Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Mini-Review Article

Therapies for Type 1 Diabetes: Is a Cure Possible?

Author(s): Neihenuo Chuzho, Neetu Mishra, Nikhil Tandon and Neeraj Kumar*

Volume 19, Issue 7, 2023

Published on: 18 January, 2023

Article ID: e021222211565 Pages: 9

DOI: 10.2174/1573399819666221202161259

Price: $65

Abstract

The current standard method for type 1 diabetes (T1D) management majorly focuses on controlling blood glucose levels with exogeneous insulin administration. Recent developments have focused on finding ways to predict and prevent the development of T1D, as well as finding a curative therapy for T1D. Such developments include β-cell replacement therapy by islet transplantation, non-insulin adjunct therapy, gene and stem cell-based therapies, immunotherapy, and automated treatment with an artificial pancreas. In recent years, non-traditional alternative therapy has also become a popular treatment option for T1D. This review discusses the various therapeutic options for T1D currently under various stages of development, the challenges associated with the present strategies, and their potential to eventually change the way T1D is treated.

[1]
DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet 2018; 391(10138): 2449-62.
[http://dx.doi.org/10.1016/S0140-6736(18)31320-5] [PMID: 29916386]
[2]
Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet 2014; 383(9911): 69-82.
[http://dx.doi.org/10.1016/S0140-6736(13)60591-7] [PMID: 23890997]
[3]
Van Belle TL, Coppieters KT, Von Herrath MG. Type 1 diabetes: Etiology, immunology, and therapeutic strategies. Physiol Rev 2011; 91(1): 79-118.
[http://dx.doi.org/10.1152/physrev.00003.2010] [PMID: 21248163]
[4]
Bougnères P, Valleron AJ. Causes of early-onset type 1 diabetes: Toward data-driven environmental approaches. J Exp Med 2008; 205(13): 2953-7.
[http://dx.doi.org/10.1084/jem.20082622] [PMID: 19075294]
[5]
Chiang JL, Kirkman MS, Laffel LMB, Peters AL. Type 1 diabetes through the life span: A position statement of the American Diabetes Association. Diabetes Care 2014; 37(7): 2034-54.
[http://dx.doi.org/10.2337/dc14-1140] [PMID: 24935775]
[6]
Ricordi C, Goldstein JS, Balamurugan AN, et al. National Institutes of Health–sponsored Clinical Islet Transplantation Consortium phase 3 trial: Manufacture of a complex cellular product at eight processing facilities. Diabetes 2016; 65(11): 3418-28.
[http://dx.doi.org/10.2337/db16-0234] [PMID: 27465220]
[7]
Bertuzzi F, De Carlis LG. Human pancreatic islet production: From research protocols to standardized multicenter manufacturing. Diabetes 2016; 65(11): 3243-5.
[http://dx.doi.org/10.2337/dbi16-0045] [PMID: 27959861]
[8]
Piemonti L, Pileggi A. 25 years of the Ricordi automated method for islet isolation. CellR4 Repair Replace Regen Reprogram 2013; 1(1): e128.
[9]
Matsumoto S, Abalovich A, Wechsler C, Wynyard S, Elliott RB. Clinical benefit of islet xenotransplantation for the treatment of type 1 diabetes. EBioMedicine 2016; 12: 255-62.
[http://dx.doi.org/10.1016/j.ebiom.2016.08.034] [PMID: 27592597]
[10]
Wynyard S, Nathu D, Garkavenko O, Denner J, Elliott R. Microbiological safety of the first clinical pig islet xenotransplantation trial in New Zealand. Xenotransplantation 2014; 21(4): 309-23.
[http://dx.doi.org/10.1111/xen.12102] [PMID: 24801820]
[11]
Shin JS, Kim JM, Min BH, et al. Pre-clinical results in pig-to-non-human primate islet xenotransplantation using anti-CD40 antibody (2C10R4)-based immunosuppression. Xenotransplantation 2018; 25(1), e12356.
[http://dx.doi.org/10.1111/xen.12356] [PMID: 29057561]
[12]
Kuscu C, Kuscu C, Bajwa A, Eason JD, Maluf D, Mas VR. Applications of CRISPR technologies in transplantation. Am J Transplant 2020; 20(12): 3285-93.
[http://dx.doi.org/10.1111/ajt.16095] [PMID: 32484284]
[13]
Yang L, Güell M, Niu D, et al. Genome-wide inactivation of Porcine Endogenous Retro Viruses (PERVs). Science 2015; 350(6264): 1101-4.
[http://dx.doi.org/10.1126/science.aad1191] [PMID: 26456528]
[14]
Hurst DJ, Padilla LA, Cooper DKC, Paris W. Factors influencing attitudes toward xenotransplantation clinical trials: A report of focus group studies. Xenotransplantation 2021; 28(4), e12684.
[http://dx.doi.org/10.1111/xen.12684] [PMID: 33682188]
[15]
Kögel J, Thiersch S, Ludwig B, Seissler J, Marckmann G. What does it take to consent to islet cell xenotransplantation?: Insights from an interview study with type 1 diabetes patients and review of the literature. BMC Med Ethics 2021; 22(1): 37.
[http://dx.doi.org/10.1186/s12910-021-00607-5] [PMID: 33794874]
[16]
Vaithilingam V, Bal S, Tuch BE. Encapsulated islet transplantation: Where do we stand? Rev Diabet Stud 2017; 14(1): 51-78.
[http://dx.doi.org/10.1900/RDS.2017.14.51] [PMID: 28632821]
[17]
Stephens CH, Orr KS, Acton AJ, et al. In situ type I oligomeric collagen macroencapsulation promotes islet longevity and function in vitro and in vivo. Am J Physiol Endocrinol Metab 2018; 315(4): E650-61.
[http://dx.doi.org/10.1152/ajpendo.00073.2018] [PMID: 29894201]
[18]
Vantyghem MC, de Koning EJP, Pattou F, Rickels MR. Advances in β-cell replacement therapy for the treatment of type 1 diabetes. Lancet 2019; 394(10205): 1274-85.
[http://dx.doi.org/10.1016/S0140-6736(19)31334-0] [PMID: 31533905]
[19]
Desai T, Shea LD. Correction: Advances in islet encapsulation technologies. Nat Rev Drug Discov 2017; 16(5): 367.
[http://dx.doi.org/10.1038/nrd.2017.67] [PMID: 28450719]
[20]
A safety, tolerability and efficacy study of sernova's cell pouch™ for clinical islet transplantation. ClinicalTrialsgov Identifier: NCT03513939. Available from: https://clinicaltrials.gov/ct2/show/NCT03513939
[21]
Xiao X, Guo P, Shiota C, et al. Endogenous reprogramming of alpha cells into beta cells, induced by viral gene therapy, reverses autoimmune diabetes. Cell Stem Cell 2018; 22(1): 78-90.e4.
[http://dx.doi.org/10.1016/j.stem.2017.11.020] [PMID: 29304344]
[22]
Lin G, Wang G, Liu G, et al. Treatment of type 1 diabetes with adipose tissue-derived stem cells expressing pancreatic duodenal homeobox 1. Stem Cells Dev 2009; 18(10): 1399-406.
[http://dx.doi.org/10.1089/scd.2009.0010] [PMID: 19245309]
[23]
Mauda-Havakuk M, Litichever N, Chernichovski E, et al. Ectopic PDX-1 expression directly reprograms human keratinocytes along pancreatic insulin-producing cells fate. PLoS One 2011; 6(10), e26298.
[http://dx.doi.org/10.1371/journal.pone.0026298] [PMID: 22028850]
[24]
Li W, Nakanishi M, Zumsteg A, et al. In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes. eLife 2014; 3, e01846.
[http://dx.doi.org/10.7554/eLife.01846] [PMID: 24714494]
[25]
Millman JR, Xie C, Van Dervort A, Gürtler M, Pagliuca FW, Melton DA. Generation of stem cell-derived β-cells from patients with type 1 diabetes. Nat Commun 2016; 7(1): 11463.
[http://dx.doi.org/10.1038/ncomms11463] [PMID: 27163171]
[26]
Vanikar AV, Trivedi HL, Thakkar UG. Stem cell therapy emerging as the key player in treating type 1 diabetes mellitus. Cytotherapy 2016; 18(9): 1077-86.
[http://dx.doi.org/10.1016/j.jcyt.2016.06.006] [PMID: 27424148]
[27]
Carlsson PO, Schwarcz E, Korsgren O, Le Blanc K. Preserved β-cell function in type 1 diabetes by mesenchymal stromal cells. Diabetes 2015; 64(2): 587-92.
[http://dx.doi.org/10.2337/db14-0656] [PMID: 25204974]
[28]
Wu C, Liu F, Li P, et al. Engineered hair follicle mesenchymal stem cells overexpressing controlled-release insulin reverse hyperglycemia in mice with type L diabetes. Cell Transplant 2015; 24(5): 891-907.
[http://dx.doi.org/10.3727/096368914X681919] [PMID: 24835482]
[29]
Daneshmandi S, Karimi MH, Pourfathollah AA. TGF-β engineered mesenchymal stem cells (TGF-β/MSCs) for treatment of Type 1 diabetes (T1D) mice model. Int Immunopharmacol 2017; 44: 191-6.
[http://dx.doi.org/10.1016/j.intimp.2017.01.019] [PMID: 28110219]
[30]
de Klerk E, Hebrok M. Stem cell-based clinical trials for diabetes mellitus. Front Endocrinol 2021; 12631463.
[http://dx.doi.org/10.3389/fendo.2021.631463] [PMID: 33716982]
[31]
Leventhal A, Chen G, Negro A, Boehm M. The benefits and risks of stem cell technology. Oral Dis 2012; 18(3): 217-22.
[http://dx.doi.org/10.1111/j.1601-0825.2011.01870.x] [PMID: 22093062]
[32]
A safety, tolerability, and efficacy study of VC-01™ combination product in subjects with type I diabetes mellitus. ClinicalTrialsgov Identifier: NCT02239354. Available from: https://clinicaltrials.gov/ct2/show/NCT02239354
[33]
Riddle MC, Nahra R, Han J, et al. Control of postprandial hyperglycemia in type 1 diabetes by 24-hour fixed-dose coadministration of pramlintide and regular human insulin: A randomized, two-way crossover study. Diabetes Care 2018; 41(11): 2346-52.
[http://dx.doi.org/10.2337/dc18-1091] [PMID: 30213882]
[34]
Sikorskaya K, Zarzecka I, Ejikeme U, Russell J. The use of metformin as an add-on therapy to insulin in the treatment of poorly controlled type 1 diabetes mellitus in adolescents. Metabolism Open 2021; 9100080.
[http://dx.doi.org/10.1016/j.metop.2021.100080] [PMID: 33598651]
[35]
Gurgel Penaforte-Saboia J, Couri CEB, Vasconcelos Albuquerque N, et al. Emerging roles of dipeptidyl peptidase-4 inhibitors in delaying the progression of type 1 diabetes mellitus. Diabetes Metab Syndr Obes 2021; 14: 565-73.
[http://dx.doi.org/10.2147/DMSO.S294742] [PMID: 33603422]
[36]
Guyton J, Jeon M, Brooks A. Glucagon-like peptide 1 receptor agonists in type 1 diabetes mellitus. Am J Health Syst Pharm 2019; 76(21): 1739-48.
[http://dx.doi.org/10.1093/ajhp/zxz179] [PMID: 31612934]
[37]
Bosi E. Time for testing incretin therapies in early type 1 diabetes? J Clin Endocrinol Metab 2010; 95(6): 2607-9.
[http://dx.doi.org/10.1210/jc.2009-2741] [PMID: 20525907]
[38]
Liu L, Shao Z, Xia Y, et al. Incretin-based therapies for patients with type 1 diabetes: A meta-analysis. Endocr Connect 2019; 8(3): 277-88.
[http://dx.doi.org/10.1530/EC-18-0546] [PMID: 30694794]
[39]
Harris K, Boland C, Meade L, Battise D. Adjunctive therapy for glucose control in patients with type 1 diabetes. Diabetes Metab Syndr Obes 2018; 11: 159-73.
[http://dx.doi.org/10.2147/DMSO.S141700] [PMID: 29731652]
[40]
George P, McCrimmon RJ. Potential role of non-insulin adjunct therapy in type 1 diabetes. Diabet Med 2013; 30(2): 179-88.
[http://dx.doi.org/10.1111/j.1464-5491.2012.03744.x] [PMID: 22804102]
[41]
Fatima T, Sedrakyan S, Awan MR, Khatun MK, Rana D, Jahan N. Use of sodium-glucose co-transporter-2 inhibitors in type 1 diabetics: Are the benefits worth the risks? Cureus 2020; 12(8), e10076.
[http://dx.doi.org/10.7759/cureus.10076] [PMID: 33005503]
[42]
Cheng STW, Chen L, Li SYT, Mayoux E, Leung PS. The effects of empagliflozin, an SGLT2 inhibitor, on pancreatic β-cell mass and glucose homeostasis in type 1 diabetes. PLoS One 2016; 11(1), e0147391.
[http://dx.doi.org/10.1371/journal.pone.0147391] [PMID: 26807719]
[43]
McCrimmon RJ, Henry RR. SGLT inhibitor adjunct therapy in type 1 diabetes. Diabetologia 2018; 61(10): 2126-33.
[http://dx.doi.org/10.1007/s00125-018-4671-6] [PMID: 30132030]
[44]
Espinosa-Carrasco G, Le Saout C, Fontanaud P, et al. CD4+ T helper cells play a key role in maintaining diabetogenic CD8+ T cell function in the pancreas. Front Immunol 2018; 8: 2001.
[http://dx.doi.org/10.3389/fimmu.2017.02001] [PMID: 29403481]
[45]
Walker LSK, von Herrath M. CD4 T cell differentiation in type 1 diabetes. Clin Exp Immunol 2015; 183(1): 16-29.
[http://dx.doi.org/10.1111/cei.12672] [PMID: 26102289]
[46]
Kumar N, Mehra NK, Kanga U, et al. Diverse human leukocyte antigen association of type 1 diabetes in north India. J Diabetes 2019; 11(9): 719-28.
[http://dx.doi.org/10.1111/1753-0407.12898] [PMID: 30614662]
[47]
Noble JA, Erlich HA. Genetics of type 1 diabetes. Cold Spring Harb Perspect Med 2012; 2(1)a007732.
[http://dx.doi.org/10.1101/cshperspect.a007732] [PMID: 22315720]
[48]
Concannon P, Rich SS, Nepom GT. Genetics of type 1A diabetes. N Engl J Med 2009; 360(16): 1646-54.
[http://dx.doi.org/10.1056/NEJMra0808284] [PMID: 19369670]
[49]
Kumar N, Kaur G, Kanga U, et al. CTLA4+49G allele associates with early onset of type 1 diabetes in North Indians. Int J Immunogenet 2015; 42(6): 445-52.
[http://dx.doi.org/10.1111/iji.12233] [PMID: 26385826]
[50]
Kavvoura FK, Ioannidis JPA. CTLA-4 gene polymorphisms and susceptibility to type 1 diabetes mellitus: A huge review and meta-analysis. Am J Epidemiol 2005; 162(1): 3-16.
[http://dx.doi.org/10.1093/aje/kwi165] [PMID: 15961581]
[51]
Wen PF, Wang XS, Zhang M, et al. Associations between TNF gene polymorphisms (−308 A/G, −238 A/G, −1031 C/T and −857 T/C) and genetic susceptibility to T1D: A meta-analysis. Endocrine 2014; 46(3): 435-44.
[http://dx.doi.org/10.1007/s12020-014-0172-7] [PMID: 24515539]
[52]
Kumar N, Kaur G, Tandon N, Mehra N. Tumor necrosis factor–associated susceptibility to type 1 diabetes is caused by linkage disequilibrium with HLA-DR3 haplotypes. Hum Immunol 2012; 73(5): 566-73.
[http://dx.doi.org/10.1016/j.humimm.2012.01.012] [PMID: 22366579]
[53]
Rodriguez-Calvo T, Suwandi JS, Amirian N, et al. Heterogeneity and lobularity of pancreatic pathology in type 1 diabetes during the prediabetic phase. J Histochem Cytochem 2015; 63(8): 626-36.
[http://dx.doi.org/10.1369/0022155415576543] [PMID: 26216138]
[54]
Coppieters KT, Dotta F, Amirian N, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med 2012; 209(1): 51-60.
[http://dx.doi.org/10.1084/jem.20111187] [PMID: 22213807]
[55]
Achenbach P, Bonifacio E, Ziegler AG. Predicting type 1 diabetes. Curr Diab Rep 2005; 5(2): 98-103.
[http://dx.doi.org/10.1007/s11892-005-0035-y] [PMID: 15794911]
[56]
Lu J, Liu J, Li L, Lan Y, Liang Y. Cytokines in type 1 diabetes: Mechanisms of action and immunotherapeutic targets. Clin Transl Immunology 2020; 9(3), e1122.
[http://dx.doi.org/10.1002/cti2.1122] [PMID: 32185024]
[57]
Hannelius U, Beam CA, Ludvigsson J. Efficacy of GAD-alum immunotherapy associated with HLA-DR3-DQ2 in recently diagnosed type 1 diabetes. Diabetologia 2020; 63(10): 2177-81.
[http://dx.doi.org/10.1007/s00125-020-05227-z] [PMID: 32754804]
[58]
Raz I, Ziegler AG, Linn T, et al. Treatment of recent-onset type 1 diabetic patients with DiaPep277: Results of a double-blind, placebo-controlled, randomized phase 3 trial. Diabetes Care 2014; 37(5): 1392-400.
[http://dx.doi.org/10.2337/dc13-1391] [PMID: 24757230]
[59]
Nicholas D, Odumosu O, Langridge WH. Autoantigen based vaccines for type 1 diabetes. Discov Med 2011; 11(59): 293-301.
[PMID: 21524383]
[60]
Marek-Trzonkowska N, Myśliwiec M, Dobyszuk A, et al. Therapy of type 1 diabetes with CD4+CD25 high CD127-regulatory T cells prolongs survival of pancreatic islets - Results of one year follow-up. Clin Immunol 2014; 153(1): 23-30.
[http://dx.doi.org/10.1016/j.clim.2014.03.016] [PMID: 24704576]
[61]
Mignogna C, Maddaloni E, D’Onofrio L, Buzzetti R. Investigational therapies targeting CD3 for prevention and treatment of type 1 diabetes. Expert Opin Investig Drugs 2021; 30(12): 1209-19.
[http://dx.doi.org/10.1080/13543784.2022.2022119] [PMID: 34936848]
[62]
Herold KC, Gitelman SE, Ehlers MR, et al. Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: Metabolic and immunologic features at baseline identify a subgroup of responders. Diabetes 2013; 62(11): 3766-74.
[http://dx.doi.org/10.2337/db13-0345] [PMID: 23835333]
[63]
Pescovitz MD, Greenbaum CJ, Bundy B, et al. B-lymphocyte depletion with rituximab and β-cell function: Two-year results. Diabetes Care 2014; 37(2): 453-9.
[http://dx.doi.org/10.2337/dc13-0626] [PMID: 24026563]
[64]
Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med 2009; 361(22): 2143-52.
[http://dx.doi.org/10.1056/NEJMoa0904452] [PMID: 19940299]
[65]
Rodriguez-Fernandez S, Almenara-Fuentes L, Perna-Barrull D, Barneda B, Vives-Pi M. A century later, still fighting back: Antigen‐specific immunotherapies for type 1 diabetes. Immunol Cell Biol 2021; 99(5): 461-74.
[http://dx.doi.org/10.1111/imcb.12439] [PMID: 33483995]
[66]
Christen U, Wolfe T, Möhrle U, et al. A dual role for TNF-alpha in type 1 diabetes: Islet-specific expression abrogates the ongoing autoimmune process when induced late but not early during pathogenesis. J Immunol 2001; 166(12): 7023-32.
[http://dx.doi.org/10.4049/jimmunol.166.12.7023] [PMID: 11390446]
[67]
Clarke WL, Anderson S, Breton M, Patek S, Kashmer L, Kovatchev B. Closed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithm: The Virginia experience. J Diabetes Sci Technol 2009; 3(5): 1031-8.
[http://dx.doi.org/10.1177/193229680900300506] [PMID: 20144416]
[68]
Weaver KW, Hirsch IB. The hybrid closed-loop system: Evolution and practical applications. Diabetes Technol Ther 2018; 20(S2): S2-S23.
[http://dx.doi.org/10.1089/dia.2018.0091] [PMID: 29873517]
[69]
Cobry EC, Berget C, Messer LH, Forlenza GP. Review of the omnipod® 5 automated glucose control system powered by horizon™ for the treatment of type 1 diabetes. Ther Deliv 2020; 11(8): 507-19.
[http://dx.doi.org/10.4155/tde-2020-0055] [PMID: 32723002]
[70]
Berget C, Sherr JL, DeSalvo DJ, et al. Clinical implementation of the omnipod 5 automated insulin delivery system: Key considerations for training and onboarding people with diabetes. Clin Diabetes 2022; 40(2): 168-84.
[http://dx.doi.org/10.2337/cd21-0083] [PMID: 35669307]
[71]
Haidar A, Tsoukas MA, Bernier-Twardy S, et al. A novel dual-hormone insulin-and-pramlintide artificial pancreas for type 1 diabetes: A randomized controlled crossover trial. Diabetes Care 2020; 43(3): 597-606.
[http://dx.doi.org/10.2337/dc19-1922] [PMID: 31974099]
[72]
Fabris C, Kovatchev B. The closed‐loop artificial pancreas in 2020. Artif Organs 2020; 44(7): 671-9.
[http://dx.doi.org/10.1111/aor.13704] [PMID: 32384582]
[73]
Peters TM, Haidar A. Dual-hormone artificial pancreas: Benefits and limitations compared with single-hormone systems. Diabet Med 2018; 35(4): 450-9.
[http://dx.doi.org/10.1111/dme.13581] [PMID: 29337384]
[74]
Castellanos LE, Balliro CA, Sherwood J, et al. 216-OR: A random-order, double-blinded, placebo-controlled study of the bionic pancreas in the bihormonal vs. insulin-only configurations using two different glucose targets in adults with type 1 diabetes in the home-use setting. Diabetes 2009; 18(15): 2136-44.
[75]
Arýkan D, Sívríkaya SK, Olgun N. Complementary alternative medicine use in children with type 1 diabetes mellitus in Erzurum, Turkey. J Clin Nurs 2009; 18(15): 2136-44.
[76]
Bailey CJ, Day C. Traditional plant medicines as treatments for diabetes. Diabetes Care 1989; 12(8): 553-64.
[http://dx.doi.org/10.2337/diacare.12.8.553] [PMID: 2673695]
[77]
Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002; 81(1): 81-100.
[http://dx.doi.org/10.1016/S0378-8741(02)00059-4] [PMID: 12020931]
[78]
Zia T, Hasnain SN, Hasan SK. Evaluation of the oral hypoglycaemic effect of Trigonella foenum-graecum L. (methi) in normal mice. J Ethnopharmacol 2001; 75(2-3): 191-5.
[http://dx.doi.org/10.1016/S0378-8741(01)00186-6] [PMID: 11297850]
[79]
Baskaran K, Ahamath BK, Shanmugasundaram KR, Shanmugasundaram ERB. Antidiabetic effect of a leaf extract from Gymnema sylvestre in non-insulin-dependent diabetes mellitus patients. J Ethnopharmacol 1990; 30(3): 295-305.
[http://dx.doi.org/10.1016/0378-8741(90)90108-6] [PMID: 2259217]
[80]
Karunanayake EH, Jeevathayaparan S, Tennekoon KH. Effect of Momordica charantia fruit juice on streptozotocin-induced diabetes in rats. J Ethnopharmacol 1990; 30(2): 199-204.
[http://dx.doi.org/10.1016/0378-8741(90)90008-H] [PMID: 2255210]
[81]
Chattopadhyay RR, Chattopadhyay RN, Nandy AK, Poddar G, Maitra SK. The effect of fresh leaves of Azadirachta indica on glucose uptake and glycogen content in the isolated rat hemi diaphragm. Bull Calcutta Sch Trop Med 1987; 35: 8-12.
[82]
Visalli N, Cavallo MG, Signore A, et al. A multi-centre randomized trial of two different doses of nicotinamide in patients with recent-onset Type 1 diabetes (the IMDIAB VI). Diabetes Metab Res Rev 1999; 15(3): 181-5.
[http://dx.doi.org/10.1002/(SICI)1520-7560(199905/06)15:3<181:AID-DMRR31>3.0.CO;2-H] [PMID: 10441040]
[83]
Baburao Jain A, Anand Jain V, Vitamin E. Vitamin E, its beneficial role in Diabetes Mellitus (DM) and its complications. J Clin Diagn Res 2012; 6(10): 1624-8.
[PMID: 23373014]
[84]
Cefalu WT, Hu FB. Role of chromium in human health and in diabetes. Diabetes Care 2004; 27(11): 2741-51.
[http://dx.doi.org/10.2337/diacare.27.11.2741] [PMID: 15505017]
[85]
Soveid M, Dehghani GA, Omrani GR. Long term efficacy and safety of vanadium in the treatment of type 1 diabetes. Arch Iran Med 2013; 16(7): 408-11.
[PMID: 23808778]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy