
Livertoux, M.H.; Jayyosi, Z.; Batt, A.M. Study of the physicochemical properties of aqueous dantrolene solutions by differential pulse polarography. Talanta, 1988, 35(8), 613-619.
[http://dx.doi.org/10.1016/0039-9140(88)80142-5] [PMID: 18964580]
[30]
Nagakubo, T.; Kumano, T.; Ohta, T.; Hashimoto, Y.; Kobayashi, M. Copper amine oxidases catalyze the oxidative deamination and hydrolysis of cyclic imines. Nat. Commun., 2019, 10(1), 413.
[http://dx.doi.org/10.1038/s41467-018-08280-w] [PMID: 30679427]
[31]
Oliveira, A.A.; Perdigão, G.M.C.; Rodrigues, L.E.; da Silva, J.G.; Souza-Fagundes, E.M.; Takahashi, J.A.; Rocha, W.R.; Beraldo, H. Cytotoxic and antimicrobial effects of indium(III) complexes with 2-acetylpyridine-derived thiosemicarbazones. Dalton Trans., 2017, 46(3), 918-932.
[http://dx.doi.org/10.1039/C6DT03657K] [PMID: 28009892]
[32]
Raiber, E.A.; Portella, G.; Martínez Cuesta, S.; Hardisty, R.; Murat, P.; Li, Z.; Iurlaro, M.; Dean, W.; Spindel, J.; Beraldi, D.; Liu, Z.; Dawson, M.A.; Reik, W.; Balasubramanian, S. 5-Formylcytosine organizes nucleosomes and forms Schiff base interactions with histones in mouse embryonic stem cells. Nat. Chem., 2018, 10(12), 1258-1266.
[http://dx.doi.org/10.1038/s41557-018-0149-x] [PMID: 30349137]
[33]
Brown, M.J.; Ameer, M.A.; Beier, K. Vitamin B6 DeficiencyStatPearls; StatPearls Publishing: Treasure Island, FL, 2021.
[34]
Johnstone, D.L.; Al-Shekaili, H.H.; Tarailo-Graovac, M.; Wolf, N.I.; Ivy, A.S.; Demarest, S.; Roussel, Y.; Ciapaite, J.; van Roermund, C.W.T.; Kernohan, K.D.; Kosuta, C.; Ban, K.; Ito, Y.; McBride, S.; Al-Thihli, K.; Abdelrahim, R.A.; Koul, R.; Al Futaisi, A.; Haaxma, C.A.; Olson, H.; Sigurdardottir, L.Y.; Arnold, G.L.; Gerkes, E.H.; Boon, M.; Heiner-Fokkema, M.R.; Noble, S.; Bosma, M.; Jans, J.; Koolen, D.A.; Kamsteeg, E.J.; Drögemöller, B.; Ross, C.J.; Majewski, J.; Cho, M.T.; Begtrup, A.; Wasserman, W.W.; Bui, T.; Brimble, E.; Violante, S.; Houten, S.M.; Wevers, R.A.; van Faassen, M.; Kema, I.P.; Lepage, N.; Lines, M.A.; Dyment, D.A.; Wanders, R.J.A.; Verhoeven-Duif, N.; Ekker, M.; Boycott, K.M.; Friedman, J.M.; Pena, I.A.; van Karnebeek, C.D.M. PLPHP deficiency: Clinical, genetic, biochemical, and mechanistic insights. Brain, 2019, 142(3), 542-559.
[http://dx.doi.org/10.1093/brain/awy346] [PMID: 30668673]
[35]
Wilson, M.P.; Plecko, B.; Mills, P.B.; Clayton, P.T. Disorders affecting vitamin B 6 metabolism. J. Inherit. Metab. Dis., 2019, 42(4), 629-646.
[http://dx.doi.org/10.1002/jimd.12060] [PMID: 30671974]
[36]
Cubellis, M.V.; Rozzo, C.; Nitti, G.; Arnone, M.I.; Marino, G.; Sannia, G. Cloning and sequencing of the gene coding for aspartate aminotransferase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Eur. J. Biochem., 1989, 186(1-2), 375-381.
[http://dx.doi.org/10.1111/j.1432-1033.1989.tb15219.x] [PMID: 2513189]
[37]
Kirsch, J.F.; Eichele, G.; Ford, G.C.; Vincent, M.G.; Jansonius, J.N.; Gehring, H.; Christen, P. Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure. J. Mol. Biol., 1984, 174(3), 497-525.
[http://dx.doi.org/10.1016/0022-2836(84)90333-4] [PMID: 6143829]
[38]
Kochhar, S.; Christen, P. Mechanism of racemization of amino acids by aspartate aminotransferase. Eur. J. Biochem., 1992, 203(3), 563-569.
[http://dx.doi.org/10.1111/j.1432-1033.1992.tb16584.x] [PMID: 1735441]
[39]
Surtees, R.; Mills, P.; Clayton, P. Inborn errors affecting vitamin B6 metabolism. Future Neurol., 2006, 1(5), 615-620.
[http://dx.doi.org/10.2217/14796708.1.5.615]
[40]
Eliot, A.C.; Kirsch, J.F. Pyridoxal phosphate enzymes: Mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem., 2004, 73(1), 383-415.
[http://dx.doi.org/10.1146/annurev.biochem.73.011303.074021] [PMID: 15189147]
[41]
Maini Rekdal, V.; Bess, E. N.; Bisanz, J. E.; Turnbaugh, P. J.; Balskus, E. P. Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism. Science (80), 2019, 364(6445)
[http://dx.doi.org/10.1126/science.aau6323]
[42]
van Kessel, S.P.; Frye, A.K.; El-Gendy, A.O.; Castejon, M.; Keshavarzian, A.; van Dijk, G.; El Aidy, S. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat. Commun., 2019, 10(1), 310.
[http://dx.doi.org/10.1038/s41467-019-08294-y] [PMID: 30659181]
[43]
Sonawane, S.J.; Kalhapure, R.S.; Govender, T. Hydrazone linkages in pH responsive drug delivery systems. Eur. J. Pharm. Sci., 2017, 99, 45-65.
[http://dx.doi.org/10.1016/j.ejps.2016.12.011] [PMID: 27979586]
[44]
Vieira, R.P.; Lessa, J.A.; Ferreira, W.C.; Costa, F.B.; Bastos, L.F.S.; Rocha, W.R.; Coelho, M.M.; Beraldo, H. Influence of susceptibility to hydrolysis and hydrophobicity of arylsemicarbazones on their anti-nociceptive and anti-inflammatory activities. Eur. J. Med. Chem., 2012, 50, 140-148.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.048] [PMID: 22357114]
[45]
Zhai, Y.; Zhou, X.; Zhang, Z.; Zhang, L.; Wang, D.; Wang, X.; Sun, W. Design, Synthesis, and characterization of schiff base bond-linked pH-Responsive doxorubicin prodrug based on functionalized mpeg-pcl for targeted cancer therapy. Polymers (Basel), 2018, 10(10), 1127.
[http://dx.doi.org/10.3390/polym10101127] [PMID: 30961052]
[46]
Bongarzone, S.; Savickas, V.; Luzi, F.; Gee, A.D. Targeting the Receptor for Advanced Glycation Endproducts (RAGE): A medicinal chemistry perspective. J. Med. Chem., 2017, 60(17), 7213-7232.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00058] [PMID: 28482155]
[47]
Hori, O.; Brett, J.; Slattery, T.; Cao, R.; Zhang, J.; Chen, J.X.; Nagashima, M.; Lundh, E.R.; Vijay, S.; Nitecki, D.; Morser, J.; Stern, D.; Schmidt, A.M. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J. Biol. Chem., 1995, 270(43), 25752-25761.
[http://dx.doi.org/10.1074/jbc.270.43.25752] [PMID: 7592757]
[48]
Kislinger, T. Fu, C.; Huber, B.; Qu, W.; Taguchi, A.; Du Yan, S.; Hofmann, M.; Yan, S.F.; Pischetsrieder, M.; Stern, D.; Schmidt, A.M. N(ε)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J. Biol. Chem., 1999, 274(44), 31740-31749.
[http://dx.doi.org/10.1074/jbc.274.44.31740] [PMID: 10531386]
[49]
Leclerc, E.; Fritz, G.; Weibel, M.; Heizmann, C.W.; Galichet, A. S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J. Biol. Chem., 2007, 282(43), 31317-31331.
[http://dx.doi.org/10.1074/jbc.M703951200] [PMID: 17726019]
[50]
Xie, J.; Reverdatto, S.; Frolov, A.; Hoffmann, R.; Burz, D.S.; Shekhtman, A. Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE). J. Biol. Chem., 2008, 283(40), 27255-27269.
[http://dx.doi.org/10.1074/jbc.M801622200] [PMID: 18667420]
[51]
Yamagishi, S.; Adachi, H.; Nakamura, K.; Matsui, T.; Jinnouchi, Y.; Takenaka, K.; Takeuchi, M.; Enomoto, M.; Furuki, K.; Hino, A.; Shigeto, Y.; Imaizumi, T. Positive association between serum levels of advanced glycation end products and the soluble form of receptor for advanced glycation end products in nondiabetic subjects. Metabolism, 2006, 55(9), 1227-1231.
[http://dx.doi.org/10.1016/j.metabol.2006.05.007] [PMID: 16919543]
[52]
Rouhiainen, A.; Kuja-Panula, J.; Wilkman, E.; Pakkanen, J.; Stenfors, J.; Tuominen, R.K.; Lepäntalo, M.; Carpén, O.; Parkkinen, J.; Rauvala, H. Regulation of monocyte migration by amphoterin (HMGB1). Blood, 2004, 104(4), 1174-1182.
[http://dx.doi.org/10.1182/blood-2003-10-3536] [PMID: 15130941]
[53]
Yan, S.D.; Chen, X.; Fu, J.; Chen, M.; Zhu, H.; Roher, A.; Slattery, T.; Zhao, L.; Nagashima, M.; Morser, J.; Migheli, A.; Nawroth, P.; Stern, D.; Schmidt, A.M. RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature, 1996, 382(6593), 685-691.
[http://dx.doi.org/10.1038/382685a0] [PMID: 8751438]
[54]
Deane, R.J. Is RAGE still a therapeutic target for Alzheimer’s disease? Future Med. Chem., 2012, 4(7), 915-925.
[http://dx.doi.org/10.4155/fmc.12.51] [PMID: 22571615]
[55]
Hudson, B.I.; Kalea, A.Z.; del Mar Arriero, M.; Harja, E.; Boulanger, E.; D’Agati, V.; Schmidt, A.M. Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J. Biol. Chem., 2008, 283(49), 34457-34468.
[http://dx.doi.org/10.1074/jbc.M801465200] [PMID: 18922799]
[56]
Ishihara, K.; Tsutsumi, K.; Kawane, S.; Nakajima, M.; Kasaoka, T. The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site. FEBS Lett., 2003, 550(1-3), 107-113.
[http://dx.doi.org/10.1016/S0014-5793(03)00846-9] [PMID: 12935895]
[57]
Rouhiainen, A.; Kuja-Panula, J.; Tumova, S.; Rauvala, H. RAGE-mediated cell signaling. Methods Mol. Biol., 2013, 963, 239-263.
[http://dx.doi.org/10.1007/978-1-62703-230-8_15] [PMID: 23296615]
[58]
Sakatani, S.; Yamada, K.; Homma, C.; Munesue, S.; Yamamoto, Y.; Yamamoto, H.; Hirase, H. Deletion of RAGE causes hyperactivity and increased sensitivity to auditory stimuli in mice. PLoS One, 2009, 4(12), e8309.
[http://dx.doi.org/10.1371/journal.pone.0008309] [PMID: 20016851]
[59]
Rong, L.L.; Yan, S.F.; Wendt, T.; Hans, D.; Pachydaki, S.; Bucciarelli, L.G.; Adebayo, A.; Qu, W.; Lu, Y.; Kostov, K.; Lalla, E.; Yan, S.D.; Gooch, C.; Szabolcs, M.; Trojaborg, W.; Hays, A.P.; Schmidt, A.M. RAGE modulates peripheral nerve regeneration via recruitment of both inflammatory and axonal outgrowth pathways. FASEB J., 2004, 18(15), 1818-1825.
[http://dx.doi.org/10.1096/fj.04-1900com] [PMID: 15576485]
[60]
Rong, L.L.; Trojaborg, W.; Qu, W.; Kostov, K.; Yan, S.D.; Gooch, C.; Szabolcs, M.; Hays, A.P.; Schmidt, A.M. Antagonism of RAGE suppresses peripheral nerve regeneration. FASEB J., 2004, 18(15), 1812-1817.
[http://dx.doi.org/10.1096/fj.04-1899com] [PMID: 15576484]
[61]
Rocha, M.; Vieira, A.; Michels, M.; Borges, H.; Goulart, A.; Fernandes, F.; Dominguini, D.; Ritter, C.; Dal-Pizzol, F. Effects of S100B neutralization on the long-term cognitive impairment and neuroinflammatory response in an animal model of sepsis. Neurochem. Int., 2021, 142, 104906.
[http://dx.doi.org/10.1016/j.neuint.2020.104906] [PMID: 33232757]
[62]
Bopp, C.; Bierhaus, A.; Hofer, S.; Bouchon, A.; Nawroth, P.P.; Martin, E.; Weigand, M.A. Bench-to-bedside review: The inflammation-perpetuating pattern-recognition receptor RAGE as a therapeutic target in sepsis. Crit. Care, 2007, 12(1), 201.
[http://dx.doi.org/10.1186/cc6164] [PMID: 18226173]
[63]
Pugazhenthi, S.; Qin, L.; Reddy, P.H. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(5), 1037-1045.
[http://dx.doi.org/10.1016/j.bbadis.2016.04.017] [PMID: 27156888]
[64]
Bierhaus, A.; Humpert, P.M.; Morcos, M.; Wendt, T.; Chavakis, T.; Arnold, B.; Stern, D.M.; Nawroth, P.P. Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med. (Berl.), 2005, 83(11), 876-886.
[http://dx.doi.org/10.1007/s00109-005-0688-7] [PMID: 16133426]
[65]
Schmidt, A.M.; Yan, S.D.; Yan, S.F.; Stern, D.M. The biology of the receptor for advanced glycation end products and its ligands. Biochim. Biophys. Acta Mol. Cell Res., 2000, 1498(2-3), 99-111.
[http://dx.doi.org/10.1016/S0167-4889(00)00087-2] [PMID: 11108954]
[66]
Naka, Y.; Bucciarelli, L.G.; Wendt, T.; Lee, L.K.; Rong, L.L.; Ramasamy, R.; Yan, S.F.; Schmidt, A.M. RAGE Axis. Arterioscler. Thromb. Vasc. Biol., 2004, 24(8), 1342-1349.
[http://dx.doi.org/10.1161/01.ATV.0000133191.71196.90] [PMID: 15155381]
[67]
Nah, S.S.; Choi, I.Y.; Yoo, B.; Kim, Y.G.; Moon, H.B.; Lee, C.K. Advanced glycation end products increases matrix metalloproteinase-1, -3, and -13, and TNF-α in human osteoarthritic chondrocytes. FEBS Lett., 2007, 581(9), 1928-1932.
[http://dx.doi.org/10.1016/j.febslet.2007.03.090] [PMID: 17434489]
[68]
Shaikh-Kader, A.; Houreld, N.N.; Rajendran, N.K.; Abrahamse, H. The link between advanced glycation end products and apoptosis in delayed wound healing. Cell Biochem. Funct., 2019, 37(6), 432-442.
[http://dx.doi.org/10.1002/cbf.3424] [PMID: 31318458]
[69]
Chou, D.K.H.; Zhang, J.; Smith, F.I.; McCaffery, P.; Jungalwala, F.B. Developmental expression of receptor for advanced glycation end products (RAGE), amphoterin and sulfoglucuronyl (HNK-1) carbohydrate in mouse cerebellum and their role in neurite outgrowth and cell migration. J. Neurochem., 2004, 90(6), 1389-1401.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02609.x] [PMID: 15341523]
[70]
Huttunen, H.J.; Kuja-Panula, J.; Sorci, G.; Agneletti, A.L.; Donato, R.; Rauvala, H. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J. Biol. Chem., 2000, 275(51), 40096-40105.
[http://dx.doi.org/10.1074/jbc.M006993200] [PMID: 11007787]
[71]
Huttunen, H.J.; Fages, C.; Rauvala, H. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J. Biol. Chem., 1999, 274(28), 19919-19924.
[http://dx.doi.org/10.1074/jbc.274.28.19919] [PMID: 10391939]
[72]
Meneghini, V.; Francese, M.T.; Carraro, L.; Grilli, M. A novel role for the receptor for advanced glycation end-products in neural progenitor cells derived from adult SubVentricular Zone. Mol. Cell. Neurosci., 2010, 45(2), 139-150.
[http://dx.doi.org/10.1016/j.mcn.2010.06.005] [PMID: 20600932]
[73]
Meneghini, V.; Bortolotto, V.; Francese, M.T.; Dellarole, A.; Carraro, L.; Terzieva, S.; Grilli, M. High-mobility group box-1 protein and β-amyloid oligomers promote neuronal differentiation of adult hippocampal neural progenitors via receptor for advanced glycation end products/nuclear factor-κB axis: relevance for Alzheimer’s disease. J. Neurosci., 2013, 33(14), 6047-6059.
[http://dx.doi.org/10.1523/JNEUROSCI.2052-12.2013] [PMID: 23554486]
[74]
Kikuchi, S.; Shinpo, K.; Ogata, A.; Tsuji, S.; Takeuchi, M.; Makita, Z.; Tashiro, K. Detection of N µ-(carboxymethyl)lysine (CML) and non-CML advanced glycation end-products in the anterior horn of amyotrophic lateral sclerosis spinal cord. Amyotroph. Lateral Scler., 2002, 3(2), 63-68.
[http://dx.doi.org/10.1080/146608202760196020] [PMID: 12215227]
[75]
Loske, C.; Neumann, A.; Cunningham, A.M.; Nichol, K.; Schinzel, R.; Riederer, P.; Münch, G. Cytotoxicity of advanced glycation endproducts is mediated by oxidative stress. J. Neural Transm. (Vienna), 1998, 105(8-9), 1005-1015.
[http://dx.doi.org/10.1007/s007020050108] [PMID: 9869332]
[76]
Piras, S.; Furfaro, A.L.; Domenicotti, C.; Traverso, N.; Marinari, U.M.; Pronzato, M.A.; Nitti, M. RAGE expression and ROS generation in neurons: Differentiation versus damage. Oxid. Med. Cell. Longev., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/9348651] [PMID: 27313835]
[77]
Takeuchi, M.; Bucala, R.; Suzuki, T.; Ohkubo, T.; Yamazaki, M.; Koike, T.; Kameda, Y.; Makita, Z. Neurotoxicity of advanced glycation end-products for cultured cortical neurons. J. Neuropathol. Exp. Neurol., 2000, 59(12), 1094-1105.
[http://dx.doi.org/10.1093/jnen/59.12.1094] [PMID: 11138929]
[78]
Mattson, M.P. Camandola, S. NF-κB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest., 2001, 107(3), 247-254.
[http://dx.doi.org/10.1172/JCI11916] [PMID: 11160145]
[79]
Riederer, P.; Hoyer, S. From benefit to damage. Glutamate and advanced glycation end products in Alzheimer brain. J. Neural Transm. (Vienna), 2006, 113(11), 1671-1677.
[http://dx.doi.org/10.1007/s00702-006-0591-6] [PMID: 17053873]
[80]
Sasaki, N.; Toki, S.; Chowei, H.; Saito, T.; Nakano, N.; Hayashi, Y.; Takeuchi, M.; Makita, Z. Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer’s disease. Brain Res., 2001, 888(2), 256-262.
[http://dx.doi.org/10.1016/S0006-8993(00)03075-4] [PMID: 11150482]
[81]
Bianchi, R.; Giambanco, I.; Donato, R. S100B/RAGE-dependent activation of microglia via NF-κB and AP-1. Neurobiol. Aging, 2010, 31(4), 665-677.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.05.017] [PMID: 18599158]
[82]
Chen, J.; Sun, Z.; Jin, M.; Tu, Y.; Wang, S.; Yang, X.; Chen, Q.; Zhang, X.; Han, Y.; Pi, R. Inhibition of AGEs/RAGE/Rho/ROCK pathway suppresses non-specific neuroinflammation by regulating BV2 microglial M1/M2 polarization through the NF-κB pathway. J. Neuroimmunol., 2017, 305, 108-114.
[http://dx.doi.org/10.1016/j.jneuroim.2017.02.010] [PMID: 28284330]
[83]
Hofmann, M.A.; Drury, S.; Fu, C.; Qu, W.; Taguchi, A.; Lu, Y.; Avila, C.; Kambham, N.; Bierhaus, A.; Nawroth, P.; Neurath, M.F.; Slattery, T.; Beach, D.; McClary, J.; Nagashima, M.; Morser, J.; Stern, D.; Schmidt, A.M. RAGE mediates a novel proinflammatory axis: A central cell surface receptor for S100/calgranulin polypeptides. Cell, 1999, 97(7), 889-901.
[http://dx.doi.org/10.1016/S0092-8674(00)80801-6] [PMID: 10399917]
[84]
Adami, C.; Bianchi, R.; Pula, G.; Donato, R. S100B-stimulated NO production by BV-2 microglia is independent of RAGE transducing activity but dependent on RAGE extracellular domain. Biochim. Biophys. Acta Mol. Cell Res., 2004, 1742(1-3), 169-177.
[http://dx.doi.org/10.1016/j.bbamcr.2004.09.008] [PMID: 15590067]
[85]
Bianchi, R.; Adami, C.; Giambanco, I.; Donato, R. S100B binding to RAGE in microglia stimulates COX-2 expression. J. Leukoc. Biol., 2007, 81(1), 108-118.
[http://dx.doi.org/10.1189/jlb.0306198] [PMID: 17023559]
[86]
Dukic-Stefanovic, S.; Gasic-Milenkovic, J.; Deuther-Conrad, W.; Münch, G. Signal transduction pathways in mouse microglia N-11 cells activated by advanced glycation endproducts (AGEs). J. Neurochem., 2003, 87(1), 44-55.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01988.x] [PMID: 12969251]
[87]
Lue, L.F.; Walker, D.G.; Brachova, L.; Beach, T.G.; Rogers, J.; Schmidt, A.M.; Stern, D.M.; Yan, S.D. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: Identification of a cellular activation mechanism. Exp. Neurol., 2001, 171(1), 29-45.
[http://dx.doi.org/10.1006/exnr.2001.7732] [PMID: 11520119]
[88]
Onyango, I.G.; Tuttle, J.B.; Bennett, J.P. Jr Altered intracellular signaling and reduced viability of Alzheimer’s disease neuronal cybrids is reproduced by β-amyloid peptide acting through receptor for advanced glycation end products (RAGE). Mol. Cell. Neurosci., 2005, 29(2), 333-343.
[http://dx.doi.org/10.1016/j.mcn.2005.02.012] [PMID: 15911356]
[89]
Schmidt, B.; Braun, H.; Narlawar, R. Drug development and PET-diagnostics for Alzheimer’s disease. Curr. Med. Chem., 2005, 12(14), 1677-1695.
[http://dx.doi.org/10.2174/0929867054367130] [PMID: 16022665]
[90]
Wang, A.L.; Li, Z.; Yuan, M.; Yu, A.C.H.; Zhu, X.A.; Tso, M.O.M. Sinomenine inhibits activation of rat retinal microglia induced by advanced glycation end products. Int. Immunopharmacol., 2007, 7(12), 1552-1558.
[http://dx.doi.org/10.1016/j.intimp.2007.07.030] [PMID: 17920532]
[91]
Wang, L.; Chen, K.; Liu, K.; Zhou, Y.; Zhang, T.; Wang, B.; Mi, M. DHA inhibited AGEs-induced retinal microglia activation via suppression of the PPARγ/NFκB pathway and reduction of signal transducers in the AGEs/RAGE axis recruitment into lipid rafts. Neurochem. Res., 2015, 40(4), 713-722.
[http://dx.doi.org/10.1007/s11064-015-1517-1] [PMID: 25596942]
[92]
Ferreira, L.S.S.; Fernandes, C.S.; Vieira, M.N.N.; De Felice, F.G. Insulin resistance in Alzheimer’s disease. Front. Neurosci., 2018, 12, 830.
[http://dx.doi.org/10.3389/fnins.2018.00830] [PMID: 30542257]
[93]
Park, R. Kook, S-Y.; Park, J-C.; Mook-Jung, I. Aβ1–42 reduces P-glycoprotein in the blood–brain barrier through RAGE–NF-κB signaling. Cell Death Dis., 2014, 5(6), e1299-e1299.
[http://dx.doi.org/10.1038/cddis.2014.258] [PMID: 24967961]
[94]
Wan, W.; Chen, H.; Li, Y. The potential mechanisms of Aβ-receptor for advanced glycation end-products interaction disrupting tight junctions of the blood-brain barrier in Alzheimer’s disease. Int. J. Neurosci., 2014, 124(2), 75-81.
[http://dx.doi.org/10.3109/00207454.2013.825258] [PMID: 23855502]
[95]
Fang, F.; Lue, L.F.; Yan, S.; Xu, H.; Luddy, J.S.; Chen, D.; Walker, D.G.; Stern, D.M.; Yan, S.; Schmidt, A.M.; Chen, J.X.; Yan, S.S. RAGE‐dependent signaling in microglia contributes to neuroinflammation, Aβ accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB J., 2010, 24(4), 1043-1055.
[http://dx.doi.org/10.1096/fj.09-139634] [PMID: 19906677]
[96]
Criscuolo, C.; Fontebasso, V.; Middei, S.; Stazi, M.; Ammassari-Teule, M.; Yan, S.S.; Origlia, N. Entorhinal Cortex dysfunction can be rescued by inhibition of microglial RAGE in an Alzheimer’s disease mouse model. Sci. Rep., 2017, 7(1), 42370.
[http://dx.doi.org/10.1038/srep42370] [PMID: 28205565]
[97]
Bayarsaikhan, E.; Bayarsaikhan, D.; Lee, J.; Son, M.; Oh, S.; Moon, J.; Park, H.-J.; Roshini, A.; Kim, S. U.; Song, B.-J. Microglial AGE-Albumin is critical for neuronal death in Parkinson’s disease: A possible implication for theranostics. Int. J. Nanomedicine, 2015, 10(Spec Is), 281-292.
[http://dx.doi.org/10.2147/IJN.S95077]
[98]
Wetzels, S.; Wouters, K.; Schalkwijk, C.; Vanmierlo, T.; Hendriks, J. Methylglyoxal-derived advanced glycation endproducts in multiple sclerosis. Int. J. Mol. Sci., 2017, 18(2), 421.
[http://dx.doi.org/10.3390/ijms18020421] [PMID: 28212304]
[99]
Wang, Z.; Li, D-D.; Liang, Y-Y.; Wang, D-S.; Cai, N-S. Activation of astrocytes by advanced glycation end products: Cytokines induction and nitric oxide release. Acta Pharmacol. Sin., 2002, 23(11), 974-980.
[PMID: 12421472]
[100]
Miyajima, H.; Osanai, M.; Chiba, H.; Nishikiori, N.; Kojima, T.; Ohtsuka, K.; Sawada, N. Glyceraldehyde-derived advanced glycation end-products preferentially induce VEGF expression and reduce GDNF expression in human astrocytes. Biochem. Biophys. Res. Commun., 2005, 330(2), 361-366.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.001] [PMID: 15796891]
[101]
Lüth, H.J.; Ogunlade, V.; Kuhla, B.; Kientsch-Engel, R.; Stahl, P.; Webster, J.; Arendt, T.; Münch, G. Age- and stage-dependent accumulation of advanced glycation end products in intracellular deposits in normal and Alzheimer’s disease brains. Cereb. Cortex, 2004, 15(2), 211-220.
[http://dx.doi.org/10.1093/cercor/bhh123] [PMID: 15238435]
[102]
Jones, R.S.; Minogue, A.M.; Connor, T.J.; Lynch, M.A. Amyloid-β-induced astrocytic phagocytosis is mediated by CD36, CD47 and RAGE. J. Neuroimmune Pharmacol., 2013, 8(1), 301-311.
[http://dx.doi.org/10.1007/s11481-012-9427-3] [PMID: 23238794]
[103]
Cirillo, C.; Capoccia, E.; Iuvone, T.; Cuomo, R.; Sarnelli, G.; Steardo, L.; Esposito, G. S100B inhibitor pentamidine attenuates reactive gliosis and reduces neuronal loss in a mouse model of Alzheimer’s Disease. BioMed Res. Int., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/508342] [PMID: 26295040]
[104]
González-Reyes, R.E.; Nava-Mesa, M.O.; Vargas-Sánchez, K.; Ariza-Salamanca, D.; Mora-Muñoz, L. Involvement of astrocytes in Alzheimer’s Disease from a neuroinflammatory and oxidative stress perspective. Front. Mol. Neurosci., 2017, 10, 427.
[http://dx.doi.org/10.3389/fnmol.2017.00427] [PMID: 29311817]
[105]
Romberg, C.; McTighe, S.M.; Heath, C.J.; Whitcomb, D.J.; Cho, K.; Bussey, T.J.; Saksida, L.M. False recognition in a mouse model of Alzheimer’s disease: Rescue with sensory restriction and memantine. Brain, 2012, 135(7), 2103-2114.
[http://dx.doi.org/10.1093/brain/aws074] [PMID: 22466291]
[106]
El Haj, M.; Kessels, R.P.C. Context memory in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. Extra, 2013, 3(1), 342-350.
[http://dx.doi.org/10.1159/000354187] [PMID: 24403906]
[107]
Salahuddin, P.; Rabbani, G.; Khan, R. The role of advanced glycation end products in various types of neurodegenerative disease: A therapeutic approach. Cell. Mol. Biol. Lett., 2014, 19(3), 407-437.
[http://dx.doi.org/10.2478/s11658-014-0205-5] [PMID: 25141979]
[108]
Jiang, T.; Tan, L.; Zhu, X.C.; Zhang, Q.Q.; Cao, L.; Tan, M.S.; Gu, L.Z.; Wang, H.F.; Ding, Z.Z.; Zhang, Y.D.; Yu, J.T. Upregulation of TREM2 ameliorates neuropathology and rescues spatial cognitive impairment in a transgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology, 2014, 39(13), 2949-2962.
[http://dx.doi.org/10.1038/npp.2014.164] [PMID: 25047746]
[109]
Götz, J.; Ittner, L.M.; Schonrock, N.; Cappai, R. An update on the toxicity of Aβ in Alzheimer’s disease. Neuropsychiatr. Dis. Treat., 2008, 4(6), 1033-1042.
[http://dx.doi.org/10.2147/NDT.S3016] [PMID: 19337449]
[110]
Bertram, L.; Tanzi, R.E. The current status of Alzheimer?s disease genetics: what do we tell the patients? Pharmacol. Res., 2004, 50(4), 385-396.
[http://dx.doi.org/10.1016/j.phrs.2003.11.018] [PMID: 15304236]
[111]
Van Cauwenberghe, C.; Van Broeckhoven, C.; Sleegers, K. The genetic landscape of Alzheimer disease: Clinical implications and perspectives. Genet. Med., 2016, 18(5), 421-430.
[http://dx.doi.org/10.1038/gim.2015.117] [PMID: 26312828]
[112]
Bekris, L.M.; Yu, C.E.; Bird, T.D.; Tsuang, D.W. Genetics of Alzheimer disease. J. Geriatr. Psychiatry Neurol., 2010, 23(4), 213-227.
[http://dx.doi.org/10.1177/0891988710383571] [PMID: 21045163]
[113]
Fyfe, I. APOE ε4 affects cognitive decline but does not block benefits of healthy lifestyle. Nat. Rev. Neurol., 2018, 14(3), 125.
[http://dx.doi.org/10.1038/nrneurol.2018.16] [PMID: 29422646]
[114]
Akhter, F.; Chen, D.; Akhter, A.; Sosunov, A.A.; Chen, A.; McKhann, G.M.; Yan, S.F.; Yan, S.S. High dietary advanced glycation end products impair mitochondrial and cognitive function. J. Alzheimers Dis., 2020, 76(1), 165-178.
[http://dx.doi.org/10.3233/JAD-191236] [PMID: 32444539]
[115]
Li, X.H.; Lv, B.L.; Xie, J.Z.; Liu, J.; Zhou, X.W.; Wang, J.Z. AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation. Neurobiol. Aging, 2012, 33(7), 1400-1410.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.02.003] [PMID: 21450369]
[116]
Lotan, R.; Ganmore, I.; Livny, A.; Shelly, S.; Zacharia, M.; Uribarri, J.; Beisswenger, P.; Cai, W.; Schnaider Beeri, M.; Troen, A.M. Design and feasibility of a randomized controlled pilot trial to reduce exposure and cognitive risk associated with advanced glycation end products in older adults with Type 2 Diabetes. Front. Nutr., 2021, 8, 614149.
[http://dx.doi.org/10.3389/fnut.2021.614149] [PMID: 33659267]
[117]
Vitek, M.P.; Bhattacharya, K.; Glendening, J.M.; Stopa, E.; Vlassara, H.; Bucala, R.; Manogue, K.; Cerami, A. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1994, 91(11), 4766-4770.
[http://dx.doi.org/10.1073/pnas.91.11.4766] [PMID: 8197133]
[118]
Srikanth, V.; Maczurek, A.; Phan, T.; Steele, M.; Westcott, B.; Juskiw, D.; Münch, G. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol. Aging, 2011, 32(5), 763-777.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.04.016] [PMID: 19464758]
[119]
Mazarati, A.; Maroso, M.; Iori, V.; Vezzani, A.; Carli, M. High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and receptor for advanced glycation end products. Exp. Neurol., 2011, 232(2), 143-148.
[http://dx.doi.org/10.1016/j.expneurol.2011.08.012] [PMID: 21884699]
[120]
Li, X.H.; Xie, J.Z.; Jiang, X.; Lv, B.L.; Cheng, X.S.; Du, L.L.; Zhang, J.Y.; Wang, J.Z.; Zhou, X.W. Methylglyoxal induces tau hyperphosphorylation via promoting AGEs formation. Neuromol. Med., 2012, 14(4), 338-348.
[http://dx.doi.org/10.1007/s12017-012-8191-0] [PMID: 22798221]
[121]
Son, S.M. Jung, E.S.; Shin, H.J.; Byun, J.; Mook-Jung, I. Aβ-induced formation of autophagosomes is mediated by RAGE-CaMKKβ-AMPK signaling. Neurobiol. Aging, 2012, 33(5), 1006.e11-1006.e23.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.09.039] [PMID: 22048125]
[122]
Kong, Y.; Liu, C.; Zhou, Y.; Qi, J.; Zhang, C.; Sun, B.; Wang, J.; Guan, Y. Progress of RAGE molecular imaging in Alzheimer’s Disease. Front. Aging Neurosci., 2020, 12, 227.
[http://dx.doi.org/10.3389/fnagi.2020.00227] [PMID: 32848706]
[123]
Cai, Z.; Liu, N.; Wang, C.; Qin, B.; Zhou, Y.; Xiao, M.; Chang, L.; Yan, L.J.; Zhao, B. Role of RAGE in Alzheimer’s Disease. Cell. Mol. Neurobiol., 2016, 36(4), 483-495.
[http://dx.doi.org/10.1007/s10571-015-0233-3] [PMID: 26175217]
[124]
Carnevale, D.; Mascio, G.; D’Andrea, I.; Fardella, V.; Bell, R.D.; Branchi, I.; Pallante, F.; Zlokovic, B.; Yan, S.S.; Lembo, G. Hypertension induces brain β-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation end products in brain vasculature. Hypertension, 2012, 60(1), 188-197.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.195511] [PMID: 22615109]
[125]
Zhang, H.; Chu, Y.; Zheng, H.; Wang, J.; Song, B.; Sun, Y. Liraglutide improved the cognitive function of diabetic mice via the receptor of advanced glycation end products down-regulation. Aging (Albany NY), 2021, 13(1), 525-536.
[http://dx.doi.org/10.18632/aging.202162] [PMID: 33298623]
[126]
Chen, C. Li, X.H.; Tu, Y.; Sun, H.T.; Liang, H.Q.; Cheng, S.X.; Zhang, S. Aβ-AGE aggravates cognitive deficit in rats via RAGE pathway. Neuroscience, 2014, 257, 1-10.
[http://dx.doi.org/10.1016/j.neuroscience.2013.10.056] [PMID: 24188791]
[127]
Wang, M.Y.; Ross-Cisneros, F.N.; Aggarwal, D.; Liang, C.Y.; Sadun, A.A. Receptor for advanced glycation end products is upregulated in optic neuropathy of Alzheimer’s disease. Acta Neuropathol., 2009, 118(3), 381-389.
[http://dx.doi.org/10.1007/s00401-009-0513-4] [PMID: 19277685]
[128]
Arancio, O.; Zhang, H.P.; Chen, X.; Lin, C.; Trinchese, F.; Puzzo, D.; Liu, S.; Hegde, A.; Yan, S.F.; Stern, A.; Luddy, J.S.; Lue, L.F.; Walker, D.G.; Roher, A.; Buttini, M.; Mucke, L.; Li, W.; Schmidt, A.M.; Kindy, M.; Hyslop, P.A.; Stern, D.M.; Du Yan, S.S. RAGE potentiates Aβ-induced perturbation of neuronal function in transgenic mice. EMBO J., 2004, 23(20), 4096-4105.
[http://dx.doi.org/10.1038/sj.emboj.7600415] [PMID: 15457210]
[129]
Yan, S.F.; Ramasamy, R.; Schmidt, A.M. Soluble RAGE: Therapy and biomarker in unraveling the RAGE axis in chronic disease and aging. Biochem. Pharmacol., 2010, 79(10), 1379-1386.
[http://dx.doi.org/10.1016/j.bcp.2010.01.013] [PMID: 20096667]
[130]
Fang, F.; Yu, Q.; Arancio, O.; Chen, D.; Gore, S.S.; Yan, S.S.; Yan, S.F. RAGE mediates Aβ accumulation in a mouse model of Alzheimer’s disease via modulation of β- and γ-secretase activity. Hum. Mol. Genet., 2018, 27(6), 1002-1014.
[http://dx.doi.org/10.1093/hmg/ddy017] [PMID: 29329433]
[131]
Miller, M.C.; Tavares, R.; Johanson, C.E.; Hovanesian, V.; Donahue, J.E.; Gonzalez, L.; Silverberg, G.D.; Stopa, E.G. Hippocampal RAGE immunoreactivity in early and advanced Alzheimer’s disease. Brain Res., 2008, 1230, 273-280.
[http://dx.doi.org/10.1016/j.brainres.2008.06.124] [PMID: 18657529]
[132]
Lees, A.J.; Hardy, J.; Revesz, T. Parkinson’s disease. Lancet, 2009, 373(9680), 2055-2066.
[http://dx.doi.org/10.1016/S0140-6736(09)60492-X] [PMID: 19524782]
[133]
Pfeiffer, R.F. Non-motor symptoms in Parkinson’s disease. Parkinsonism Relat. Disord., 2016, 22(Suppl. 1), S119-S122.
[http://dx.doi.org/10.1016/j.parkreldis.2015.09.004] [PMID: 26372623]
[134]
Braak, H.; Tredici, K.D.; Rüb, U.; de Vos, R.A.I.; Jansen Steur, E.N.H.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging, 2003, 24(2), 197-211.
[http://dx.doi.org/10.1016/S0197-4580(02)00065-9] [PMID: 12498954]
[135]
Irizarry, M.C.; Growdon, W.; Gomez-isla, T.; Newell, K.; George, J.M.; Clayton, D.F.; Hyman, B.T. Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain α-synuclein immunoreactivity. J. Neuropathol. Exp. Neurol., 1998, 57(4), 334-337.
[http://dx.doi.org/10.1097/00005072-199804000-00005] [PMID: 9600226]
[136]
Padmaraju, V.; Bhaskar, J.J.; Prasada Rao, U.J.S.; Salimath, P.V.; Rao, K.S. Role of advanced glycation on aggregation and DNA binding properties of α-synuclein. J. Alzheimers Dis., 2011, 24(s2)(Suppl. 2), 211-221.
[http://dx.doi.org/10.3233/JAD-2011-101965] [PMID: 21441659]
[137]
Teismann, P.; Sathe, K.; Bierhaus, A.; Leng, L.; Martin, H.L.; Bucala, R.; Weigle, B.; Nawroth, P.P.; Schulz, J.B. Receptor for advanced glycation endproducts (RAGE) deficiency protects against MPTP toxicity. Neurobiol. Aging, 2012, 33(10), 2478-2490.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.12.006] [PMID: 22227007]
[138]
Abdelsalam, R.M.; Safar, M.M. Neuroprotective effects of vildagliptin in rat rotenone Parkinson’s disease model: Role of RAGE-NFκB and Nrf2-antioxidant signaling pathways. J. Neurochem., 2015, 133(5), 700-707.
[http://dx.doi.org/10.1111/jnc.13087] [PMID: 25752913]
[139]
Viana, S.D.; Fernandes, R.C.; Canas, P.M.; Silva, A.M.; Carvalho, F.; Ali, S.F.; Fontes Ribeiro, C.A.; Pereira, F.C. Presymptomatic MPTP mice show neurotrophic S100B/mRAGE striatal levels. CNS Neurosci. Ther., 2016, 22(5), 396-403.
[http://dx.doi.org/10.1111/cns.12508] [PMID: 26843141]
[140]
Dalfó, E.; Portero-Otín, M.; Ayala, V.; Martínez, A.; Pamplona, R.; Ferrer, I. Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J. Neuropathol. Exp. Neurol., 2005, 64(9), 816-830.
[http://dx.doi.org/10.1097/01.jnen.0000179050.54522.5a] [PMID: 16141792]
[141]
Münch, G.; Lüth, H.J.; Wong, A.; Arendt, T.; Hirsch, E.; Ravid, R.; Riederer, P. Crosslinking of α-synuclein by advanced glycation endproducts-an early pathophysiological step in Lewy body formation? J. Chem. Neuroanat., 2000, 20(3-4), 253-257.
[http://dx.doi.org/10.1016/S0891-0618(00)00096-X] [PMID: 11207423]
[142]
Sharma, A.; Weber, D.; Raupbach, J.; Dakal, T.C.; Fließbach, K.; Ramirez, A.; Grune, T.; Wüllner, U. Advanced glycation end products and protein carbonyl levels in plasma reveal sex-specific differences in Parkinson’s and Alzheimer’s disease. Redox Biol., 2020, 34, 101546.
[http://dx.doi.org/10.1016/j.redox.2020.101546] [PMID: 32460130]
[143]
Sathe, K.; Maetzler, W.; Lang, J.D.; Mounsey, R.B.; Fleckenstein, C.; Martin, H.L.; Schulte, C.; Mustafa, S.; Synofzik, M.; Vukovic, Z.; Itohara, S.; Berg, D.; Teismann, P. S100B is increased in Parkinson’s disease and ablation protects against MPTP-induced toxicity through the RAGE and TNF-α pathway. Brain, 2012, 135(11), 3336-3347.
[http://dx.doi.org/10.1093/brain/aws250] [PMID: 23169921]
[144]
Castellani, R.; Smith, M.A.; Richey, G.L.; Perry, G. Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Res., 1996, 737(1-2), 195-200.
[http://dx.doi.org/10.1016/0006-8993(96)00729-9] [PMID: 8930366]
[145]
Guerrero, E.; Vasudevaraju, P.; Hegde, M.L.; Britton, G.B.; Rao, K.S. Recent advances in α-synuclein functions, advanced glycation, and toxicity: implications for Parkinson’s disease. Mol. Neurobiol., 2013, 47(2), 525-536.
[http://dx.doi.org/10.1007/s12035-012-8328-z] [PMID: 22923367]
[146]
Grad, L.I.; Rouleau, G.A.; Ravits, J.; Cashman, N.R. Clinical Spectrum of Amyotrophic Lateral Sclerosis (ALS). Cold Spring Harb. Perspect. Med., 2017, 7(8), a024117.
[http://dx.doi.org/10.1101/cshperspect.a024117] [PMID: 28003278]
[147]
Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers, 2017, 3(1), 17071.
[http://dx.doi.org/10.1038/nrdp.2017.71] [PMID: 28980624]
[148]
Walling, A.D. Amyotrophic lateral sclerosis: Lou Gehrig’s disease. Am. Fam. Physician, 1999, 59(6), 1489-1496.
[PMID: 10193591]
[149]
Brites, D.; Vaz, A.R. Microglia centered pathogenesis in ALS: Insights in cell interconnectivity. Front. Cell. Neurosci., 2014, 8, 117.
[http://dx.doi.org/10.3389/fncel.2014.00117] [PMID: 24904276]
[150]
Tolosa, L.; Caraballo-Miralles, V.; Olmos, G.; Lladó, J. TNF-α potentiates glutamate-induced spinal cord motoneuron death via NF-κ. B. Mol. Cell. Neurosci., 2011, 46(1), 176-186.
[http://dx.doi.org/10.1016/j.mcn.2010.09.001] [PMID: 20849956]
[151]
Mitchell, J.D.; Borasio, G.D. Amyotrophic lateral sclerosis. Lancet, 2007, 369(9578), 2031-2041.
[http://dx.doi.org/10.1016/S0140-6736(07)60944-1] [PMID: 17574095]
[152]
Arai, K.; Maguchi, S.; Fujii, S.; Ishibashi, H.; Oikawa, K.; Taniguchi, N. Glycation and inactivation of human Cu-Zn-superoxide dismutase. Identification of the in vitro glycated sites. J. Biol. Chem., 1987, 262(35), 16969-16972.
[http://dx.doi.org/10.1016/S0021-9258(18)45479-8] [PMID: 3680284]
[153]
Takamiya, R.; Takahashi, M.; Myint, T.; Park, Y.S.; Miyazawa, N.; Endo, T.; Fujiwara, N.; Sakiyama, H.; Misonou, Y.; Miyamoto, Y.; Fujii, J.; Taniguchi, N. Glycation proceeds faster in mutated Cu, Zn‐superoxide dismutases related to familial amyotrophic lateral sclerosis. FASEB J., 2003, 17(8), 1-18.
[http://dx.doi.org/10.1096/fj.02-0768fje] [PMID: 12626432]
[154]
Juranek, J.K.; Daffu, G.K.; Geddis, M.S.; Li, H.; Rosario, R.; Kaplan, B.J.; Kelly, L.; Schmidt, A.M. Soluble RAGE treatment delays progression of amyotrophic lateral sclerosis in SOD1 mice. Front. Cell. Neurosci., 2016, 10, 117.
[http://dx.doi.org/10.3389/fncel.2016.00117] [PMID: 27242430]
[155]
Lo Coco, D.; Veglianese, P.; Allievi, E.; Bendotti, C. Distribution and cellular localization of high mobility group box protein 1 (HMGB1) in the spinal cord of a transgenic mouse model of ALS. Neurosci. Lett., 2007, 412(1), 73-77.
[http://dx.doi.org/10.1016/j.neulet.2006.10.063] [PMID: 17196331]
[156]
Serrano, A.; Donno, C.; Giannetti, S. Perić M.; Andjus, P.; D’Ambrosi, N.; Michetti, F. The Astrocytic S100B protein with its receptor RAGE is aberrantly expressed in SOD1 G93A models, and its inhibition decreases the expression of proinflammatory genes. Mediators Inflamm., 2017, 2017, 1-14.
[http://dx.doi.org/10.1155/2017/1626204] [PMID: 28713206]
[157]
Shibata, N.; Hirano, A.; Hedley-Whyte, T.E.; Dal Canto, M.C.; Nagai, R.; Uchida, K.; Horiuchi, S.; Kawaguchi, M.; Yamamoto, T.; Kobayashi, M. Selective formation of certain advanced glycation end products in spinal cord astrocytes of humans and mice with superoxide dismutase-1 mutation. Acta Neuropathol., 2002, 104(2), 171-178.
[http://dx.doi.org/10.1007/s00401-002-0537-5] [PMID: 12111360]
[158]
Chou, S.M.; Wang, H.S.; Taniguchi, A.; Bucala, R. Advanced glycation endproducts in neurofilament conglomeration of motoneurons in familial and sporadic amyotrophic lateral sclerosis. Mol. Med., 1998, 4(5), 324-332.
[http://dx.doi.org/10.1007/BF03401739] [PMID: 9642682]
[159]
Casula, M.; Iyer, A.M.; Spliet, W.G.M.; Anink, J.J.; Steentjes, K.; Sta, M.; Troost, D.; Aronica, E. Toll-like receptor signaling in amyotrophic lateral sclerosis spinal cord tissue. Neuroscience, 2011, 179, 233-243.
[http://dx.doi.org/10.1016/j.neuroscience.2011.02.001] [PMID: 21303685]
[160]
Derk, J.; MacLean, M.; Juranek, J.; Schmidt, A.M. The receptor for advanced glycation endproducts (RAGE) and mediation of inflammatory neurodegeneration. J. Alzheimers Dis. Parkinsonism, 2018, 8(1), 421.
[http://dx.doi.org/10.4172/2161-0460.1000421] [PMID: 30560011]
[161]
Juranek, J.K.; Daffu, G.K.; Wojtkiewicz, J.; Lacomis, D.; Kofler, J.; Schmidt, A.M. Receptor for Advanced Glycation End Products and its inflammatory ligands are upregulated in amyotrophic lateral sclerosis. Front. Cell. Neurosci., 2015, 9, 485.
[http://dx.doi.org/10.3389/fncel.2015.00485] [PMID: 26733811]
[162]
Paudel, Y.N.; Angelopoulou, E.; Piperi, C.; Othman, I.; Aamir, K.; Shaikh, M.F. Impact of HMGB1, RAGE, and TLR4 in Alzheimer’s Disease (AD): From risk factors to therapeutic targeting. Cells, 2020, 9(2), 383.
[http://dx.doi.org/10.3390/cells9020383] [PMID: 32046119]
[163]
Volpe, C.; Nogueira-Machado, J. Is innate immunity and inflammasomes involved in pathogenesis of amyotrophic lateral sclerosis (ALS)? Recent Pat. Endocr. Metab. Immune Drug Discov., 2015, 9(1), 40-45.
[http://dx.doi.org/10.2174/1872214809666150407111420] [PMID: 25845840]
[164]
Iłżecka, J. Serum-soluble receptor for advanced glycation end product levels in patients with amyotrophic lateral sclerosis. Acta Neurol. Scand., 2009, 120(2), 119-122.
[http://dx.doi.org/10.1111/j.1600-0404.2008.01133.x] [PMID: 19053950]
[165]
Engelen, L.; Stehouwer, C.D.A.; Schalkwijk, C.G. Current therapeutic interventions in the glycation pathway: Evidence from clinical studies. Diabetes Obes. Metab., 2013, 15(8), 677-689.
[http://dx.doi.org/10.1111/dom.12058] [PMID: 23279611]
[166]
Bolton, W.K.; Cattran, D.C.; Williams, M.E.; Adler, S.G.; Appel, G.B.; Cartwright, K.; Foiles, P.G.; Freedman, B.I.; Raskin, P.; Ratner, R.E.; Spinowitz, B.S.; Whittier, F.C.; Wuerth, J.P. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am. J. Nephrol., 2004, 24(1), 32-40.
[http://dx.doi.org/10.1159/000075627] [PMID: 14685005]
[167]
Rowan, S.; Bejarano, E.; Taylor, A. Mechanistic targeting of advanced glycation end-products in age-related diseases. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(12), 3631-3643.
[http://dx.doi.org/10.1016/j.bbadis.2018.08.036] [PMID: 30279139]
[168]
Servetnick, D.A.; Bryant, D.; Wells-Knecht, K.J.; Wiesenfeld, P.L. L-Arginine inhibits in vitro nonenzymatic glycation and advanced glycosylated end product formation of human serum albumin. Amino Acids, 1996, 11(1), 69-81.
[http://dx.doi.org/10.1007/BF00805722] [PMID: 24178639]
[169]
Borg, D.J.; Forbes, J.M. Targeting advanced glycation with pharmaceutical agents: Where are we now? Glycoconj. J., 2016, 33(4), 653-670.
[http://dx.doi.org/10.1007/s10719-016-9691-1] [PMID: 27392438]
[170]
Sabbagh, M.N.; Agro, A.; Bell, J.; Aisen, P.S.; Schweizer, E.; Galasko, D. PF-04494700, an oral inhibitor of receptor for advanced glycation end products (RAGE), in Alzheimer disease. Alzheimer Dis. Assoc. Disord., 2011, 25(3), 206-212.
[http://dx.doi.org/10.1097/WAD.0b013e318204b550] [PMID: 21192237]
[171]
Galasko, D.; Bell, J.; Mancuso, J.Y.; Kupiec, J.W.; Sabbagh, M.N.; van Dyck, C.; Thomas, R.G.; Aisen, P.S. Clinical trial of an inhibitor of RAGE-A interactions in Alzheimer disease. Neurology, 2014, 82(17), 1536-1542.
[http://dx.doi.org/10.1212/WNL.0000000000000364] [PMID: 24696507]
[172]
Dhar, A.; Udumula, M.P.; Medapi, B.; Bhat, A.; Dhar, I.; Malapati, P.; Babu, M.S.; Kalra, J.; Sriram, D.; Desai, K.M. Pharmacological evaluation of novel alagebrium analogs as methylglyoxal scavengers in vitro in cardiac myocytes and in vivo in SD rats. Int. J. Cardiol., 2016, 223, 581-589.
[http://dx.doi.org/10.1016/j.ijcard.2016.08.243] [PMID: 27561164]
[173]
Jahan, H.; Choudhary, M.I. Glycation, carbonyl stress and AGEs inhibitors: A patent review. Expert Opin. Ther. Pat., 2015, 25(11), 1267-1284.
[http://dx.doi.org/10.1517/13543776.2015.1076394] [PMID: 26293545]
[174]
Rabbani, N.; Xue, M.; Thornalley, P.J. Methylglyoxal-induced dicarbonyl stress in aging and disease: First steps towards glyoxalase 1-based treatments. Clin. Sci. (Lond.), 2016, 130(19), 1677-1696.
[http://dx.doi.org/10.1042/CS20160025] [PMID: 27555612]
[175]
Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Metformin inhibits advanced glycation end products (AGEs)-induced renal tubular cell injury by suppressing reactive oxygen species generation via reducing receptor for AGEs (RAGE) expression. Horm. Metab. Res., 2012, 44(12), 891-895.
[http://dx.doi.org/10.1055/s-0032-1321878] [PMID: 22864903]
[176]
Cooper, M.E.; Thallas, V.; Forbes, J.; Scalbert, E.; Sastra, S.; Darby, I.; Soulis, T. The cross-link breaker, N-phenacylthiazolium bromide prevents vascular advanced glycation end-product accumulation. Diabetologia, 2000, 43(5), 660-664.
[http://dx.doi.org/10.1007/s001250051355] [PMID: 10855541]
[177]
Ruggiero-Lopez, D.; Lecomte, M.; Moinet, G.; Patereau, G.; Lagarde, M.; Wiernsperger, N. Reaction of metformin with dicarbonyl compounds. possible implication in the inhibition of advanced glycation end product formation. Biochem. Pharmacol., 1999, 58(11), 1765-1773.
[http://dx.doi.org/10.1016/S0006-2952(99)00263-4] [PMID: 10571251]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy