Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Research Article

Experimental Pharmacology for COVID-19 Treatment: A Geoanalytical Bibliometric Analysis

Author(s): Cesar Aguado and Victor M. Castaño*

Volume 11, Issue 2, 2023

Published on: 29 December, 2022

Page: [194 - 207] Pages: 14

DOI: 10.2174/2211738511666221019154949

Price: $65

Abstract

Objective: The objective of this study is to produce a geo-referenced map of the status of R&D in COVID-related studies in the world.

Methods: Spatial mapping of bibliometric data of Cortellis Drug Discovery Intelligence through a spatial bibliometric model with the aid of a GIS (Geographic Information System) called ArcGIS and the software.

Results: We show the countries that have the most studies related to COV ID-19 and their degree of collaboration. No drug discovery-related activity was found in South America and Africa. A geo-referenced map of the most active countries in COVID research was constructed as well as conceptual maps of the 11 most representative drugs employed for COVID treatment.

Conclusion: The georeferenced conceptual maps produced in the present report allow not only to better understand the leading institutions in R&D in COVID-19 related drugs but also to visualize their interactions and research relationships. This could offer, in addition to a coherent, organized multinational effort, the possibility of searching for other drugs that have been employed for other diseases and that, in terms of their conceptual relations, could represent some possibilities for treating the coronavirus SARS-2.

Graphical Abstract

[1]
Paules CI, Marston HD, Fauci AS. Coronavirus infections-more than just the common cold. JAMA 2020; 323(8): 707-8.
[http://dx.doi.org/10.1001/jama.2020.0757] [PMID: 31971553]
[2]
Forni D, Cagliani R, Arrigoni F, et al. Adaptation of the endemic coronaviruses HCoV-OC43 and HCoV-229E to the human host. Virus Evol 2021; 7(2): veab061.
[http://dx.doi.org/10.1093/ve/veab061] [PMID: 34527284]
[3]
Yan Y, Chang L, Wang L. Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): Current status, challenges, and countermeasures. Rev Med Virol 2020; 30(3): e2106.
[http://dx.doi.org/10.1002/rmv.2106] [PMID: 32302058]
[4]
Berry M, Gamieldien J, Fielding B. Identification of new respiratory viruses in the new millennium. Viruses 2015; 7(3): 996-1019.
[http://dx.doi.org/10.3390/v7030996] [PMID: 25757061]
[5]
Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[6]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30: 269-71.
[7]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[8]
Perlman S. Another decade, another coronavirus. N Engl J Med 2020; 382(8): 760-2.
[http://dx.doi.org/10.1056/NEJMe2001126] [PMID: 31978944]
[9]
Cong Y, Verlhac P, Reggiori F. The interaction between nidovirales and autophagy components. Viruses 2017; 9(7): 182.
[http://dx.doi.org/10.3390/v9070182] [PMID: 28696396]
[10]
Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol 2020; 30(8): 1578.
[http://dx.doi.org/10.1016/j.cub.2020.03.063]
[11]
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020; 109: 102433.
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[12]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418-23.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[13]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[14]
Frenken K, Hardeman S, Hoekman J. Spatial scientometrics: Towards a cumulative research program. J Informetrics 2009; 3(3): 222-32.
[http://dx.doi.org/10.1016/j.joi.2009.03.005]
[15]
Bornmann L, de Moya Angeon F. Hot and cold spots in the US research: A spatial analysis of bibliometric data on the institutional level. J Inf Sci 2019; 45(1): 84-91.
[http://dx.doi.org/10.1177/0165551518782829]
[16]
Apolloni A, Rouquier JB, Jensen P. Collaboration range: Effects of geographical proximity on article impact. Eur Phys J Spec Top 2013; 222(6): 1467-78.
[http://dx.doi.org/10.1140/epjst/e2013-01937-5]
[17]
Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, web of science, and Google scholar: Strengths and weaknesses. FASEB J 2008; 22(2): 338-42.
[http://dx.doi.org/10.1096/fj.07-9492LSF] [PMID: 17884971]
[18]
Niu J, Tang W, Xu F, Zhou X, Song Y. Global research on artificial intelligence from 1990–2014: Spatially-explicit bibliometric analysis. ISPRS Int J Geoinf 2016; 5(5): 66.
[http://dx.doi.org/10.3390/ijgi5050066]
[19]
Aria M, Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetrics 2017; 11(4): 959-75.
[http://dx.doi.org/10.1016/j.joi.2017.08.007]
[20]
Wang Y, Su GF, Huang ZX, et al. Cepharanthine hydrochloride induces mitophagy targeting GPR30 in hepatocellular carcinoma (HCC). Expert Opin Ther Targets 2020; 24(4): 389-402.
[http://dx.doi.org/10.1080/14728222.2020.1737013] [PMID: 32106726]
[21]
Lesiak A, Narbutt J, Sysa-Jedrzejowska A, Lukamowicz J, McCauliffe DP, Wózniacka A. Effect of chloroquine phosphate treatment on serum MMP-9 and TIMP-1 levels in patients with systemic lupus erythematosus. Lupus 2010; 19(6): 683-8.
[http://dx.doi.org/10.1177/0961203309356455] [PMID: 20064914]
[22]
Du YX, Chen XP. Favipiravir: Pharmacokinetics and concerns about clinical trials for 2019‐nCoV infection. Clin Pharmacol Therap 2020; 108.2(2020): 242-7.
[23]
Pauli E, Joshi H, Vasavada A, Brackett J, Towa L. Evaluation of an immediate-release formulation of hydroxychloroquine sulfate with an interwoven pediatric taste-masking system. J Pharm Sci 2020; 109(4): 1493-7.
[PMID: 31884014]
[24]
Hirota M, Shimosegawa T, Kitamura K, et al. Continuous regional arterial infusion versus intravenous administration of the protease inhibitor nafamostat mesilate for predicted severe acute pancreatitis: A multicenter, randomized, open-label, phase 2 trial. J Gastroenterol 2020; 55(3): 342-52.
[http://dx.doi.org/10.1007/s00535-019-01644-z] [PMID: 31758329]
[25]
Elazar M, Liu M, McKenna SA, et al. The anti-hepatitis C agent nitazoxanide induces phosphorylation of eukaryotic initiation factor 2α via protein kinase activated by double-stranded RNA activation. Gastroenterology 2009; 137(5): 1827-35.
[http://dx.doi.org/10.1053/j.gastro.2009.07.056] [PMID: 19664635]
[26]
Rossignol JF, Bréchot C. A pilot clinical trial of nitazoxanide in the treatment of chronic hepatitis B. Hepatol Commun 2019; 3(6): 744-7.
[http://dx.doi.org/10.1002/hep4.1339] [PMID: 31168509]
[27]
Greeley ZW, Giannasca NJ, Porter MJ, Margulies BJ. Acyclovir, cidofovir, and amenamevir have additive antiviral effects on herpes simplex virus TYPE 1. Antiviral Res 2020; 176: 104754.
[http://dx.doi.org/10.1016/j.antiviral.2020.104754] [PMID: 32114034]
[28]
Augustin M, Hallek M, Nitschmann S. Remdesivir bei Patienten mit schwerer COVID-19. Internist (Berl) 2020; 61: 644-5.
[29]
Sung PS, Shin EC. Interferon response in hepatitis C virus-infected hepatocytes: Issues to consider in the era of direct-acting antivirals. Int J Mol Sci 2020; 21(7): 2583.
[http://dx.doi.org/10.3390/ijms21072583] [PMID: 32276399]
[30]
Choy KT, Wong AYL, Kaewpreedee P, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res 2020; 178: 104786.
[http://dx.doi.org/10.1016/j.antiviral.2020.104786] [PMID: 32251767]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy