Generic placeholder image

Current Functional Foods

Editor-in-Chief

ISSN (Print): 2666-8629
ISSN (Online): 2666-8637

Research Article

Characterization of Phenolic Compounds of Olea europaea L. and Ceratonia siliqua L. Leaf Extracts by HPLC-ESI-MS

Author(s): Saida Meziani*, B. Dave Oomah and Cédric Bertrand

Volume 1, Issue 1, 2023

Published on: 25 January, 2023

Article ID: e081222211749 Pages: 8

DOI: 10.2174/2666862901666221208093036

Price: $65

Abstract

Background: Olive (Olea europaea L.) and carob (Ceratonia siliqua L.), which contain considerable amounts of phenolic compounds, are the most important nutritional and therapeutic plants in the Mediterranean basin.

Objectives: The goal of this work is to revalue carob and olive leaves as key sources of polyphenols, hence increasing the value of waste goods.

Methods: In this study, aqueous acetone or ethanol (80% v/v) extracts of olive (O. europaea L. cultivar aimel) and carob (C. siliqua L.) leaves from Algeria were evaluated for phenolic content, and the extracts were characterized by reverse-phase high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS).

Discussion and Results: The total phenolic content of olive and carob leaf extracts ranged from 5.6 to 23 mg GAE/g. The use of HPLC-ESI-MS to investigate phenolics revealed that the extracts included a variety of phenolic compounds, including 23 compounds in olive leaf extracts and 17 compounds in carob leaf extracts. In olive and carob, the major phenolic components are oleuropein and myricetin rhamnoside, respectively.

Conclusion: According to our findings, Olea europaea and Ceratonia siliqua appear to be rich suppliers of natural chemicals. These plants have a lot of potential in terms of medications and functional foods.

According to our findings, Olea europaea and Ceratonia siliqua appear to be rich suppliers of natural chemicals. These plants have a lot of potential in terms of medications and functional foods.

[1]
Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects-A review. J. Funct. Foods, 2015, 18, 820-897.
[http://dx.doi.org/10.1016/j.jff.2015.06.018]
[2]
Lee-Huang, S.; Zhang, L.; Lin Huang, P.; Chang, Y.T.; Huang, P.L. Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1 infection and OLE treatment. Biochem. Biophys. Res. Commun., 2003, 307(4), 1029-1037.
[http://dx.doi.org/10.1016/S0006-291X(03)01292-0] [PMID: 12878215]
[3]
Korukluoglu, M.; Sahan, Y.; Yigit, A.; Karakas, R. Antifungal activity of olive leaf (Olea Europaea L.) extracts from the Trilye Region of Turkey. Ann. Microbiol., 2006, 56(4), 359-362.
[http://dx.doi.org/10.1007/BF03175032]
[4]
Ranalli, A.; Contento, S.; Lucera, L.; Di Febo, M.; Marchegiani, D.; Di Fonzo, V. Factors affecting the contents of iridoid oleuropein in olive leaves (Olea europaea L.). J. Agric. Food Chem., 2006, 54(2), 434-440.
[http://dx.doi.org/10.1021/jf051647b] [PMID: 16417301]
[5]
Pereira, A.; Ferreira, I.; Marcelino, F.; Valentão, P.; Andrade, P.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules, 2007, 12(5), 1153-1162.
[http://dx.doi.org/10.3390/12051153] [PMID: 17873849]
[6]
Sudjana, A.N.; D’Orazio, C.; Ryan, V.; Rasool, N.; Ng, J.; Islam, N.; Riley, T.V.; Hammer, K.A. Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int. J. Antimicrob. Agents, 2009, 33(5), 461-463.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.10.026] [PMID: 19135874]
[7]
Long, H.S.; Tilney, P.M.; Van Wyk, B.E. The ethnobotany and pharmacognosy of Olea europaea subsp. africana (Oleaceae). S. Afr. J. Bot., 2010, 76(2), 324-331.
[http://dx.doi.org/10.1016/j.sajb.2009.12.005]
[8]
Paudel, S.; Magrati, T.; Lamichhane, J.R. Antimicrobial activity of wild olive crude extracts in vitro. Int. J. Pharm. Sci. Res., 2011, 2, 110-113.
[9]
Aissani, N.; Coroneo, V.; Fattouch, S.; Caboni, P. Inhibitory effect of carob (Ceratonia siliqua) leaves methanolic extract on Listeria monocytogenes. J. Agric. Food Chem., 2012, 60(40), 9954-9958.
[http://dx.doi.org/10.1021/jf3029623] [PMID: 22978382]
[10]
Khalatbary, A.R.; Zarrinjoei, G.R. Anti-inflammatory effect of oleuropein in experimental rat spinal cord trauma. Iran. Red Crescent Med. J., 2012, 14(4), 229-234.
[PMID: 22754686]
[11]
Hadrich, F.; Mahmoudi, A.; Bouallagui, Z.; Feki, I.; Isoda, H.; Feve, B.; Sayadi, S. Evaluation of hypocholesterolemic effect of oleuropein in cholesterol-fed rats. Chem. Biol. Interact., 2016, 252, 54-60.
[http://dx.doi.org/10.1016/j.cbi.2016.03.026] [PMID: 27019295]
[12]
Ghomari, O.; Sounni, F.; Massaoudi, Y.; Ghanam, J.; Drissi Kaitouni, L.B.; Merzouki, M.; Benlemlih, M. Phenolic profile (HPLC-UV) of olive leaves according to extraction procedure and assessment of antibacterial activity. Biotechnol. Rep. (Amst.), 2019, 23, e00347.
[http://dx.doi.org/10.1016/j.btre.2019.e00347] [PMID: 31193889]
[13]
Custódio, L.; Escapa, A.L.; Fernandes, E.; Fajardo, A.; Aligué, R.; Alberício, F.; Neng, N.; Nogueira, J.M.F.; Romano, A. L.; Escapa, A.L.; Fernandes, E.; Fajardo, A.; Aligué, R.; Alberício, F.; Neng, N.; Nogueira, J.M.F.; Romano, A. Phytochemical profile, antioxidant and cytotoxic activities of the carob tree (Ceratonia siliqua L.) germ flour extracts. Plant Foods Hum. Nutr., 2011, 66(1), 78-84.
[http://dx.doi.org/10.1007/s11130-011-0214-8]
[14]
Uysal, S.; Zengin, G.; Aktumsek, A.; Karatas, S. Chemical and biological approaches on nine fruit tree leaves collected from the Mediterranean region of Turkey. J. Funct. Foods, 2016, 22, 518-532.
[http://dx.doi.org/10.1016/j.jff.2016.02.006]
[15]
Stavrou, I.J.; Christou, A.; Kapnissi-Christodoulou, C.P. Polyphenols in carobs: A review on their composition, antioxidant capacity and cytotoxic effects, and health impact. Food Chem., 2018, 269, 355-374.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.152] [PMID: 30100447]
[16]
Makris, D.P.; Kefalas, P. Carob pods (Ceratonia siliqua L.) as a source of polyphenolic antioxidants. Food Technol. Biotechnol., 2004, 42, 105-108.
[17]
Custódio, L.; Patarra, J.; Alberício, F.; Neng, N.R.; Nogueira, J.M.F.; Romano, A. In vitro antioxidant and inhibitory activity of water decoctions of carob tree ( Ceratonia siliqua L.) on cholinesterases, α-amylase and α-glucosidase. Nat. Prod. Res., 2015, 29(22), 2155-2159.
[http://dx.doi.org/10.1080/14786419.2014.996147] [PMID: 25582851]
[18]
Corsi, L.; Avallone, R.; Cosenza, F.; Farina, F.; Baraldi, C.; Baraldi, M. Antiproliferative effects of Ceratonia siliqua L. on mouse hepatocellular carcinoma cell line. Fitoterapia, 2002, 73(7-8), 674-684.
[http://dx.doi.org/10.1016/S0367-326X(02)00227-7] [PMID: 12490228]
[19]
Hsouna, A.B.; Saoudi, M.; Trigui, M.; Jamoussi, K.; Boudawara, T.; Jaoua, S.; Feki, A.E. Characterization of bioactive compounds and ameliorative effects of Ceratonia siliqua leaf extract against CCl4 induced hepatic oxidative damage and renal failure in rats. Food Chem. Toxicol., 2011, 49(12), 3183-3191.
[http://dx.doi.org/10.1016/j.fct.2011.09.034] [PMID: 21996303]
[20]
Kivçak, B.; Mert, T.; Ozturk, H.T. Antimicrobial and cytotoxic activity of Ceratonia siliqua L. extracts. Turk. J. Biol., 2002, 26, 197-200.
[21]
Ibrahim, A.H.; Abd El-Baky, R.M.; Desoukey, S.Y.; Abd-Lateff, A.; Kamel, M.S. Bacterial growth inhibitory effect of Ceratonia siliqua L. plant extracts alone and in combination with some antimicrobial agents, Sect. Title Microbial. Algal. Fungal Biochem., 2013, 1, 3-13.
[22]
Ben Othmen, K.; Elfalleh, W.; García Beltrán, J.M.; Esteban, M.Á.; Haddad, M. An in vitro study of the effect of carob (Ceratonia siliqua L.) leaf extracts on gilthead seabream (Sparus aurata L.) leucocyte activities. Antioxidant, cytotoxic and bactericidal properties. Fish Shellfish Immunol., 2020, 99, 35-43.
[http://dx.doi.org/10.1016/j.fsi.2020.02.005] [PMID: 32032761]
[23]
Meziani, S.; Oomah, B.D.; Zaidi, F.; Simon-Levert, A.; Bertrand, C.; Zaidi-Yahiaoui, R. Antibacterial activity of carob (Ceratonia siliqua L.) extracts against phytopathogenic bacteria Pectobacterium atrosepticum. Microb. Pathog., 2015, 78, 95-102.
[http://dx.doi.org/10.1016/j.micpath.2014.12.001] [PMID: 25489722]
[24]
Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M.; Lester, P. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol., 1999, 299, 152-178.
[http://dx.doi.org/10.1016/S0076-6879(99)99017-1]
[25]
Mylonaki, S.; Kiassos, E.; Makris, D.P.; Kefalas, P. Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Anal. Bioanal. Chem., 2008, 392(5), 977-985.
[http://dx.doi.org/10.1007/s00216-008-2353-9] [PMID: 18762919]
[26]
Hayes, J.E.; Allen, P.; Brunton, N.; O’Grady, M.N.; Kerry, J.P. Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical products: Olive leaf extract (Olea europaea L.), lutein, sesamol and ellagic acid. Food Chem., 2011, 126(3), 948-955.
[http://dx.doi.org/10.1016/j.foodchem.2010.11.092]
[27]
Ryan, D.; Robards, K.; Lavee, S. Determination of phenolic compounds in olives by reversed-phase chromatography and mass spectrometry. J. Chromatogr. A, 1999, 832(1-2), 87-96.
[http://dx.doi.org/10.1016/S0021-9673(98)00838-3]
[28]
Savarese, M.; Demarco, E.; Sacchi, R. Characterization of phenolic extracts from olives (Olea europaea cv. Pisciottana) by electrospray ionization mass spectrometry. Food Chem., 2007, 105(2), 761-770.
[http://dx.doi.org/10.1016/j.foodchem.2007.01.037]
[29]
Kontogianni, V.G.; Charisiadis, P.; Margianni, E.; Lamari, F.N.; Gerothanassis, I.P.; Tzakos, A.G. Olive leaf extracts are a natural source of advanced glycation end product inhibitors. J. Med. Food, 2013, 16(9), 817-822.
[http://dx.doi.org/10.1089/jmf.2013.0016] [PMID: 24044491]
[30]
Ortega-García, F.; Blanco, S.; Peinado, M.A.; Peragón, J. Polyphenol oxidase and its relationship with oleuropein concentration in fruits and leaves of olive (Olea europaea) cv. ‘Picual’ trees during fruit ripening. Tree Physiol., 2008, 28(1), 45-54.
[http://dx.doi.org/10.1093/treephys/28.1.45] [PMID: 17938113]
[31]
Quirantes-Piné, R.; Lozano-Sánchez, J.; Herrero, M.; Ibáñez, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-ESI-QTOF-MS as a powerful analytical tool for characterizing phenolic compounds in olive-leaf extracts. Phytochem. Anal., 2013, 24, 213-223.
[http://dx.doi.org/10.1002/pca.2401]
[32]
Owen, R.W.; Haubner, R.; Hull, W.E.; Erben, G.; Spiegelhalder, B.; Bartsch, H.; Haber, B. Isolation and structure elucidation of the major individual polyphenols in carob fibre. Food Chem. Toxicol., 2003, 41(12), 1727-1738.
[http://dx.doi.org/10.1016/S0278-6915(03)00200-X] [PMID: 14563398]
[33]
Eldahshan, O.A. Isolation and structure elucidation of phenolic compounds of carob leaves grown in Egypt. Curr. Res. J. Biol. Sci., 2011, 3, 52-55.
[34]
Gohar, A.; Gedara, S.R.; Baraka, H.N. New acylatedflavonol glycoside from Ceratonia siliqua L. seeds. J. Med. Plants Res., 2009, 3, 424-428.
[35]
Farr, D.R.; Magnolato, D.; Löliger, J. Protection of foodstuffs from oxidation. US Patent 4741915, 1988.
[36]
Lee, J.; Jang, D.S.; Kim, N.H.; Lee, Y.M.; Kim, J.; Kim, J.S. Galloyl glucoses from the seeds of Cornus officinalis with inhibitory activity against protein glycation, aldose reductase, and cataractogenesis ex vivo. Biol. Pharm. Bull., 2011, 34(3), 443-446.
[http://dx.doi.org/10.1248/bpb.34.443] [PMID: 21372401]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy