Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Research Article

Biogenic Synthesis of Silver Nanoparticles using Lasiosiphon eriocephalus (Decne): In vitro Assessment of their Antioxidant, Antimicrobial and Cytotoxic Activities

Author(s): Kailas D. Datkhile*, Pratik P. Durgawale and Satish R. Patil

Volume 11, Issue 2, 2023

Published on: 09 January, 2023

Page: [180 - 193] Pages: 14

DOI: 10.2174/2211738511666221207153116

Price: $65

Abstract

Introduction: The emergence of novel nanobiomedicine has transformed the management of various infectious as well as non-infectious diseases.Lasiosiphon eriocephalus, a medicinal plant, revealed the presence of active secondary metabolites and biological potentials.

Objective: The present study was aimed to demonstrate the biosynthesis of silver nanoparticles using L. eriocephalus leaf extract (LE-AgNPs) and their biological properties, such as antioxidant, antibacterial and anticancer potential.

Methods: The biosynthesized LE-AgNPs were characterized by UV-Visible spectroscopy, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction, and Fourier transform infrared spectroscopy (FTIR) analysis. The antibacterial activity was checked by minimum inhibitory concentration (MIC) and zone of inhibition assays against Gram-positive and Gram-negative bacteria. The anticancer potential of biogenic LE-AgNPs was checked by cytotoxicity and genotoxicity assay against human cervical adenocarcinoma (HeLa) and human breast adenocarcinoma (MCF-7) cells.

Results: UV-visible spectroscopy confirmed the formation of silver nanoparticles by measuring the surface plasmon resonance peak of the colloidal solution at 410-440 nm. The results of SEM and TEM revealed the distribution and spherical shape of 20-50 nm sized AgNPs. XRD spectrum confirmed the characteristic peaks at the lattice planes 110, 111, 200, 220 and 311 of silver which confirmed the crystalline nature of biosynthesized LE-AgNPs. FTIR spectrum of plant extract and biogenic LE-AgNPs was recorded in between 1635-3320 cm-1 which confirmed stretching vibrations of possible functional groups C=C and O-H, responsible for the reduction of silver ions to silver nanoparticles. The in vitro antioxidant potential of LE-AgNPs was evaluated using DPPH (IC50 = 26.51 ± 1.15 μg/mL) and ABTS radical assays (IC50 =74.33 ± 2.47 μg/mL). The potential antibacterial effects of LE-AgNPs confirmed that 92.38 ± 2.70% growth inhibition occurred in E. coli in response to 0.1mg/mL concentration of LE-AgNPs followed by P. aeruginosa (75.51 ± 0.76), S. aureus (74.53 ± 1.26) and K. pneumoniae (67.4 ± 3.49). The cytotoxicity results interpreted that the biogenic silver nanoparticles exhibited strong dose and time dependent cytotoxicity effect against selected cancer cell lines where IC50 concentration of LE-AgNPs required to inhibit the growth of HeLa cells after 24 h exposure was 4.14 μg/mL and MCF7 cells 3.00 μg/mL, respectively. Significant DNA fragmentation was seen in the DNA extracted from HeLa and MCF-7 cells exposed to more than 2.5 to 10 μg/mL concentrations of LE-AgNPs.

Conclusion: The overall findings from the present investigation indicated that the AgNPs synthesized using L. eriocephalus exerted strong biological potentials such as antioxidant, antimicrobial and extensive cytotoxicity and genotoxicity activities.

Graphical Abstract

[1]
Taheri Qazvini N, Zinatloo S. Synthesis and characterization of gelatin nanoparticles using CDI/NHS as a non-toxic cross-linking system. J Mater Sci Mater Med 2011; 22(1): 63-9.
[http://dx.doi.org/10.1007/s10856-010-4178-2] [PMID: 21052793]
[2]
Zinatloo-Ajabshir S, Qazvini NT. Inverse mini-emulsion method for synthesis of gelatin nanoparticles in presence of CDI/NHS as a non-toxic cross-linking system. J Nanostructure 2014; 4: 267-75.
[3]
Zinatloo-Ajabshir S, Qazvini NT. Effect of some synthetic parameters on size and polydispersity index of gelatin nanoparticles cross-linked by CDI/NHS system. J Nanostructure 2015; 5: 137-44.
[4]
Zinatloo-Ajabshir Z, Zinatloo-Ajabshir S. Preparation and characterization of curcumin niosomal nanoparticles via a simple and eco-friendly route. J Nanostructure 2019; 9(4): 784-90.
[5]
Zinatloo-Ajabshir S, Shafaati E, Bahrami A. Facile fabrication of efficient Pr2Ce2O7 ceramic nanostructure for enhanced photocatalytic performances under solar light. Ceram Int 2022; 48(17): 24695-705.
[http://dx.doi.org/10.1016/j.ceramint.2022.05.116]
[6]
Hosseinzadeh G, Ghasemian N, Zinatloo-Ajabshir S. TiO2/graphene nanocomposite supported on clinoptilolite nanoplate and its enhanced visible light photocatalytic activity. Inorg Chem Commun 2022; 136: 109144.
[http://dx.doi.org/10.1016/j.inoche.2021.109144]
[7]
Tabatabaeinejad SM, Zinatloo-Ajabshir S, Amiri O, Salavati-Niasari M. Magnetic Lu2Cu2O5 -based ceramic nanostructured materials fabricated by a simple and green approach for an effective photocatalytic degradation of organic contamination. RSC Advances 2021; 11(63): 40100-11.
[http://dx.doi.org/10.1039/D1RA06101A] [PMID: 35494113]
[8]
Zinatloo-Ajabshir S, Baladi M, Salavati-Niasari M. Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrason Sonochem 2021; 72: 105420.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105420] [PMID: 33385636]
[9]
Heidari-Asil SA, Zinatloo-Ajabshir S. alhasmi HA, Al-Nayili A, Yousif QA, Salavati-Niasari M. Magnetically recyclable ZnCo2O4/Co3O4 nanophotocatalyst: Green combustion preparation, characterization and its application for enhanced degradation of contaminated water under sunlight. Int J Hydrogen Energy 2022; 47(38): 16852-61.
[http://dx.doi.org/10.1016/j.ijhydene.2022.03.157]
[10]
Zinatloo-Ajabshir S, Emsaki M, Hosseinzadeh G. Innovative construction of a novel lanthanide cerate nanostructured photocatalyst for efficient treatment of contaminated water under sunlight. J Colloid Interface Sci 2022; 619: 1-13.
[http://dx.doi.org/10.1016/j.jcis.2022.03.112] [PMID: 35367923]
[11]
Yu S, Yin Y, Liu J. Silver nanoparticles in the environment. Environ Sci Process Impacts 2013; 15(1): 78-92.
[http://dx.doi.org/10.1039/C2EM30595J] [PMID: 24592429]
[12]
Naidu KB, Govender P, Adam JK. Biomedical applications and toxicity of nanosilver: a review. Med Technol SA 2015; 29: 13-9.
[13]
Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK. Green chemistry based benign routes for nanoparticle synthesis. J Nanoparticles 2014; p. 14.
[14]
Zinatloo-Ajabshir S, Morassaei MS, Amiri O, Salavati-Niasari M, Foong LK. Nd2Sn2O7 nanostructures: Green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram Int 2020; 46(11): 17186-96.
[http://dx.doi.org/10.1016/j.ceramint.2020.03.014]
[15]
Marslin G, Siram K, Maqbool Q, et al. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials (Basel) 2018; 11(6): 940.
[http://dx.doi.org/10.3390/ma11060940] [PMID: 29865278]
[16]
Nadeem M, Abbasi BH, Younas M, Ahmad W, Khan T. A review of the green syntheses and anti-microbial applications of gold nanoparticles. Green Chem Lett Rev 2017; 10(4): 216-27.
[http://dx.doi.org/10.1080/17518253.2017.1349192]
[17]
Singh P, Garg A, Pandit S, Mokkapati V, Mijakovic I. Antimicrobial effects of biogenic nanoparticles. Nanomaterials (Basel) 2018; 8(12): 1009.
[http://dx.doi.org/10.3390/nano8121009] [PMID: 30563095]
[18]
Singh A, Gautam PK, Verma A, et al. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnol Rep (Amst) 2020; 25: e00427.
[http://dx.doi.org/10.1016/j.btre.2020.e00427] [PMID: 32055457]
[19]
Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab J Chem 2019; 12(8): 3576-600.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.002]
[20]
Kumar H, Bhardwaj K, Nepovimova E, et al. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials (Basel) 2020; 10(7): 1334.
[http://dx.doi.org/10.3390/nano10071334] [PMID: 32650608]
[21]
de Lima R, Seabra AB, Durán N. Silver nanoparticles: A brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 2012; 32(11): 867-79.
[http://dx.doi.org/10.1002/jat.2780] [PMID: 22696476]
[22]
Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology 2018; 16(1): 14.
[http://dx.doi.org/10.1186/s12951-018-0334-5] [PMID: 29452593]
[23]
Hembram KC, Kumar R, Kandha L, Parhi PK, Kundu CN, Bindhani BK. Therapeutic prospective of plant-induced silver nanoparticles: Application as antimicrobial and anticancer agent. Artif Cells Nanomed Biotechnol 2018; 46(sup3): S38-51.
[http://dx.doi.org/10.1080/21691401.2018.1489262] [PMID: 30001158]
[24]
Ebrahimzadeh MA, Tafazoli A, Akhtari J, Biparva P, Eslami S. Engineered silver nanoparticles, A new nanoweapon against cancer. Anticancer Agents Med Chem 2019; 18(14): 1962-9.
[http://dx.doi.org/10.2174/1871520618666180808093040] [PMID: 30088451]
[25]
Wypij M, Jędrzejewski T, Ostrowski M, Trzcińska J, Rai M, Golińska P. Biogenic silver nanoparticles: Assessment of their cytotoxicity, genotoxicity and study of capping proteins. Molecules 2020; 25(13): 3022.
[http://dx.doi.org/10.3390/molecules25133022] [PMID: 32630696]
[26]
Datkhile KD, Durgawale PP, Patil MN, Joshi SA, Korabu KS. Studies on phytoconstituents, in vitro antioxidant, antibacterial, antiparasitic, antimicrobial, and anticancer potential of medicinal plant Lasiosiphon eriocephalus decne (Family: Thymelaeaceae). J Nat Sci Biol Med 2019; 10(1): 38-47.
[http://dx.doi.org/10.4103/jnsbm.JNSBM_183_18]
[27]
Herrmann M, Lorenz HM, Voll R, Griinke M, Woith W, Kalden JR. A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res 1994; 22(24): 5506-7.
[http://dx.doi.org/10.1093/nar/22.24.5506] [PMID: 7816645]
[28]
Makarov VV, Love AJ, Sinitsyna OV, et al. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat (Engl Ed) 2014; 6(1): 35-44.
[http://dx.doi.org/10.32607/20758251-2014-6-1-35-44] [PMID: 24772325]
[29]
Gharpure S, Akash A, Ankamwar B. A Review on antimicrobial properties of metal nanoparticles. J Nanosci Nanotechnol 2020; 20(6): 3303-39.
[http://dx.doi.org/10.1166/jnn.2020.17677] [PMID: 31748024]
[30]
Sun Y, Chen D, Pan Y, et al. Nanoparticles for antiparasitic drug delivery. Drug Deliv 2019; 26(1): 1206-21.
[http://dx.doi.org/10.1080/10717544.2019.1692968] [PMID: 31746243]
[31]
Karmous I, Pandey A, Haj KB, Chaoui A. Efficiency of the green synthesized nanoparticles as new tools in cancer therapy: Insights on plant-based bioengineered nanoparticles, biophysical properties, and anticancer roles. Biol Trace Elem Res 2020; 196(1): 330-42.
[http://dx.doi.org/10.1007/s12011-019-01895-0] [PMID: 31512171]
[32]
Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2007; 2(3): 107-18.
[http://dx.doi.org/10.1007/s11468-007-9031-1]
[33]
Mohanta YK, Panda SK, Bastia AK, Mohanta TK. Biosynthesis of silver nanoparticles from Protium serratum and investigation of their potential impacts on food safety and control. Front Microbiol 2017; 8: 626.
[http://dx.doi.org/10.3389/fmicb.2017.00626] [PMID: 28458659]
[34]
Datkhile KD, Durgavale PP, Patil MN. Biogenic silver nanoparticles from Nothapodytes foetida kills human cancer cells in vitro through inhibition of cell proliferation and induction of apoptosis. Journal of Bionanoscience 2017; 11(5): 416-27.
[http://dx.doi.org/10.1166/jbns.2017.1465]
[35]
Datkhile KD, Patil SR, Durgawale PP, et al. Biogenic silver nanoparticles synthesized Mexican poppy plant inhibits cell growth in cancer cells through activation of intrinsic apoptosis pathway. Nano Biomed Eng 2020; 12(3): 241-52.
[http://dx.doi.org/10.5101/nbe.v12i3.p241-252]
[36]
Chung IM, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G. Plant mediated synthesis of silver nanoparticles: Their characterstic properties and therapeutic applications. Nanoscale Res Lett 2016; 11(1): 40.
[http://dx.doi.org/10.1186/s11671-016-1257-4] [PMID: 26821160]
[37]
Mohanta YK, Panda SK, Biswas K, et al. Biogenic synthesis of silver nanoparticles from Cassia fistula (Linn.): In vitro assessment of their antioxidant, antimicrobial and cytotoxic activities. IET Nanobiotechnol 2016; 10(6): 438-44.
[http://dx.doi.org/10.1049/iet-nbt.2015.0104] [PMID: 27906147]
[38]
Nayak D, Ashe S, Rauta PR, Kumari M, Nayak B. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater Sci Eng C 2016; 58: 44-52.
[http://dx.doi.org/10.1016/j.msec.2015.08.022] [PMID: 26478285]
[39]
Pant G, Nayak N, Gyana Prasuna R. Enhancement of antidandruff activity of shampoo by biosynthesized silver nanoparticles from Solanum trilobatum plant leaf. Appl Nanosci 2013; 3(5): 431-9.
[http://dx.doi.org/10.1007/s13204-012-0164-y]
[40]
Saranayaadevi K, Subha V, Ravindran RSE, Ranganathan S. Green synthesis and characterization of silver nanoparticles using leaf extract of Capparis zeylanica. Asian J Pharm Clin Res 2014; 7: 44-8.
[41]
Nagaich U, Gulati N, Chauhan S. Antiooxidant and antibacterial potential of silver nanoparticles: Biogenic synthsis utilizing apple extract. J Pharm 2016; 1-8.https://downloads.hindawi.com/archive/2016/7141523.pdf
[42]
Keshari AK, Srivastava R, Singh P, Yadav VB, Nath G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J Ayurveda Integr Med 2020; 11(1): 37-44.
[http://dx.doi.org/10.1016/j.jaim.2017.11.003] [PMID: 30120058]
[43]
Singh R, Hano C, Tavanti F, Sharma B. Biogenic synthesis and characterization of antioxidant and antimicrobial silver nanoparticles using flower extract of Couroupita guianensis. Materials (Basel, Switzerland) 2021; 14(22): 6854.
[44]
Chiu HI, Mood CN, Mohmad Zain NN, et al. Biogenic silver nanoparticles of Clinacanthus nutans as antioxidant with antimicrobial and cytotoxic effects. Bioinorg Chem Appl 2021; •••: 9920890.
[45]
Bilal M, Rasheed T, Iqbal HMN, Hu H, Zhang X. Silver nanoparticles: Biosynthesis and antimicrobial potentialities. Int J Pharmacol 2017; 13(7): 832-45.
[http://dx.doi.org/10.3923/ijp.2017.832.845]
[46]
Loo YY, Rukayadi Y, Nor-Khaizura MAR, et al. In Vitro antimicrobial activity of green synthesized silver nanoparticles against selected Gram-negative foodborne pathogens. Front Microbiol 2018; 9: 1555.
[http://dx.doi.org/10.3389/fmicb.2018.01555] [PMID: 30061871]
[47]
Algebaly AS, Mohammed AE, Abutaha N, Elobeid MM. Biogenic synthesis of silver nanoparticles: Antibacterial and cytotoxic potential. Saudi J Biol Sci 2020; 27(5): 1340-51.
[http://dx.doi.org/10.1016/j.sjbs.2019.12.014] [PMID: 32346344]
[48]
Urnukhsaikhan E, Bold BE, Gunbileg A, Sukhbaatar N, Mishig-Ochir T. Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Sci Rep 2021; 11(1): 21047.
[http://dx.doi.org/10.1038/s41598-021-00520-2] [PMID: 34702916]
[49]
Ansar S, Tabassum H, Aladwan NSM, et al. Eco friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties. Sci Rep 2020; 10(1): 18564.
[http://dx.doi.org/10.1038/s41598-020-74371-8] [PMID: 33122798]
[50]
Ezealisiji KM, Noundou XS, Ukwueze SE. Green synthesis and characterization of monodispersed silver nanoparticles using root bark aqueous extract of Annona muricata Linn and their antimicrobial activity. Appl Nanosci 2017; 7(8): 905-11.
[http://dx.doi.org/10.1007/s13204-017-0632-5]
[51]
Kalyani RL, Chandta VS, Vijaykumar PPN, et al. Biosynthesis of silver nanoparticles using Annona squamosa Leaf extract with synergistic antibacterial activity. Indian J Pharm Sci 2019; 81(6): 1036-44.
[52]
Gurunathan S, Han JW, Eppakayala V, Jryaraj M, Kim JH. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res Int 2013.
[53]
Firdhouse MJ, Lalitha P. Biosynthesis of silver nanoparticles and its applications. J Nanotechnol 2015; 2015: Article ID 829526.
[54]
Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari MR. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomedicine 2018; 13: 8013-24.
[http://dx.doi.org/10.2147/IJN.S189295] [PMID: 30568442]
[55]
Bamal D, Singh A, Chaudhary G, et al. Silver nanoparticles biosynthesis, characterization, antimicrobial activities, applications, cytotoxicity and safety Issues: An Updated Review. Nanomaterials (Basel) 2021; 11(8): 2086.
[http://dx.doi.org/10.3390/nano11082086] [PMID: 34443916]
[56]
Rai M, Ingle AP. Trzcińska-Wencel J, et al. Biogenic silver nanoparticles: What we know and what do we need to know? Nanomaterials (Basel) 2021; 11(11): 2901.
[http://dx.doi.org/10.3390/nano11112901] [PMID: 34835665]
[57]
Gurunathan S, Raman J, Abd Malek SN, John PA, Vikineswary S. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: A potential cytotoxic agent against breast cancer cells. Int J Nanomedicine 2013; 8: 4399-413.
[PMID: 24265551]
[58]
Prabhu D, Arulvasu C, Babu G, Manikandan R, Srinivasan P. Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem 2013; 48(2): 317-24.
[http://dx.doi.org/10.1016/j.procbio.2012.12.013]
[59]
Vasanth K, Ilango K. Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Colloid Surf B. Biointerf 2014; 117: 354-9.
[60]
Remya RR, Rajasree SRR, Aranganathan L, Suman TY. An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnol Rep (Amst) 2015; 8: 110-5.
[http://dx.doi.org/10.1016/j.btre.2015.10.004] [PMID: 28352579]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy