Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Phytochemistry and Polypharmacological Potential of Colebrookea oppositifolia Smith

Author(s): Dinesh Kumar*, Rajeev Kumar Singla*, Pooja Sharma, Lutesh Kumar, Navdeep Kaur, Ravi Kumar Dhawan, Shailesh Sharma, Kamal Dua and Rohit Sharma*

Volume 23, Issue 5, 2023

Published on: 27 December, 2022

Page: [334 - 348] Pages: 15

DOI: 10.2174/1568026623666221202112414

Price: $65

Abstract

Background: Colebrookea oppositifolia Smith. is a valuable traditional therapeutic plant belonging to the family Lamiaceae. It is a dense and wool-like shrub that is mostly found in subtropical regions of some countries of Asia, such as China and India. It has been widely used for the mitigation of nervous system disorders like epilepsy. The active constituents of the plant have exhibited antioxidant, anti-microbial, and antifungal properties, which are considered due to the presence of polyphenols and flavonoids as chief chemical constituents. Flavonoids like quercetin, landenein, chrysin, and 5, 6, 7-trimethoxy flavones cause protein denaturation of the microbial cell wall.

Objectives: To comprehend and assemble the fragmented pieces of evidence presented on the traditional uses, botany, phytochemistry, and pharmacology of the plant to reconnoiter its therapeutic perspective and forthcoming research opportunities.

Methods: The available information on Colebrookea oppositifolia has been established by electronically searching peer-reviewed literature from PubMed, Google Scholar, Springer, Scopus, Web of Science, and Science Direct over the earlier few years.

Results: The plant has been greatly used for the preparation of many herbal medicines which are used for treating traumatic injuries, fever, rheumatoid arthritis, headache, and gastric problems. From the aerial parts of the plant, a phenylethanoid glycoside named acteoside has been isolated and evaluated for its therapeutic potential viz. immunomodulatory, neuroprotective, hepatoprotective, analgesic, anti-tumour, antispasmodic, antioxidant, antibacterial, free radical scavenger, and improving sexual function. Acteoside showed neuroprotective activities against Aβ-peptide, which is neurotoxic and causes apoptosis. The petroleum ether extract of the plant leaves offers many active compounds like sitosterol, n-triacontane, hydroxydotriacontyl ferulate, acetyl alcohol, and 3,7,4,2-tetramethoxyflavones which have shown hepatoprotective potential.

Conclusion: The plant should be evaluated further for the estimation of some other health benefits. The consequences of restricted pharmacological screening and reported phytomolecules of Colebrookea oppositifolia Smith. advocate that there is still an exigent requisite for in-depth pharmacological studies of the plant.

Graphical Abstract

[1]
Ishtiaq, S.; Meo, M.B.; Afridi, M.S.K.; Akbar, S.; Rasool, S. Pharmacognostic studies of aerial parts of Colebrookea oppositifolia Sm. Ann. Phytomed., 2016, 5(2), 161-167.
[http://dx.doi.org/10.21276/ap.2016.5.2.23]
[2]
Reddy, R.V.N.; Reddy, B.A.K.; Gunasekar, D. A new acylated flavone glycoside from Colebrookea oppositifolia. J. Asian Nat. Prod. Res., 2009, 11(2), 183-186.
[http://dx.doi.org/10.1080/10286020802674871] [PMID: 19219733]
[3]
The Wealth of India. A dictionary of Indian raw materials and industrial products. In: CSIR, New Delhi; , 1956; II, p. 308.
[4]
Chopra, R.N.; Nayar, S.L.; Chopra, I.C. Glossary of Indian Medicinal Plants; CSIR Publication: New Delhi, 1956, p. 74.
[5]
Torri, M.C. Mainstreaming local health through herbal gardens in India: a tool to enhance women active agency and primary health care? Environ. Dev. Sustain., 2012, 14(3), 389-406.
[http://dx.doi.org/10.1007/s10668-011-9331-7]
[6]
Joseph, S.V.; Edirisinghe, I.; Burton-Freeman, B.M. Fruit polyphenols: A review of anti-inflammatory effects in humans. Crit. Rev. Food Sci. Nutr., 2016, 56(3), 419-444.
[http://dx.doi.org/10.1080/10408398.2013.767221] [PMID: 25616409]
[7]
Venkateshappa, S.M.; Sreenath, K.P. Potential medicinal plants of Lamiaceae. Am. Int. J. Formal. Res. App. Nat. Sci., 2013, 3, 82-88.
[8]
Holley, J.; Cherla, K. Medicinal plants sector in India. A review of medicinal and aromatic plants program in Asia (MAPA); SARO/IDRC: New Delhi, India, 1998, p. 109.
[9]
Robak, J.; Gryglewski, R.J. Bioactivity of flavonoids. Pol. J. Pharmacol., 1996, 48(6), 555-564.
[PMID: 9112694]
[10]
Madhavan, V.; Yadav, D.K.; Gurudeva, M.; Yoganarasimhan, S. Pharmacognostical studies on the leaves of Colebrookea oppositifolia Smith. J. Trad. Med., 2011, 6, 134-144.
[11]
Santapu, H.; Henry, A. A Dictionary of the Flowering Plants of India; CSIR: New Delhi, 1976, p. 42.
[12]
Cantino, P.D. Evidence for a polyphyletic origin of Labiatae. Ann. Mo. Bot. Gard., 1992, 79(2), 361-379.
[http://dx.doi.org/10.2307/2399774]
[13]
Tanaka, N.; Koyama, T.; Murata, J. The flowering plants of Mt. Popa, central Myanmar - Results of Myanmar-Japanese joint expeditions. Makinoa, 2005, 5, 1-102.
[14]
Rahman, M.O. Second list of angiospermic taxa of Bangladesh not included in Hooker’s ‘Flora of British India’ and Prain’s ‘Bengal Plants’: series I. Bangladesh J. Plant Taxon., 2004, 11, 77-82.
[15]
Khanam, M.; Hassan, M.A. Lamiaceae. Flora of Bangladesh., 2008, 58, 1-161.
[16]
Kumar, D.; Sharma, P.; Singh, H.; Nepali, K.; Gupta, G.K.; Jain, S.K.; Ntie-Kang, F. The value of pyrans as anticancer scaffolds in medicinal chemistry. RSC Advances, 2017, 7(59), 36977-36999.
[http://dx.doi.org/10.1039/C7RA05441F]
[17]
Kumar, D.; Kumar Jain, S. A Comprehensive review of N-hetero-cycles as cytotoxic agents. Curr. Med. Chem., 2016, 23(38), 4338-4394.
[http://dx.doi.org/10.2174/0929867323666160809093930] [PMID: 27516198]
[18]
Sharma, P.; Sharma, R.; Rao, H.S.; Kumar, D. Phytochemistry and medicinal attributes of A. scholaris: A review. Int. J. Pharm. Sci. Res., 2016, 7(2), 1000-1010.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.6(12).505-13]
[19]
Kaur, T.; Sharma, P.; Gupta, G.; Ntie-Kang, F.; Kumar, D. Treatment of tuberculosis by natural drugs: A review. Plant Arch., 2019, 19(2), 2168-2176.
[20]
Kumar, D.; Sharma, P. Shabu; Kaur, R.; Lobe, M.M.M.; Gupta, G.K.; Ntie-Kang, F. In search of therapeutic candidates for HIV/AIDS: rational approaches, design strategies, structure–activity relationship and mechanistic insights. RSC Advances, 2021, 11(29), 17936-17964.
[http://dx.doi.org/10.1039/D0RA10655K] [PMID: 35480193]
[21]
Kaur, R.; Sharma, P.; Gupta, G.K.; Ntie-Kang, F.; Kumar, D. Structure-activity-relationship and mechanistic insights for anti-HIV natural products. Molecules, 2020, 25(9), 2070.
[http://dx.doi.org/10.3390/molecules25092070] [PMID: 32365518]
[22]
Sharma, P.; Shri, R.; Ntie-Kang, F.; Kumar, S. Phytochemical and ethnopharmacological perspectives of Ehretia laevis. Molecules, 2021, 26(12), 3489.
[http://dx.doi.org/10.3390/molecules26123489] [PMID: 34201193]
[23]
Kumar, D.; Malik, F.; Bedi, P.M.S.; Jain, S. 2,4-diarylpyrano[3,2-c]-chromen-5(4H)-ones as coumarin-chalcone conjugates: Design, synthesis and biological evaluation as apoptosis inducing agents. Chem. Pharm. Bull. (Tokyo), 2016, 64, 399-409.
[http://dx.doi.org/10.1248/cpb.c15-00958] [PMID: 27150472]
[24]
Kumar, D.; Singh, G.; Sharma, P.; Qayum, A.; Mahajan, G.; Mintoo, M.J.; Singh, S.K.; Mondhe, D.M.; Bedi, P.M.S.; Jain, S.K.; Gupta, G.K. 4-aryl/heteroaryl-4H-fused pyrans as anti-prolifera-tive agents: Design, synthesis and biological evaluation. Anticancer. Agents Med. Chem., 2018, 18(1), 57-73.
[http://dx.doi.org/10.2174/1871520617666170918143911] [PMID: 28925877]
[25]
Kumar, D.; Sharma, P.; Nepali, K.; Mahajan, G.; Mintoo, M.J.; Singh, A.; Singh, G.; Mondhe, D.M.; Singh, G.; Jain, S.K.; Gupta, G.K.; Ntie-Kang, F. Antitumour, acute toxicity and molecular modeling studies of 4-(pyridin-4-yl)-6-(thiophen-2-yl) pyrimidin-2(1H)-one against Ehrlich ascites carcinoma and sarcoma-180. Heliyon, 2018, 4(6), e00661.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00661] [PMID: 30003157]
[26]
Kumar, D.; Nepali, K.; Bedi, P.M.S.; Kumar, S.; Malik, F.; Jain, S. 4,6-diaryl pyrimidones as constrained chalcone analogues: Design, Synthesis and Evaluation as anti-proliferative agents. Anticancer. Agents Med. Chem., 2015, 15(6), 793-803.
[http://dx.doi.org/10.2174/1871520615666150318101436] [PMID: 25783964]
[27]
Kumar, D.; Singh, O.; Nepali, K.; Bedi, P.; Qayum, A.; Singh, S.; Jain, S.K. Naphthoflavones as antiproliferative agents: design, synthesis and biological evaluation. Anticancer. Agents Med. Chem., 2016, 16(7), 881-890.
[http://dx.doi.org/10.2174/1871520616666160204113536] [PMID: 26845133]
[28]
Jain, V.; Verma, S.K. Folkloric use of plants for treatment of epilepsy in India. J. Trad. Folk Pract., 2016, 2(3), 120-134.
[29]
Jain, S.K. Dictionary of Indian folk medicine and Ethnobotany; New Delhi, 1991, pp. 46-51.
[30]
Amjad, M.S.; Arshad, M.; Saboor, A.; Page, S.; Chaudhari, S.K. Ethnobotanical profiling of the medicinal flora of Kotli, Azad Jammu and Kashmir, Pakistan: Empirical reflections on multinomial logit specifications. Asian Pac. J. Trop. Med., 2017, 10(5), 503-514.
[http://dx.doi.org/10.1016/j.apjtm.2017.05.008] [PMID: 28647189]
[31]
Shirsat, R.; Suradkar, S.; Koche, D. Some phenolic compounds of Salvia plebeian. J. Biosci. Discov., 2012, 3, 61-63.
[32]
Mahapatra, S.K.; Mookerjee, M.; Roy, D.S.; Karak, P.; Das, S.; Dastidar, S.G. Evaluation of antimicrobial potentiality of a flavonoid, isolated from the leaf of the plant Colebrookea oppositifolia. Int. J. Biological. Pharm. Res., 2013, 4, 225-230.
[33]
Akhtar, N.; Haq, I.; Mirza, B. Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arab. J. Chem., 2015, 7, 98-105.
[http://dx.doi.org/10.1016/j.arabjc.2015.01.013]
[34]
Bhatia, H.; Sharma, Y.P.; Manhas, R.K.; Kumar, K. Ethnomedicinal plants used by the villagers of district Udhampur, J&K, India. J. Ethnopharmacol., 2014, 151(2), 1005-1018.
[http://dx.doi.org/10.1016/j.jep.2013.12.017] [PMID: 24365639]
[35]
Pandey, A.K.; Tripathi, N.N. Diversity and distribution of aromatic plants in forests of Gorakhpur division, U.P. India. Bio. Forum Int. J., 2010, 2, 25-33.
[36]
Manandhar, N.P. An inventory of some herbal drugs of Myagdi district. Nepal. Econ. Bot., 1995, 49(4), 371-379.
[http://dx.doi.org/10.1007/BF02863087]
[37]
Paul, S.R. Medicinal Plants of Netarhat, Bihar (India). Q. J. Crude Drug Res., 1977, 15(2), 79-97.
[http://dx.doi.org/10.3109/13880207709081926]
[38]
Ghaisas, M.M.; Sharma, S.; Ganu, G.P.; Limaye, R.P. Antiulcer activity of Colebrookea oppositifolia. Res. J. Pharmcol. Pharmacod., 2010, 2, 66-70.
[39]
Venkateshappa, S.M.; Sreenath, K.P. Potential medicinal plants of Lamiaceae. Am. Int. J. Res. Form. App. Nat. Sci., 2013, 3, 82-87.
[40]
Joshi, K.; Joshi, R.; Joshi, A.R. Indigenous knowledge and uses of medicinal plants in Macchegaun, Nepal. Indian J. Trad. Med., 2011, 10, 281-286.
[41]
Gupta, R.S.; Yadav, R.K.; Dixit, V.P.; Dobhal, M.P. Antispermatogenic effects of Nyctanthes arbortristis in male albino rats. Fitoterapia, 2001, 72, 70.
[42]
Singh, S.P.; Singh, S.K.; Tripathi, S.C. Anitfungal activity of essential oils of some Labiatae plants against dermatophytes. Indian Perfume., 1983, 27, 171-173.
[43]
Raj, V.; Kumar, V.; Sharma, S.K.; Kumar, S.; Riyaz, M.; Kumar, A.; Singh, S. In vitro antimicrobial activity of Colebrookea oppositifolia leaf. Int. J. Pharm. Integr. Life Sci., 2013, 1, 124-139.
[44]
Verma, S.K.; Pareek, D.; Singhal, R.; Chauhan, A.K.; Parashar, P.; Dobhal, M.P. Ferulic acid ester from Colebrookea oppositiflia. Indian J. Chem., 2012, 51, 1502-1503.
[45]
Ansari, S.; Dobhal, M.P.; Tyagi, R.P.; Joshi, B.C.; Barar, F.S.K. Chemical investigation and pharmacological screening of the roots of Colebrookia oppositifolia Smith. Pharmazie, 1982, 37(1), 70.
[PMID: 7071115]
[46]
McCarthy, F.O.; Chopra, J.; Ford, A.; Hogan, S.A.; Kerry, J.P.; O’Brien, N.M.; Ryan, E.; Maguire, A.R. Synthesis, isolation and characterisation of β-sitosterol and β-sitosterol oxide derivatives. Org. Biomol. Chem., 2005, 3(16), 3059-3065.
[http://dx.doi.org/10.1039/b505069c] [PMID: 16186940]
[47]
Patwardhan, S.A.; Gupta, A.S. Two new flavones from Colebrookea oppositifolia. Indian J. Chem., 1981, 20, 627-635.
[48]
Baskar, A.A.; Ignacimuthu, S.; Paulraj, G.M.; Al Numair, K.S. Chemopreventive potential of β-Sitosterol in experimental colon cancer model - an in vitro and in vivo study. BMC Complement. Altern. Med., 2010, 10(1), 24-31.
[http://dx.doi.org/10.1186/1472-6882-10-24] [PMID: 20525330]
[49]
Morales, G.; Sierra, P.; Mancilla, A.; Paredes, A.; Loyola, L.A.; Gallardo, O.; Borquez, J. Secondary metabolites from four medicinal plants from northern chile: antimicrobial activity and biotoxicity against Artemia salina. J. Chil. Chem. Soc., 2003, 48(2), 48-56.
[http://dx.doi.org/10.4067/S0717-97072003000200002]
[50]
Mukherjee, P.K.; Mukherjee, K.; Lokkerbol, A.C.J.H. Flavonoid content of Eupatoriuum glandulosum and Colebrookea oppositifolia. J. Nat. Rem., 2001, 1, 21-24.
[http://dx.doi.org/10.18311/jnr/2001/56]
[51]
Aziz, S.A.; Siddiqui, S.A.; Zaman, A. Flavones from Colebrookea oppositifolia. Indian J. Chem., 1974, 12, 1327-1328.
[52]
Fan, Yang.; Xing-Cong, Li.; Han-Qing, Wang.; Chong-Ren, Yang. Flavonoid glycosides from Colebrookea oppositifolia. Phytochemistry, 1996, 42(3), 867-869.
[http://dx.doi.org/10.1016/0031-9422(95)00975-2]
[53]
Viswanatha, G.L.; Shylaja, H.; Kumar, H.Y.; Venkataranganna, M.V.; Prasad, N.B.L. Traditional uses, phytochemistry, and ethnopharmacology of Colebrookea oppositifolia Smith: a mini-review. Adv. Tradition. Med., 2021, 21(2), 209-229.
[http://dx.doi.org/10.1007/s13596-020-00513-y]
[54]
Tyagi, S.; Saraf, S.; Ojha, A.C.; Rawat, G.S. Chemical investigation of some medicinal plants of Shiwalik. Asian J. Chem., 1995, 7, 165-170.
[55]
Gaydou, E.M.; Bianchini, J.P. Etudes de composes flavoniques. I. Syntheses prosperities (UV, RMN du 13C) de quelques flavones. Bull. Soc. Chim. Fr., 1978, 1(2), 43-47.
[56]
Öksüz, S.; Halfon, B.; Terem, B. Flavonoids of Centaurea cuneifolia. Plant Med., 1988, 54(1), 89.
[http://dx.doi.org/10.1055/s-2006-962352] [PMID: 17265218]
[57]
Joshi, A.R.; Joshi, K. Indigenous knowledge and uses of medicinal plants by local communities of the Kali Gandaki Watershed Area, Nepal. J. Ethnopharmacol., 2000, 73(1-2), 175-183.
[http://dx.doi.org/10.1016/S0378-8741(00)00301-9] [PMID: 11025154]
[58]
Sardar, P.R.; Manik, S.R. GC-MS analysis of aromatic compounds from leaves of Colebrookea oppositifolia Smith. Int. J. Life Sci., 2017, 5, 241-246.
[59]
Burr, G.O.; Burr, M.M.; Miller, E. On the nature and role of fatty acid essential in nutrition. J. Biol. Chem., 1930, 86(2), 587-621.
[http://dx.doi.org/10.1016/S0021-9258(20)78929-5]
[60]
Papamandjaris, A.A.; Macdougall, D.E.; Jones, P.J.H. Medium chain fatty acid metabolism and energy expenditure: Obesity treatment implications. Life Sci., 1998, 62(14), 1203-1215.
[http://dx.doi.org/10.1016/S0024-3205(97)01143-0] [PMID: 9570335]
[61]
Kingsbury, K.J.; Paul, S.; Morgan, D.M. The Fatty acid composition of human deposition fat. Botanical. J., 1961, 78, 541-550.
[http://dx.doi.org/10.1042/bj0780541]
[62]
Shirsat, R.P.; Koche, D.K.; Suradkar, S.S.; Kokate, P.S.; Bhadange, D.G. Two bioactive compounds from leaf extracts of Colebrookea oppositifolia Smith. Indian J. Applied Pure Bio., 2014, 29, 61-65.
[63]
Kumar, D.; Sharma, P.; Mahajan, A.; Dhawan, R.; Dua, K. Pharmaceutical interest of in-silico approaches. Physical Sci. Rev, 2022, 1-14.
[http://dx.doi.org/10.1515/psr-2018-0157]
[64]
Kumar, D.; Kumar, S.; Sharma, P.; Shri, R. Mechanistic insights and docking studies of phytomolecules as potential candidates in the management of cancer. Curr. Pharm. Des., 2022, 28(33), 2704-2724.
[http://dx.doi.org/10.2174/1381612828666220426112116] [PMID: 35473540]
[65]
Chinchansure, A.; Arkile, M.; Shinde, D.; Sarkar, D.; Joshi, S. A new dinor-cis-labdane diterpene and flavonoids with anti-mycobacterium activity from Colebrookea oppositifolia. Plant. Med. Lett., 2016, 3(1), e20-e24.
[http://dx.doi.org/10.1055/s-0042-102200]
[66]
Su, B.N.; Jung Park, E.; Vigo, J.S.; Graham, J.G.; Cabieses, F.; Fong, H.H.S.; Pezzuto, J.M.; Kinghorn, A.D. Activity-guided isolation of the chemical constituents of Muntingia calabura using a quinone reductase induction assay. Phytochemistry, 2003, 63(3), 335-341.
[http://dx.doi.org/10.1016/S0031-9422(03)00112-2] [PMID: 12737982]
[67]
Chen, G.Y.; Dai, C.Y.; Wang, T.S.; Jiang, C.W.; Han, C.R.; Song, X.P. A new flavonol from the stem-bark of Premna fulva. ARKIVOC, 2010, 2010(2), 179-185.
[http://dx.doi.org/10.3998/ark.5550190.0011.213]
[68]
Asakawa, Y. Chemical constituents of Alnus sieboldiana (Betulaceae) II. The isolation and structure of flavonoids and stilbenes. Bull. Chem. Soc., 1971, 44, 2761-2766.
[69]
Iinuma, M.; Matsuura, S.; Kusuda, K. 13C-nuclear magnetic resonance (NMR) spectral studies on polysubstituted flavonoids. I. 13C-NMR spectra of flavones. Chem. Pharm. Bull. (Tokyo), 1980, 28(3), 708-716.
[http://dx.doi.org/10.1248/cpb.28.708]
[70]
Wei, Y.; Gao, Y.; Zhang, K.; Ito, Y. Isolation of caffeic acid from Eupatorium adenophorum Spreng by high-speed counter current chromatography and synthesis of caffeic acid-intercalated layered double hydroxide. J. Liq. Chromatogr. Relat. Technol., 2010, 33(6), 837-845.
[http://dx.doi.org/10.1080/10826071003684471] [PMID: 20454592]
[71]
Williams, C.A.; Hoult, J.R.S.; Harborne, J.B.; Greenham, J.; Eagles, J. A biologically active lipophilic flavonol from Tanacetum parthenium. Phytochemistry, 1995, 38(1), 267-270.
[http://dx.doi.org/10.1016/0031-9422(94)00609-W] [PMID: 7766058]
[72]
Panichpol, K.; Waterman, P.G. Novel flavonoids from the stem of Popowia cauliflora. Phytochemistry, 1978, 17(8), 1363-1367.
[http://dx.doi.org/10.1016/S0031-9422(00)94590-4]
[73]
Yang, M.; Xu, X.; Xie, C.; Huang, J.; Xie, Z.; Yang, D. Isolation and purification of forsythoside A and suspensaside A from Forsythia suspensa by highspeed counter-current chromatography. J. Liq. Chromatogr. Relat. Technol., 2013, 36, 2895-2904.
[74]
Rao, L.J.M.; Kumari, G.N.K.; Rao, N.S.P. Anisofolin-A, a new acylated flavone glucoside from Anisomeles ovata R. Br. Heterocycles, 1982, 19, 1655-1661.
[http://dx.doi.org/10.3987/R-1982-09-1655]
[75]
Sabina, H.; Aliya, R. Bioactive assessment of selected marine red algae against Leishmania major and chemical constituents of Osmundea pinnatifida. Pak. J. Bot., 2011, 43, 3053-3056.
[76]
Švehlíková, V.; Bennett, R.N.; Mellon, F.A.; Needs, P.W.; Piacente, S.; Kroon, P.A.; Bao, Y. Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L. Rauschert). Phytochemistry, 2004, 65(16), 2323-2332.
[http://dx.doi.org/10.1016/j.phytochem.2004.07.011] [PMID: 15381003]
[77]
Ali, I.; Sharma, P.; Suri, K.A.; Satti, N.K.; Dutt, P.; Afrin, F.; Khan, I.A. In vitro antifungal activities of amphotericin B in combination with acteoside, a phenylethanoid glycoside from Colebrookea oppositifolia. J. Med. Microbiol., 2011, 60(9), 1326-1336.
[http://dx.doi.org/10.1099/jmm.0.031906-0] [PMID: 21474610]
[78]
Viswanatha, G.L.; Venkataranganna, M.V.; Prasad, N.B.L. Ameliorative potential of Colebrookea oppositifolia methanolic root extract against experimental models of epilepsy: Possible role of GABA mediated mechanism. Biomed. Pharmacother., 2017, 90, 455-465.
[http://dx.doi.org/10.1016/j.biopha.2017.03.078] [PMID: 28391167]
[79]
Brodie, M.J.; Besag, F.; Ettinger, A.B.; Mula, M.; Gobbi, G.; Comai, S.; Aldenkamp, A.P.; Steinhoff, B.J. Epilepsy, antiepileptic drugs, and aggression: an evidence-based review. Pharmacol. Rev., 2016, 68(3), 563-602.
[http://dx.doi.org/10.1124/pr.115.012021] [PMID: 27255267]
[80]
Viswanatha, G.L.; Sowmya, G.P.; Hanumanthappa, S.; Yogananda, M. Methanolic stem extract of Colebrookea oppositifolia attenuates epilepsy in experimental animal models: possible role of GABA pathways. J. Biol. Active Prod. Nat., 2020, 10(1), 44-58. a
[81]
Bell, G.S.; Neligan, A.; Sander, J.W. An unknown quantity-The worldwide prevalence of epilepsy. Epilepsia, 2014, 55(7), 958-962.
[http://dx.doi.org/10.1111/epi.12605] [PMID: 24964732]
[82]
Goldenberg, M.M. Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment. PT, 2010, 35(7), 392-415.
[PMID: 20689626]
[83]
Hamed, S.A. The effect of epilepsy and antiepileptic drugs on sexual, reproductive and gonadal health of adults with epilepsy. Expert Rev. Clin. Pharmacol., 2016, 9(6), 807-819.
[http://dx.doi.org/10.1586/17512433.2016.1160777] [PMID: 26934627]
[84]
Mula, M. Third generation antiepileptic drug monotherapies in adults with epilepsy. Expert Rev. Neurother., 2016, 16(9), 1087-1092.
[http://dx.doi.org/10.1080/14737175.2016.1195264] [PMID: 27248204]
[85]
Yang, Y.; Wang, X. Sexual dysfunction related to antiepileptic drugs in patients with epilepsy. Expert Opin. Drug Saf., 2016, 15(1), 31-42.
[http://dx.doi.org/10.1517/14740338.2016.1112376] [PMID: 26559937]
[86]
Muazu, J.; Kaita, M.H. A review of traditional plants used in the treatment of epilepsy amongst the Hausa/Fulani tribes of northern Nigeria. Afr. J. Tradit. Complement. Altern. Med., 2008, 5(4), 387-390.
[http://dx.doi.org/10.4314/ajtcam.v5i4.31294] [PMID: 20161961]
[87]
Kritikar, K.; Basu, B. Indian medicinal plants; Lalit Mohan Basu: Allahabad, 2007.
[88]
Adhikari, B.S.; Babu, M.M.; Saklani, P.L.; Rawat, G.S. Distribution, use pattern and prospects for conservation of medicinal shrubs in Uttaranchal State, India. J. Mt. Sci., 2007, 4(2), 155-180.
[http://dx.doi.org/10.1007/s11629-007-0155-8]
[89]
Yoganarasimhan, S. Medicinal plants of India Interline Publishing Private Limited, 1996.
[90]
Nadkarni, K. Indian material medica, 1976 ed.; Bombay Popular Prakashan, 1976.
[91]
Gupta, V.K.; Shukla, C.; Bisht, G.R.S.; Saikia, D.; Kumar, S.; Thakur, R.L. Detection of anti-tuberculosis activity in some folklore plants by radiometric BACTEC assay. Lett. Appl. Microbiol., 2011, 52(1), 33-40.
[http://dx.doi.org/10.1111/j.1472-765X.2010.02963.x] [PMID: 21114505]
[92]
Grange, J.M.; Zumla, A. The global emergency of tuberculosis: what is the cause? J. R. Soc. Promot. Health, 2002, 122(2), 78-81.
[http://dx.doi.org/10.1177/146642400212200206] [PMID: 12134771]
[93]
Sabran, S.F.; Mohamed, M.; Bakar, M.F.A. Ethnomedical knowledge of plants used for the treatment of tuberculosis in johor, malaysia. Evid. Based Compl. Alt. Med., 2016.
[http://dx.doi.org/10.1155/2016/2850845]
[94]
Matteelli, A.; Sulis, G.; Capone, S.; D’Ambrosio, L.; Migliori, G.B.; Getahun, H. Tuberculosis elimination and the challenge of latent tuberculosis. Presse Med., 2017, 46(2), e13-e21.
[http://dx.doi.org/10.1016/j.lpm.2017.01.015] [PMID: 28279508]
[95]
Said, K.; Verver, S.; Kalingonji, A.; Lwilla, F.; Mkopi, A.; Charalambous, S.; Reither, K. Tuberculosis among HIV-infected population: incidence and risk factors in rural Tanzania. Afr. Health Sci., 2017, 17(1), 208-215.
[http://dx.doi.org/10.4314/ahs.v17i1.26] [PMID: 29026395]
[96]
Sanusi, S.B.; Abu Bakar, M.F.; Mohamed, M.; Sabran, S.F.; Mainasara, M.M. Southeast asian medicinal plants as a potential source of antituberculosis agent. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-39.
[http://dx.doi.org/10.1155/2017/7185649] [PMID: 29081822]
[97]
Targhotra, M.; Aggarwal, R.; Chauhan, M.K. Bioactive compounds for effective management of drug-resistant tuberculosis. Curr. Bioact. Compd., 2021, 17(3), 196-205.
[http://dx.doi.org/10.2174/1573407216999200518090132]
[98]
Chinchansure, A.; Arkile, M.; Shukla, A.; Shanmugam, D.; Sarkar, D.; Joshi, S. Leucas mollissima, a source of bioactive compounds with antimalarial and antimycobacterium activities. Plant. Med. Lett., 2015, 2(1), e35-e38.
[http://dx.doi.org/10.1055/s-0035-1557830]
[99]
Dzoyem, J.P.; Guru, S.K.; Pieme, C.A.; Kuete, V.; Sharma, A.; Khan, I.A.; Saxena, A.K.; Vishwakarma, R.A. Cytotoxic and antimicrobial activity of selected Cameroonian edible plants. BMC Complement. Altern. Med., 2013, 13(1), 78-84.
[http://dx.doi.org/10.1186/1472-6882-13-78] [PMID: 23565827]
[100]
Khan, A.; Sarkar, D. A simple whole cell based high throughput screening protocol using Mycobacterium bovis BCG for inhibitors against dormant and active Tubercle bacilli. J. Microbiol. Methods, 2008, 73(1), 62-68.
[http://dx.doi.org/10.1016/j.mimet.2008.01.015] [PMID: 18328582]
[101]
Singh, U.; Akhtar, S.; Mishra, A.; Sarkar, D. A novel screening method based on menadione mediated rapid reduction of tetrazolium salt for testing of anti-mycobacterial agents. J. Microbiol. Methods, 2011, 84(2), 202-207.
[http://dx.doi.org/10.1016/j.mimet.2010.11.013] [PMID: 21129420]
[102]
Fauci, A.S.; Touchette, N.A.; Folkers, G.K. Emerging infectious diseases: a 10-year perspective from the national institute of allergy and infectious diseases. Emerg. Infect. Dis., 2005, 11(4), 519-525.
[http://dx.doi.org/10.3201/eid1104.041167] [PMID: 15829188]
[103]
Mira, A.; Simon-Soro, A.; Curtis, M.A. Role of microbial communities in the pathogenesis of periodontal diseases and caries. J. Clin. Periodontol., 2017, 44(Suppl. 18), S23-S38.
[http://dx.doi.org/10.1111/jcpe.12671] [PMID: 28266108]
[104]
van der Meulen, T.A.; Harmsen, H.J.M.; Bootsma, H.; Spijkervet, F.K.L.; Kroese, F.G.M.; Vissink, A. The microbiome-systemic diseases connection. Oral Dis., 2016, 22(8), 719-734.
[http://dx.doi.org/10.1111/odi.12472] [PMID: 26953630]
[105]
Chao, Y.; Marks, L.R.; Pettigrew, M.M.; Hakansson, A.P. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease. Front. Cell. Infect. Microbiol., 2015, 4, 194-200.
[http://dx.doi.org/10.3389/fcimb.2014.00194] [PMID: 25629011]
[106]
Mazumdar, K.; Ganguly, K.; Kumar, K.A.; Dutta, N.K.; Chakrabarty, A.N.; Dastidar, S.G. Antimicrobial potentiality of a new non-antibiotic: the cardiovascular drug oxyfedrine hydrochloride. Microbiol. Res., 2003, 158(3), 259-264.
[http://dx.doi.org/10.1078/0944-5013-00204] [PMID: 14521236]
[107]
Mishra, U.S.; Dutta, N.K.; Mazumdar, K.; Mahapatra, S.K.; Chakraborty, P.; Dastidar, S.G. Anti-Salmonella activity of a flavonone from Butea frondosa bark in mice. Orient. Pharm. Exp. Med., 2008, 8(4), 339-348.
[http://dx.doi.org/10.3742/OPEM.2008.8.4.339]
[108]
Sushomarsi, M.S.; Pranabesh, C.; Dastidar, S.G. Potential of dopamin hydrochloride as a novel antimicrobial agent. Int. J. Biomed. Pharm. Sci., 2010, 4, 70-75.
[109]
Mazumder, R.; Dastidar, S.G.; Basu, S.P.; Mazumder, A.; Singh, S.K. Antibacterial potentiality of Mesua ferrea Linn. flowers. Phytother. Res., 2004, 18(10), 824-826.
[http://dx.doi.org/10.1002/ptr.1572] [PMID: 15551387]
[110]
Mishra, U.S.; Chakraborty, P.; Dasgupta, A.; Dastidar, S.G.; Martins, M.; Amaral, L. Potent bactericidal action of a flavonoid fraction isolated from the stem bark of Butea frondosa. In Vivo, 2009, 23(1), 29-32.
[PMID: 19368121]
[111]
Panda, S.K.; Padhi, L.; Leyssen, P.; Liu, M.; Neyts, J.; Luyten, W. Antimicrobial, anthelmintic, and antiviral activity of plants traditionally used for treating infectious diseases in the similipal biosphere reserve, Odisha, India. Front. Pharmacol., 2017, 8, 658-667.
[http://dx.doi.org/10.3389/fphar.2017.00658] [PMID: 29109684]
[112]
Sharma, V.; Sharma, H.V.; Mehta, D.; Chhabra, B.; Thakur, D.; Sourirajan, A.; Dev, K. Comparative analysis of antibacterial and antifungal properties of traditional medicinal plants of shimla and solan, himachal pradesh. Int. J. Pharmacog. Phytochem. Res., 2014, 6, 18-26.
[113]
Soman, I.; Mengi, S.A.; Kasture, S.B. Effect of leaves of Butea frondosa on stress, anxiety, and cognition in rats. Pharmacol. Biochem. Behav., 2004, 79(1), 11-16.
[http://dx.doi.org/10.1016/j.pbb.2004.05.022] [PMID: 15388278]
[114]
Gubarev, M.I.; Enioutina, E.Y.; Taylor, J.L.; Visic, D.M.; Daynes, R.A. Plant-derived glycoalkaloids protect mice against lethal infection with Salmonella typhimurium. Phytother. Res., 1998, 12(2), 79-88.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199803)12:2<79:AID-PTR192>3.0.CO;2-N]
[115]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564]
[116]
Savoia, D. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol., 2012, 7(8), 979-990.
[http://dx.doi.org/10.2217/fmb.12.68] [PMID: 22913356]
[117]
Gilling, D.H.; Kitajima, M.; Torrey, J.R.; Bright, K.R. Mechanisms of antiviral action of plant antimicrobials against murine norovirus. Appl. Environ. Microbiol., 2014, 80(16), 4898-4910.
[http://dx.doi.org/10.1128/AEM.00402-14] [PMID: 24907316]
[118]
Ahmed, T.; Kanwal, R.; Hassan, M.; Ayub, N. Assessment of antibacterial activity of Colebrookia oppositifolia against waterborne pathogens isolated from drinking water of the pothwar region in Pakistan. Hum. Ecol. Risk Assess., 2009, 15(2), 401-415.
[http://dx.doi.org/10.1080/10807030902761510]
[119]
Qazi, G.N.; Suri, O.P.; Bedi, K.L.; Suri, K.A.; Gupta, B.D.; Jaggi, B.S.; Kapahi, B.K.; Satti, N.K.; Amina, M. Hepatoprotective agent of plant origin and a process thereof. United States Patent number US 6,989,162 B2, 2006.
[120]
Díaz, A.M.; Abad, M.J.; Fernández, L.; Silván, A.M.; De Santos, J.; Bermejo, P. Phenylpropanoid glycosides from Scrophularia scorodonia: In vitro anti-inflammatory activity. Life Sci., 2004, 74(20), 2515-2526.
[http://dx.doi.org/10.1016/j.lfs.2003.10.008] [PMID: 15010262]
[121]
Wu, Y.T.; Tsai, T.R.; Lin, L.C.; Tsai, T.H. Liquid chromatographic method with amperometric detection to determine acteoside in rat blood and brain microdialysates and its application to pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 853(1-2), 281-286.
[http://dx.doi.org/10.1016/j.jchromb.2007.03.033] [PMID: 17442636]
[122]
Li, L.; Tsao, R.; Yang, R.; Liu, C.; Young, J.C.; Zhu, H. Isolation and purification of phenylethanoid glycosides from Cistanche deserticola by high-speed counter-current chromatography. Food Chem., 2008, 108(2), 702-710.
[http://dx.doi.org/10.1016/j.foodchem.2007.10.082] [PMID: 26059151]
[123]
Ramage, G.; Vande Walle, K.; Wickes, B.L.; Lopez-Ribot, J.L. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob. Agents Chemother., 2001, 45, 2475-2479.
[http://dx.doi.org/10.1128/AAC.45.9.2475-2479.2001]
[124]
Martinez, L.R.; Casadevall, A. Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro. Antimicrob. Agents Chemother., 2006, 50(3), 1021-1033.
[http://dx.doi.org/10.1128/AAC.50.3.1021-1033.2006] [PMID: 16495265]
[125]
Mowat, E.; Butcher, J.; Lang, S.; Williams, C.; Ramage, G. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J. Med. Microbiol., 2007, 56(9), 1205-1212.
[http://dx.doi.org/10.1099/jmm.0.47247-0] [PMID: 17761484]
[126]
Ramani, R.; Ramani, A.; Wong, S.J. Rapid flow cytometric susceptibility testing of Candida albicans. J. Clin. Microbiol., 1997, 35(9), 2320-2324.
[http://dx.doi.org/10.1128/jcm.35.9.2320-2324.1997] [PMID: 9276410]
[127]
Joung, Y.H.; Kim, H.R.; Lee, M.K.; Park, A.J. Fluconazole susceptibility testing of Candida species by flow cytometry. J. Infect., 2007, 54(5), 504-508.
[http://dx.doi.org/10.1016/j.jinf.2006.09.016] [PMID: 17084902]
[128]
Shirsat, R.; Suradkar, S.; Koche, D. Antioxidant activity and total polyphenol content of aqueous extracts from three selected lamiaceae members. Indian J. Pharm., 2011, 2, 43-45.
[129]
Yanishlieva, N.V.; Marinova, E.; Pokorný, J. Natural antioxidants from herbs and spices. Eur. J. Lipid Sci. Technol., 2006, 108(9), 776-793.
[http://dx.doi.org/10.1002/ejlt.200600127]
[130]
Saxena, A.; Saxena, A.K.; Singh, J.; Bhushan, S. Natural antioxidants synergistically enhance the anticancer potential of AP9-cd, a novel lignan composition from Cedrus deodara in human leukemia HL-60 cells. Chem. Biol. Interact., 2010, 188(3), 580-590.
[http://dx.doi.org/10.1016/j.cbi.2010.09.029] [PMID: 20932957]
[131]
Andrews, F.A.; Beggs, W.H.; Sarosi, G.A. Influence of antioxidants on the bioactivity of amphotericin B. Antimicrob. Agents Chemother., 1977, 11(4), 615-618.
[http://dx.doi.org/10.1128/AAC.11.4.615] [PMID: 324396]
[132]
Beggs, W.H.; Andrews, F.A.; Sarosi, G.A. Synergistic action of amphotericin B and antioxidants against certain opportunistic yeast pathogens. Antimicrob. Agents Chemother., 1978, 13(2), 266-270.
[http://dx.doi.org/10.1128/AAC.13.2.266] [PMID: 348098]
[133]
Barman, N.R.; Paul, H.S.; Kar, P.K.; Hazam, P.K.; Nandy, S.; Tyagi, H. In vitro evaluation of antioxidant activity of Colebrookea oppositifolia Smith. Int. J. Drug Discov. Herbal Res., 2012, 2, 296-300.
[134]
Pan, N.; Hori, H. Antioxidant action of acteoside and its analogs on lipid peroxidation. Redox Rep., 1996, 2(2), 149-154.
[http://dx.doi.org/10.1080/13510002.1996.11747042] [PMID: 27405954]
[135]
Lahloub, M.; Zaghloul, A.; El-Khayaat, S.; Afifi, M.; Sticher, O. 2′-O-acetylpoliumoside: a new phenylpropanoid glycoside from Orobanche ramosa. Planta Med., 1991, 57(5), 481-485.
[http://dx.doi.org/10.1055/s-2006-960177] [PMID: 1798805]
[136]
Suzuki, Y.J.; Tsuchiya, M.; Safadi, A.; Kagan, V.E.; Packer, L. Antioxidant properties of nitecapone (OR-462). Free Radic. Biol. Med., 1992, 13(5), 517-525.
[http://dx.doi.org/10.1016/0891-5849(92)90146-8] [PMID: 1334029]
[137]
Yar Khan, H.; Zubair, H.; Fahad Ullah, M.; Ahmad, A.; Mumtaz Hadi, S. A prooxidant mechanism for the anticancer and chemopreventive properties of plant polyphenols. Curr. Drug Targets, 2012, 13(14), 1738-1749.
[http://dx.doi.org/10.2174/138945012804545560] [PMID: 23140285]
[138]
Gupta, R.S.; Yadav, R.K.; Dixit, V.P.; Dobhal, M.P. Antifertility studies of Colebrookia oppositifolia leaf extract in male rats with special reference to testicular cell population dynamics. Fitoterapia, 2001, 72(3), 236-245.
[http://dx.doi.org/10.1016/S0367-326X(00)00311-7] [PMID: 11295299]
[139]
Keel, B.A.; Abney, O. Influence of bilateral cryptorchidism in the mature rat: alterations in testicular function and serum hormone levels. Endocrinology, 1980, 107(4), 1226-1233.
[http://dx.doi.org/10.1210/endo-107-4-1226] [PMID: 6105953]
[140]
Steinberger, E.; French, F.S.; Hansson, V.; Ritzen, E.M.; Nayfeh, S.N. Hormonal regulation of the seminiferous tubule function. Curr. Top. Mol. Endocrinol., 1975, 2, 337-352.
[http://dx.doi.org/10.1007/978-1-4613-4440-7_24] [PMID: 195771]
[141]
Gasinska, A.; Hill, S. The effect of hyperthermia on the mouse testis. Neoplasma, 1990, 37(3), 357-366.
[PMID: 2370920]
[142]
Courot, M.; Kilgour, R.J. Endocrine control of mammalian testicular ontogenesis. Arch. Biol. Med. Exp. (Santiago), 1984, 17(3-4), 249-255.
[PMID: 6100812]
[143]
Monet-Kuntz, C.; Reviers, M.T.H.; Terqui, M. Variations in testicular androgen receptors and histology of the lamb testis from birth to puberty. Reproduction, 1984, 70(1), 203-210.
[http://dx.doi.org/10.1530/jrf.0.0700203] [PMID: 6694138]
[144]
Østergaard, L.; Engedal, T.S.; Moreton, F.; Hansen, M.B.; Wardlaw, J.M.; Dalkara, T.; Markus, H.S.; Muir, K.W. Cerebral small vessel disease: Capillary pathways to stroke and cognitive decline. J. Cereb. Blood Flow Metab., 2016, 36(2), 302-325.
[http://dx.doi.org/10.1177/0271678X15606723] [PMID: 26661176]
[145]
Rodrigo, R.; Fernández-Gajardo, R.; Gutiérrez, R.; Matamala, J.; Carrasco, R.; Miranda-Merchak, A.; Feuerhake, W. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol. Disord. Drug Targets, 2013, 12(5), 698-714.
[http://dx.doi.org/10.2174/1871527311312050015] [PMID: 23469845]
[146]
Randolph, S.A. Ischemic Stroke. Workplace Health Saf., 2016, 64(9), 444-461.
[http://dx.doi.org/10.1177/2165079916665400] [PMID: 27621261]
[147]
Katzan, I.L.; Thompson, N.R.; Uchino, K.; Lapin, B. The most affected health domains after ischemic stroke. Neurology, 2018, 90(16), e1364-e1371.
[http://dx.doi.org/10.1212/WNL.0000000000005327] [PMID: 29592886]
[148]
Guzik, A.; Bushnell, C. Stroke epidemiology and risk factor management. Continuum (Minneap. Minn.), 2017, 23(1), 15-39.
[http://dx.doi.org/10.1212/CON.0000000000000416] [PMID: 28157742]
[149]
Holodinsky, J.K.; Yu, A.Y.X.; Assis, Z.A.; Al Sultan, A.S.; Menon, B.K.; Demchuk, A.M.; Goyal, M. Hill, M.D. History, evolution, and importance of emergency endovascular treatment of acute ischemic stroke. Curr. Neurol. Neurosci. Rep., 2016, 16(5), 42-51.
[http://dx.doi.org/10.1007/s11910-016-0646-5] [PMID: 27021771]
[150]
Grupke, S.; Hall, J.; Dobbs, M.; Bix, G.J.; Fraser, J.F. Understanding history, and not repeating it. Neuroprotection for acute ischemic stroke: From review to preview. Clin. Neurol. Neurosurg., 2015, 129, 1-9.
[http://dx.doi.org/10.1016/j.clineuro.2014.11.013] [PMID: 25497127]
[151]
Durukan, A.; Tatlisumak, T. Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol. Biochem. Behav., 2007, 87(1), 179-197.
[http://dx.doi.org/10.1016/j.pbb.2007.04.015] [PMID: 17521716]
[152]
Fisher, M. New approaches to neuroprotective drug development. Stroke, 2011, 42(Suppl. 1), S24-S27.
[http://dx.doi.org/10.1161/STROKEAHA.110.592394] [PMID: 21164111]
[153]
Jung, S.Y.; Kim, K.M.; Cho, S.; Lim, S.; Lim, C.; Kim, Y.K. Effects of pretreatment with methanol extract of Peucedani radix on transient ischemic brain injury in mice. Chin. Med., 2017, 12(1), 30-35.
[http://dx.doi.org/10.1186/s13020-017-0151-z] [PMID: 29090015]
[154]
Bora, K.S.; Sharma, A. Neuroprotective effect of Artemisia absinthium L. on focal ischemia and reperfusion-induced cerebral injury. J. Ethnopharmacol., 2010, 129(3), 403-409.
[http://dx.doi.org/10.1016/j.jep.2010.04.030] [PMID: 20435123]
[155]
Sundaram, R.S.; Gowtham, L.; Rajesh, R.; Rajan, D.S.; Srinivasan, R.; Gaurav, G. Evaluation of protective role of Ocimum sanctum leaf extract in excitotoxicity-induced neurobehavioral deficits based on specific changes in the structure of feeding behavior, diuretic and anxiety paradigms in female rats. J. Med. Sci. (Faisalabad, Pak.), 2013, 13(3), 182-192.
[http://dx.doi.org/10.3923/jms.2013.182.192]
[156]
Godinho, J.; de Oliveira, R.M.W.; de Sa-Nakanishi, A.B.; Bacarin, C.C.; Huzita, C.H.; Longhini, R.; Mello, J.C.P.; Nakamura, C.V.; Previdelli, I.S.; Dal Molin Ribeiro, M.H.; Milani, H.; Milani, H. Ethyl-acetate fraction of Trichilia catigua restores long-term retrograde memory and reduces oxidative stress and inflammation after global cerebral ischemia in rats. Behav. Brain Res., 2018, 337, 173-182.
[http://dx.doi.org/10.1016/j.bbr.2017.08.050] [PMID: 28919157]
[157]
Rodrigues, F.T.S.; de Sousa, C.N.S.; Ximenes, N.C.; Almeida, A.B.; Cabral, L.M.; Patrocínio, C.F.V.; Silva, A.H.; Leal, L.K.A.M.; Honório Júnior, J.E.R.; Macedo, D.; Vasconcelos, S.M.M. Effects of standard ethanolic extract from Erythrina velutina in acute cerebral ischemia in mice. Biomed. Pharmacother., 2017, 96, 1230-1239.
[http://dx.doi.org/10.1016/j.biopha.2017.11.093] [PMID: 29174035]
[158]
Yu, Z.H.; Cai, M.; Xiang, J.; Zhang, Z.N.; Zhang, J.S.; Song, X.L.; Zhang, W.; Bao, J.; Li, W.W.; Cai, D.F. PI3K/Akt pathway contributes to neuroprotective effect of Tongxinluo against focal cerebral ischemia and reperfusion injury in rats. J. Ethnopharmacol., 2016, 181, 8-19.
[http://dx.doi.org/10.1016/j.jep.2016.01.028] [PMID: 26805466]
[159]
Cui, H.J.; Yang, A.L.; Zhou, H.J.; Wang, C.; Luo, J.K.; Lin, Y.; Zong, Y.X.; Tang, T. Buyang huanwu decoction promotes angiogenesis via vascular endothelial growth factor receptor-2 activation through the PI3K/Akt pathway in a mouse model of intracerebral hemorrhage. BMC Complement. Altern. Med., 2015, 15(1), 91-98.
[http://dx.doi.org/10.1186/s12906-015-0605-8] [PMID: 25886469]
[160]
Viswanatha, G.L.; Sharath Kumar, L.M.; Rafiq, M.; Kavya, K.J.; Thippeswamy, A.H.; Chandrashekarappa Yuvaraj, H.; Azeemuddin, M.; Anturlikar, S.D.; Patki, P.S.; Babu, U.V.; Ramakrishnan, S. LC-MS/MS profiling and neuroprotective effects of Mentat® against transient global ischemia and reperfusion–induced brain injury in rats. Nutrition, 2015, 31(7-8), 1008-1017.
[http://dx.doi.org/10.1016/j.nut.2015.02.009] [PMID: 26059376]
[161]
Xiang, J.; Tang, Y.P.; Wu, P.; Gao, J.P.; Cai, D.F. Chinese medicine Nao-Shuan-Tong attenuates cerebral ischemic injury by inhibiting apoptosis in a rat model of stroke. J. Ethnopharmacol., 2010, 131(1), 174-181.
[http://dx.doi.org/10.1016/j.jep.2010.06.021] [PMID: 20600767]
[162]
Ren, C.; Wang, B.; Li, N.; Jin, K.; Ji, X. Herbal formula danggui-shaoyao-san promotes neurogenesis and angiogenesis in rat following middle cerebral artery occlusion. Aging Dis., 2015, 6(4), 245-253.
[http://dx.doi.org/10.14336/AD.2014.1126] [PMID: 26236546]
[163]
Wang, H.N.; Peng, Y.; Tan, Q.R.; Wang, H.H.; Chen, Y.C.; Zhang, R.G.; Wang, Z.Z.; Guo, L.; Liu, Y.; Zhang, Z.J. Free and Easy Wanderer Plus (FEWP), a polyherbal preparation, ameliorates PTSD-like behavior and cognitive impairments in stressed rats. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(8), 1458-1463.
[http://dx.doi.org/10.1016/j.pnpbp.2009.07.031] [PMID: 19665511]
[164]
Sun, K.; Hu, Q.; Zhou, C.M.; Xu, X.S.; Wang, F.; Hu, B.H.; Zhao, X.Y.; Chang, X.; Chen, C.H.; Huang, P.; An, L.H.; Liu, Y.Y.; Fan, J.Y.; Wang, C.S.; Yang, L.; Han, J.Y. Cerebralcare Granule®, a Chinese herb compound preparation, improves cerebral microcirculatory disorder and hippocampal CA1 neuron injury in gerbils after ischemia–reperfusion. J. Ethnopharmacol., 2010, 130(2), 398-406.
[http://dx.doi.org/10.1016/j.jep.2010.05.030] [PMID: 20580803]
[165]
Son, H.Y.; Jung, H.W.; Kim, W.K.; Park, Y.K. The vasoprotective effect of JP05 through the activation of PI3K/Akt-dependent eNOS and MEK/ERK pathways in brain endothelial cells. J. Ethnopharmacol., 2010, 130(3), 607-613.
[http://dx.doi.org/10.1016/j.jep.2010.05.050] [PMID: 20561929]
[166]
Takakura, S.; Sogabe, K.; Satoh, H.; Mori, J.; Fujiwara, T.; Totsuka, Z.; Tokuma, Y.; Kohsaka, M. Nilvadipine as a neuroprotective calcium entry blocker in a rat model of global cerebral ischemia. A comparative study with nicardipine hydrochloride. Neurosci. Lett., 1992, 141(2), 199-202.
[http://dx.doi.org/10.1016/0304-3940(92)90894-D] [PMID: 1436634]
[167]
Hadorn, D.C. A small-animal model of cerebral ischemia: Verapamil improves neurological outcome. Ann. Emerg. Med., 1984, 13(5), 385-386.
[http://dx.doi.org/10.1016/S0196-0644(84)80146-8]
[168]
Riaz, T.; Abbasi, M.; Shahzadi, T.; Rehman, A.; Siddiqui, S.; Ajaib, M. Colebrookia oppositifolia: A valuable source for natural antioxidants. J. Med. Plants Res., 2011, 5, 4180-4187.
[169]
Subba, B.; Basnet, P. Antimicrobial and antioxidant activity of some indigenous plants of Nepal. J. Pharmacogn. Phytochem., 2014, 3, 62-67.
[170]
Viswanatha, G.L.; Venkataranganna, M.V.; Prasad, N.B.L.; Hanumanthappa, S. Chemical characterization and cerebroprotective effect of methanolic root extract of Colebrookea oppositifolia in rats. J. Ethnopharmacol., 2018, 223, 63-75.
[http://dx.doi.org/10.1016/j.jep.2018.05.009] [PMID: 29777902]
[171]
Tsai, P.J.; Tsai, T.H.; Yu, C.H.; Ho, S.C. Evaluation of NO-suppressing activity of several Mediterranean culinary spices. Food Chem. Toxicol., 2007, 45(3), 440-447.
[http://dx.doi.org/10.1016/j.fct.2006.09.006] [PMID: 17074427]
[172]
Damiano, S.; Forino, M.; De, A.; Vitali, L.A.; Lupidi, G.; Taglialatela-Scafati, O. Antioxidant and antibiofilm activities of secondary metabolites from Ziziphus jujuba leaves used for infusion preparation. Food Chem., 2017, 230, 24-29.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.141] [PMID: 28407906]
[173]
Pandey, M.M.; Khatoon, S.; Rastogi, S.; Rawat, A.K.S. Determination of flavonoids, polyphenols and antioxidant activity of Tephrosia purpurea: a seasonal study. J. Integr. Med., 2016, 14(6), 447-455.
[http://dx.doi.org/10.1016/S2095-4964(16)60276-5] [PMID: 27854196]
[174]
Benabdelaziz, I.; Marcourt, L.; Benkhaled, M.; Wolfender, J.L.; Haba, H. Antioxidant and antibacterial activities and polyphenolic constituents of Helianthemum sessiliflorum Pers. Nat. Prod. Res., 2017, 31(6), 686-690.
[http://dx.doi.org/10.1080/14786419.2016.1209669] [PMID: 27417554]
[175]
Smeriglio, A.; Galati, E.M.; Monforte, M.T.; Lanuzza, F.; D’Angelo, V.; Circosta, C. Polyphenolic compounds and antioxidant activity of cold-pressed seed oil from Finola cultivar of Cannabis sativa L. Phytother. Res., 2016, 30(8), 1298-1307.
[http://dx.doi.org/10.1002/ptr.5623] [PMID: 27076277]
[176]
Al-Rimawi, F.; Abu-Lafi, S. Abbadi; Alamarneh, A.A.A.; Sawahreh, R.A.; Odeh, I. Analysis of phenolic and flavonoids of wild Ephedra alata plant extracts by LC/PDA and LC/MS and their antioxidant activity. Afr. J. Tradit. Complement. Altern. Med., 2017, 14(2), 130-141.
[http://dx.doi.org/10.21010/ajtcam.v14i2.14] [PMID: 28573229]
[177]
Choi, S.Y.; Ko, H.C.; Ko, S.Y.; Hwang, J.H.; Park, J.G.; Kang, S.H.; Han, S.H.; Yun, S.H.; Kim, S.J. Correlation between flavonoid content and the NO production inhibitory activity of peel extracts from various citrus fruits. Biol. Pharm. Bull., 2007, 30(4), 772-778.
[http://dx.doi.org/10.1248/bpb.30.772] [PMID: 17409518]
[178]
Conforti, F.; Menichini, F. Phenolic compounds from plants as nitric oxide production inhibitors. Curr. Med. Chem., 2011, 18(8), 1137-1145.
[http://dx.doi.org/10.2174/092986711795029690] [PMID: 21291370]
[179]
Merly, L.; Smith, S.L. Murine RAW 264.7 cell line as an immune target: are we missing something? Immunopharmacol. Immunotoxicol., 2017, 39(2), 55-58.
[http://dx.doi.org/10.1080/08923973.2017.1282511] [PMID: 28152640]
[180]
Kim, M.; Lee, S.; Ki, C.S. Cellular behavior of RAW 264.7 cells in 3D poly (ethylene glycol) hydrogel niches. ACS Biomater. Sci. Eng., 2019, 5(2), 922-932.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01150] [PMID: 33405849]
[181]
Chang, K.C. Cilostazol inhibits HMGB1 release in LPS-activated RAW 264.7 cells and increases the survival of septic mice. Thromb. Res., 2015, 136(2), 456-464.
[http://dx.doi.org/10.1016/j.thromres.2015.06.017] [PMID: 26116490]
[182]
Erdogan, I.; Senol, F.S.; Sener, B. Recent approaches towards selected Lamiaceae plants for their prospective use in neuroprotection. In: Studies in Natural Products Chemistry; Rahman, A.U., Ed.; , 012; 38, pp. 397-415.
[http://dx.doi.org/10.1016/B978-0-444-59530-0.00014-9]
[183]
Chen, W.W.; Zhang, X.; Huang, W.J. Role of neuroinflammation in neurodegenerative diseases (Review). Mol. Med. Rep., 2016, 13(4), 3391-3396.
[http://dx.doi.org/10.3892/mmr.2016.4948] [PMID: 26935478]
[184]
Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[185]
Gitler, A.D.; Dhillon, P.; Shorter, J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis. Model. Mech., 2017, 10(5), 499-502.
[http://dx.doi.org/10.1242/dmm.030205] [PMID: 28468935]
[186]
Essa, M.M.; Vijayan, R.K.; Castellano-Gonzalez, G.; Memon, M.A.; Braidy, N.; Guillemin, G.J. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem. Res., 2012, 37(9), 1829-1842.
[http://dx.doi.org/10.1007/s11064-012-0799-9] [PMID: 22614926]
[187]
Georgiev, M.; Alipieva, K.; Orhan, I.; Abrashev, R.; Denev, P.; Angelova, M. Antioxidant and cholinesterases inhibitory activities of Verbascum xanthophoeniceum Griseb. and its phenylethanoid glycosides. Food Chem., 2011, 128(1), 100-105.
[http://dx.doi.org/10.1016/j.foodchem.2011.02.083] [PMID: 25214335]
[188]
Stafford, G.I.; Pedersen, M.E.; van Staden, J.; Jäger, A.K. Review on plants with CNS-effects used in traditional South African medicine against mental diseases. J. Ethnopharmacol., 2008, 119(3), 513-537.
[http://dx.doi.org/10.1016/j.jep.2008.08.010] [PMID: 18775771]
[189]
Bondi, M.W.; Edmonds, E.C.; Salmon, D.P. Alzheimer’s disease: past, present, and future. J. Int. Neuropsychol. Soc., 2017, 23(9-10), 818-831.
[http://dx.doi.org/10.1017/S135561771700100X] [PMID: 29198280]
[190]
Sochocka, M. Zwolińska, K.; Leszek, J. The infectious etiology of Alzheimer’s disease. Curr. Neuropharmacol., 2017, 15(7), 996-1009.
[http://dx.doi.org/10.2174/1570159X15666170313122937] [PMID: 28294067]
[191]
Latta, C.H.; Brothers, H.M.; Wilcock, D.M. Neuroinflammation in Alzheimer’s disease; A source of heterogeneity and target for personalized therapy. Neuroscience, 2015, 302, 103-111.
[http://dx.doi.org/10.1016/j.neuroscience.2014.09.061] [PMID: 25286385]
[192]
Balin, B.J.; Hudson, A.P. Etiology and pathogenesis of late-onset Alzheimer’s disease. Curr. Allergy Asthma Rep., 2014, 14(3), 417-421.
[http://dx.doi.org/10.1007/s11882-013-0417-1] [PMID: 24429902]
[193]
Adewusi, E.A.; Moodley, N.; Steenkamp, V. Antioxidant and acetylcholinesterase inhibitory activity of selected southern African medicinal plants. S. Afr. J. Bot., 2011, 77(3), 638-644.
[http://dx.doi.org/10.1016/j.sajb.2010.12.009]
[194]
Tatli, I.I.; Kahraman, C.; Akdemir, Z.S. The therapeutic activities of selected Scrophulariaceae and Buddlejaceae species and their secondary metabolites against neurodegenerative diseases. Bioactive Neutraceutical. Dietary Suppl. Neurol. Brain Dis., 2015, 5, 95-111.
[http://dx.doi.org/10.1016/B978-0-12-411462-3.00011-4]
[195]
Wang, H.; Xu, Y.; Yan, J.; Zhao, X.; Sun, X.; Zhang, Y.; Guo, J.; Zhu, C. Acteoside protects human neuroblastoma SH-SY5Y cells against β-amyloid-induced cell injury. Brain Res., 2009, 1283, 139-147.
[http://dx.doi.org/10.1016/j.brainres.2009.05.101] [PMID: 19520063]
[196]
Wang, H.Q.; Xu, Y.X.; Zhu, C.Q. Upregulation of heme oxygenase-1 by acteoside through ERK and PI3 K/Akt pathway confer neuroprotection against β-amyloid-induced neurotoxicity. Neurotox. Res., 2012, 21(4), 368-378.
[http://dx.doi.org/10.1007/s12640-011-9292-5] [PMID: 22147269]
[197]
Dharmani, P.; Kumar, K.; Shrivastava, S.; Palit, G. Ulcer healing effect of Anti-ulcer agents: A comparative study. The Internet J. Acad. Physician Assist., 2003, 3(2), 1-7.
[198]
Lanas, A.; Chan, F.K.L. Peptic ulcer disease. Lancet, 2017, 390(10094), 613-624.
[http://dx.doi.org/10.1016/S0140-6736(16)32404-7] [PMID: 28242110]
[199]
Chang, S.S.; Hu, H.Y. Helicobacter pylori eradication within 120 days is associated with decreased complicated recurrent peptic ulcer bleeding patients. Gut Liver, 2015, 9(3), 346-352.
[http://dx.doi.org/10.5009/gnl13451] [PMID: 25167793]
[200]
Wong, C.S.; Chia, C.F.; Lee, H.C.; Wei, P.L.; Ma, H.P.; Tsai, S.H.; Wu, C.H.; Tam, K.W. Eradication of Helicobacter pylori for prevention of ulcer recurrence after simple closure of perforated peptic ulcer: A meta-analysis of randomized controlled trials. J. Surg. Res., 2013, 182(2), 219-226.
[http://dx.doi.org/10.1016/j.jss.2012.10.046] [PMID: 23158404]
[201]
Chaturvedi, A.; Kumar, M.M.; Bhawani, G.; Chaturvedi, H.; Kumar, M.; Goel, R.K. Effect of ethanolic extract of Eugenia jambolana seeds on gastric ulceration and secretion in rats. Indian J. Physiol. Pharmacol., 2007, 51(2), 131-140.
[PMID: 18175656]
[202]
Chung, C.S.; Chiang, T.H.; Lee, Y.C. A systematic approach for the diagnosis and treatment of idiopathic peptic ulcers. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 2015, 30(5), 559-570.
[http://dx.doi.org/10.3904/kjim.2015.30.5.559] [PMID: 26354049]
[203]
Nguelefack, T.B.; Feumebo, C.B.; Ateufack, G.; Watcho, P.; Tatsimo, S.; Atsamo, A.D.; Tane, P.; Kamanyi, A. Anti-ulcerogenic properties of the aqueous and methanol extracts from the leaves of Solanum torvum Swartz (Solanaceae) in rats. J. Ethnopharmacol., 2008, 119(1), 135-140.
[http://dx.doi.org/10.1016/j.jep.2008.06.008] [PMID: 18602980]
[204]
Omar, H.; Nordin, N.; Hassandarvish, P.; Hajrezaie, M.; Azizan, A.H.S.; Fadaeinasab, M.; Abdul Majid, N.; Abdulla, M.; Mohd Hashim, N.; Mohd Ali, H. Methanol leaf extract of Actinodaphne sesquipedalis (Lauraceae) enhances gastric defense against ethanol-induced ulcer in rats. Drug Des. Devel. Ther., 2017, 11, 1353-1365.
[http://dx.doi.org/10.2147/DDDT.S120564] [PMID: 28496305]
[205]
Paguigan, N.D.; Castillo, D.H.; Chichioco-Hernandez, C.L. Anti-ulcer activity of leguminosae plants. Arg. Gastroenterol., 2014, 51, 64-67.
[206]
do Nascimento, R.; de Sales, I.; de Oliveira Formiga, R.; Barbosa-Filho, J.; Sobral, M.; Tavares, J.; Diniz, M.; Batista, L. Activity of alkaloids on peptic ulcer: what’s new? Molecules, 2015, 20(1), 929-950.
[http://dx.doi.org/10.3390/molecules20010929] [PMID: 25580688]
[207]
Wang, Y.C. Medicinal plant activity on Helicobacter pylori related diseases. World J. Gastroenterol., 2014, 20(30), 10368-10382.
[http://dx.doi.org/10.3748/wjg.v20.i30.10368] [PMID: 25132753]
[208]
Wang, L.; Wang, X.; Zhu, X.M.; Liu, Y.Q.; Du, W.J.; Ji, J.; He, X.; Zhang, C.F.; Li, F.; Guo, C.R.; Wang, C.Z.; Yuan, C.S. Gastroprotective effect of alkaloids from cortex phellodendri on gastric ulcers in rats through neurohumoral regulation. Planta Med., 2016, 83(03/04), 277-284.
[http://dx.doi.org/10.1055/s-0042-114044] [PMID: 27648555]
[209]
Falcão, H.S.; Mariath, I.R.; Diniz, M.F.F.M.; Batista, L.M.; Barbosa-Filho, J.M. Plants of the American continent with antiulcer activity. Phytomedicine, 2008, 15(1-2), 132-146.
[http://dx.doi.org/10.1016/j.phymed.2007.07.057] [PMID: 17904832]
[210]
Dash, S. Effect of Aqueous extracts of Colebrookea oppositifolia on bioavailability of amoxycilline in rabbits. Indian Drug., 2004, 414, 231-235.
[211]
Repetto, M.G.; Llesuy, S.F. Antioxidant properties of natural compounds used in popular medicine for gastric ulcers. Braz. J. Med. Biol. Res., 2002, 35(5), 523-534.
[http://dx.doi.org/10.1590/S0100-879X2002000500003] [PMID: 12011936]
[212]
Goel, R.K.; Maiti, R.N. Role of endogenous eicosanoids in the antiulcer effect of kaempferol. Fitoterapia, 1996, 6, 548-552.
[213]
Cadirci, E.; Suleyman, H.; Aksoy, H.; Halici, Z.; Ozgen, U.; Koc, A.; Ozturk, N. Effects of Onosma armeniacum root extract on ethanol-induced oxidative stress in stomach tissue of rats. Chem. Biol. Interact., 2007, 170(1), 40-48.
[http://dx.doi.org/10.1016/j.cbi.2007.06.040] [PMID: 17681286]
[214]
Barbastefano, V.; Cola, M.; Luiz-Ferreira, A.; Farias-Silva, E.; Hiruma-Lima, C.A.; Rinaldo, D.; Vilegas, W.; Souza-Brito, A.R.M. Vernonia polyanthes as a new source of antiulcer drugs. Fitoterapia, 2007, 78(7-8), 545-551.
[http://dx.doi.org/10.1016/j.fitote.2007.07.003] [PMID: 17904766]
[215]
Shah, P.J.; Gandhi, M.S.; Shah, M.B.; Goswami, S.S.; Santani, D. Study of Mimusops elengi bark in experimental gastric ulcers. J. Ethnopharmacol., 2003, 89(2-3), 305-311.
[http://dx.doi.org/10.1016/j.jep.2003.09.003] [PMID: 14611897]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy