Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Effects of Metformin on Modulating the Expression of Brain-related Genes of APP/PS1 Transgenic Mice based on Single Cell Sequencing

Author(s): Xiao Qiu-Yue, Ye Tian-Yuan, Wang Xiao-Long, Qi Dong-Mei and Cheng Xiao-Rui*

Volume 19, Issue 11, 2022

Published on: 15 December, 2022

Page: [754 - 771] Pages: 18

DOI: 10.2174/1567205020666221201143323

Price: $65

Abstract

Background: Alzheimer's disease is the most common form of dementia, affecting millions of people worldwide.

Methods: Here, we analyzed the effects of metformin on APP/PS1 transgenic mice by behavioral test and single-cell sequencing.

Results: It showed that metformin can improve the spatial learning, memory function, and anxiety mood of APP/PS1 transgenic mice. We identified transcriptionally distinct subpopulations of nine major brain cell types. Metformin increased the differentiation of stem cells, decreased the proportion of cells in the G2 phase, enhanced the generation of neural stem cells and oligodendrocyte progenitor cells, and the tendency of neural stem cells to differentiate into astrocytes. Notably, 253 genes expressed abnormally in APP/PS1 transgenic mice and were reversed by metformin. Ttr, Uba52, and Rps21 are the top 3 genes in the cell-gene network with the highest node degree. Moreover, histochemistry showed the expressions of RPS15, Uba52, and RPL23a were consistent with the data from single-cell sequencing. Pathway and biological process enrichment analysis indicated metformin was involved in nervous system development and negative regulation of the apoptotic process.

Conclusion: Overall, metformin might play an important role in the differentiation and development and apoptotic process of the central nervous system by regulating the expression of Ttr, Uba52, Rps21, and other genes to improve cognition of APP/PS1 transgenic mice. These results provided a clue for elaborating on the molecular and cellular basis of metformin on AD.

[1]
Lee NC, Yang SY, Chieh JJ, et al. Blood beta-amyloid and tau in down syndrome: A comparison with Alzheimer’s Disease. Front Aging Neurosci 2017; 8: 316.
[http://dx.doi.org/10.3389/fnagi.2016.00316] [PMID: 28144219]
[2]
Meldolesi J. Alzheimer’s disease: Key developments support promising perspectives for therapy. Pharmacol Res 2019; 146: 104316.
[http://dx.doi.org/10.1016/j.phrs.2019.104316] [PMID: 31260730]
[3]
Sun Y, Ma C, Sun H, et al. Metabolism: A novel shared link between diabetes mellitus and Alzheimer’s disease. J Diabetes Res 2020; 2020: 4981814.
[http://dx.doi.org/10.1155/2020/4981814] [PMID: 32083135]
[4]
Irie F, Fitzpatrick AL, Lopez OL, et al. Enhanced risk for Alzheimer disease in persons with type 2 diabetes and APOE epsilon4: The cardiovascular health study cognition study. Arch Neurol 2008; 65(1): 89-93.
[http://dx.doi.org/10.1001/archneurol.2007.29] [PMID: 18195144]
[5]
Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: Mechanisms and clinical implications. Nat Rev Endocrinol 2018; 14(10): 591-604.
[http://dx.doi.org/10.1038/s41574-018-0048-7] [PMID: 30022099]
[6]
Kerner W, Brückel J. Definition, classification and diagnosis of diabetes mellitus. Exp Clin Endocrinol Diabetes 2014; 122(7): 384-6.
[http://dx.doi.org/10.1055/s-0034-1366278] [PMID: 25014088]
[7]
de la Monte SM, Tong M, Wands JR. The 20-year voyage aboard the journal of Alzheimer’s Disease: Docking at ‘type 3 diabetes’, environmental/exposure factors, pathogenic mechanisms, and potential treatments. J Alzheimers Dis 2018; 62(3): 1381-90.
[http://dx.doi.org/10.3233/JAD-170829] [PMID: 29562538]
[8]
Arnold SE, Arvanitakis Z, Macauley-Rambach SL, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. Nat Rev Neurol 2018; 14(3): 168-81.
[http://dx.doi.org/10.1038/nrneurol.2017.185] [PMID: 29377010]
[9]
Tournissac M, Leclerc M, Valentin-Escalera J, et al. Metabolic determinants of Alzheimer’s disease: A focus on thermoregulation. Ageing Res Rev 2021; 72: 101462.
[http://dx.doi.org/10.1016/j.arr.2021.101462] [PMID: 34534683]
[10]
Zhang J, Lin Y, Dai X, Fang W, Wu X, Chen X. Metformin treatment improves the spatial memory of aged mice in an APOE genotype–dependent manner. FASEB J 2019; 33(6): 7748-57.
[http://dx.doi.org/10.1096/fj.201802718R] [PMID: 30894020]
[11]
Farr SA, Roesler E, Niehoff ML, Roby DA, McKee A, Morley JE. Metformin improves learning and memory in the SAMP8 mouse model of Alzheimer’s disease. J Alzheimers Dis 2019; 68(4): 1699-710.
[http://dx.doi.org/10.3233/JAD-181240] [PMID: 30958364]
[12]
Cukierman-Yaffe T, Gerstein HC, Colhoun HM, et al. Effect of dulaglutide on cognitive impairment in type 2 diabetes: An exploratory analysis of the REWIND trial. Lancet Neurol 2020; 19(7): 582-90.
[http://dx.doi.org/10.1016/S1474-4422(20)30173-3] [PMID: 32562683]
[13]
Asadbegi M, Yaghmaei P, Salehi I, Ebrahim-Habibi A, Komaki A. Neuroprotective effects of metformin against Aβ-mediated inhibition of long-term potentiation in rats fed a high-fat diet. Brain Res Bull 2016; 121: 178-85.
[http://dx.doi.org/10.1016/j.brainresbull.2016.02.005] [PMID: 26861514]
[14]
Picone P, Nuzzo D, Caruana L, et al. Metformin increases APP expression and processing via oxidative stress, mitochondrial dysfunction and NF-κB activation: Use of insulin to attenuate metformin’s effect. Biochim Biophys Acta Mol Cell Res 2015; 1853(5): 1046-59.
[http://dx.doi.org/10.1016/j.bbamcr.2015.01.017] [PMID: 25667085]
[15]
Koenig AM, Mechanic-Hamilton D, Xie SX, et al. Effects of the insulin sensitizer metformin in Alzheimer disease. Alzheimer Dis Assoc Disord 2017; 31(2): 107-13.
[http://dx.doi.org/10.1097/WAD.0000000000000202] [PMID: 28538088]
[16]
Lu XY, Huang S, Chen QB, et al. Metformin ameliorates A β pathology by insulin-degrading enzyme in a transgenic mouse model of Alzheimer’s disease. Oxid Med Cell Longev 2020; 2020: 2315106.
[http://dx.doi.org/10.1155/2020/2315106] [PMID: 32377293]
[17]
Ou Z, Kong X, Sun X, et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun 2018; 69: 351-63.
[http://dx.doi.org/10.1016/j.bbi.2017.12.009] [PMID: 29253574]
[18]
Wang Y, Zhao J, Guo FL, et al. Metformin ameliorates synaptic defects in a mouse model of AD by inhibiting Cdk5 activity. Front Cell Neurosci 2020; 14: 170.
[http://dx.doi.org/10.3389/fncel.2020.00170] [PMID: 32670025]
[19]
Keshavarzi S, Kermanshahi S, Karami L, Motaghinejad M, Motevalian M, Sadr S. Protective role of metformin against methamphetamine induced anxiety, depression, cognition impairment and neurodegeneration in rat: The role of CREB/BDNF and Akt/GSK3 signaling pathways. Neurotoxicology 2019; 72: 74-84.
[http://dx.doi.org/10.1016/j.neuro.2019.02.004] [PMID: 30742852]
[20]
Ji S, Wang L, Li L. Effect of metformin on short-term high-fat diet-induced weight gain and anxiety-like behavior and the gut microbiota. Front Endocrinol 2019; 10: 704.
[http://dx.doi.org/10.3389/fendo.2019.00704] [PMID: 31681174]
[21]
Doody RS, Thomas RG, Farlow M, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 2014; 370(4): 311-21.
[http://dx.doi.org/10.1056/NEJMoa1312889] [PMID: 24450890]
[22]
Hodson R. Alzheimer’s disease. Nature 2018; 559(7715): S1.
[http://dx.doi.org/10.1038/d41586-018-05717-6] [PMID: 30046078]
[23]
Zhang H, Wei W, Zhao M, et al. Interaction between Aβ and Tau in the pathogenesis of Alzheimer’s disease. Int J Biol Sci 2021; 17(9): 2181-92.
[http://dx.doi.org/10.7150/ijbs.57078] [PMID: 34239348]
[24]
Naseri NN, Wang H, Guo J, Sharma M, Luo W. The complexity of tau in Alzheimer’s disease. Neurosci Lett 2019; 705: 183-94.
[http://dx.doi.org/10.1016/j.neulet.2019.04.022] [PMID: 31028844]
[25]
Gu J, Liu F. Tau in Alzheimer’s disease: Pathological alterations and an attractive therapeutic target. Curr Med Sci 2020; 40(6): 1009-21.
[http://dx.doi.org/10.1007/s11596-020-2282-1] [PMID: 33428128]
[26]
Selkoe DJ. Biochemistry and molecular biology of amyloid beta-protein and the mechanism of Alzheimer’s disease. Handb Clin Neurol 2008; 89: 245-60.
[http://dx.doi.org/10.1016/S0072-9752(07)01223-7]
[27]
Zhang P, Kishimoto Y, Grammatikakis I, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci 2019; 22(5): 719-28.
[http://dx.doi.org/10.1038/s41593-019-0372-9] [PMID: 30936558]
[28]
Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement 2016; 12(6): 719-32.
[http://dx.doi.org/10.1016/j.jalz.2016.02.010] [PMID: 27179961]
[29]
Hur JY, Frost GR, Wu X, et al. The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer’s disease. Nature 2020; 586(7831): 735-40.
[http://dx.doi.org/10.1038/s41586-020-2681-2] [PMID: 32879487]
[30]
Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 2019; 20(3): 148-60.
[http://dx.doi.org/10.1038/s41583-019-0132-6] [PMID: 30737462]
[31]
Hampel H, Mesulam MM, Cuello AC, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018; 141(7): 1917-33.
[http://dx.doi.org/10.1093/brain/awy132] [PMID: 29850777]
[32]
Zhang M, Zhao D, Zhou G, Li C. Dietary pattern, gut microbiota, and Alzheimer’s disease. J Agric Food Chem 2020; 68(46): 12800-9.
[http://dx.doi.org/10.1021/acs.jafc.9b08309] [PMID: 32090565]
[33]
Zhang F, Zhong R, Cheng C, Li S, Le W. New therapeutics beyond amyloid-β and tau for the treatment of Alzheimer’s disease. Acta Pharmacol Sin 2021; 42(9): 1382-9.
[http://dx.doi.org/10.1038/s41401-020-00565-5] [PMID: 33268824]
[34]
Yang P, Sheng D, Guo Q, et al. Neuronal mitochondria-targeted micelles relieving oxidative stress for delayed progression of Alzheimer’s disease. Biomaterials 2020; 238: 119844.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119844] [PMID: 32062148]
[35]
Atri A. The Alzheimer’s disease clinical spectrum. Med Clin North Am 2019; 103(2): 263-93.
[http://dx.doi.org/10.1016/j.mcna.2018.10.009] [PMID: 30704681]
[36]
Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: The AlzGene database. Nat Genet 2007; 39(1): 17-23.
[http://dx.doi.org/10.1038/ng1934] [PMID: 17192785]
[37]
Xu W, Tan L, Wang HF, et al. Meta-analysis of modifiable risk factors for Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2015; 86(12): jnnp-2015-310548.
[http://dx.doi.org/10.1136/jnnp-2015-310548] [PMID: 26294005]
[38]
Mathys H, Davila-Velderrain J, Peng Z, et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 2019; 570(7761): 332-7.
[http://dx.doi.org/10.1038/s41586-019-1195-2] [PMID: 31042697]
[39]
Wen S, Ma D, Zhao M, et al. Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat Neurosci 2020; 23(3): 456-67.
[http://dx.doi.org/10.1038/s41593-020-0586-x] [PMID: 32066983]
[40]
Gong YS, Hou FL, Guo J, Lin L, Zhu FY. Effects of alcohol intake on cognitive function and β-amyloid protein in APP/PS1 transgenic mice. Food Chem Toxicol 2021; 151: 112105.
[http://dx.doi.org/10.1016/j.fct.2021.112105] [PMID: 33737111]
[41]
Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet 2019; 20(5): 257-72.
[http://dx.doi.org/10.1038/s41576-019-0093-7] [PMID: 30696980]
[42]
Grün D, van Oudenaarden A. Design and analysis of single-cell sequencing experiments. Cell 2015; 163(4): 799-810.
[http://dx.doi.org/10.1016/j.cell.2015.10.039] [PMID: 26544934]
[43]
Haque A, Engel J, Teichmann SA, Lönnberg T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med 2017; 9(1): 75.
[http://dx.doi.org/10.1186/s13073-017-0467-4] [PMID: 28821273]
[44]
Chen G, Ning B, Shi T. Single cell RNA-Seq technologies and related computational data analysis. Front Genet 2019; 10: 317.
[http://dx.doi.org/10.3389/fgene.2019.00317] [PMID: 31024627]
[45]
Lau SF, Cao H, Fu AKY, Ip NY. Single-nucleus transcriptome analysis reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer’s disease. Proc Natl Acad Sci USA 2020; 117(41): 25800-9.
[http://dx.doi.org/10.1073/pnas.2008762117] [PMID: 32989152]
[46]
Armand EJ, Li J, Xie F, Luo C, Mukamel EA. Single cell sequencing of brain cell transcriptomes and epigenomes. Neuron 2021; 109(1): 11-26.
[http://dx.doi.org/10.1016/j.neuron.2020.12.010] [PMID: 33412093]
[47]
Rosenberg AB, Roco CM, Muscat RA, et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 2018; 360(6385): 176-82.
[http://dx.doi.org/10.1126/science.aam8999] [PMID: 29545511]
[48]
Grün D, Lyubimova A, Kester L, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 2015; 525(7568): 251-5.
[http://dx.doi.org/10.1038/nature14966] [PMID: 26287467]
[49]
Bourin M, Hascoët M. The mouse light/dark box test. Eur J Pharmacol 2003; 463(1-3): 55-65.
[http://dx.doi.org/10.1016/S0014-2999(03)01274-3] [PMID: 12600702]
[50]
Ramos A, Pereira E, Martins GC, Wehrmeister TD, Izídio GS. Integrating the open field, elevated plus maze and light/dark box to assess different types of emotional behaviors in one single trial. Behav Brain Res 2008; 193(2): 277-88.
[http://dx.doi.org/10.1016/j.bbr.2008.06.007] [PMID: 18590774]
[51]
Vorhees CV, Williams MT. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006; 1(2): 848-58.
[http://dx.doi.org/10.1038/nprot.2006.116] [PMID: 17406317]
[52]
Bromley-Brits K, Deng Y, Song W. Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. J Vis Exp 2011; 20(53): 2920.
[http://dx.doi.org/10.3791/2920] [PMID: 21808223]
[53]
Zhou L, Li Q. Isolation of region-specific microglia from one adult mouse brain hemisphere for deep single-cell RNA sequencing. J Vis Exp 2019; (154): 1-10.
[http://dx.doi.org/10.3791/60347]
[54]
Luchsinger JA, Perez T, Chang H, et al. Metformin in amnestic mild cognitive impairment: Results of a pilot randomized placebo controlled clinical trial. J Alzheimers Dis 2016; 51(2): 501-14.
[http://dx.doi.org/10.3233/JAD-150493] [PMID: 26890736]
[55]
Kuan YC, Huang KW, Lin CL, Hu CJ, Kao CH. Effects of metformin exposure on neurodegenerative diseases in elderly patients with type 2 diabetes mellitus. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79(Pt B): 77-83.
[http://dx.doi.org/10.1016/j.pnpbp.2017.06.002]
[56]
Fatt M, Hsu K, He L, et al. Metformin acts on two different molecular pathways to enhance adult neural precursor proliferation/self-renewal and differentiation. Stem Cell Reports 2015; 5(6): 988-95.
[http://dx.doi.org/10.1016/j.stemcr.2015.10.014] [PMID: 26677765]
[57]
Ould-Brahim F, Sarma SN, Syal C, et al. Metformin preconditioning of human induced pluripotent stem cell-derived neural stem cells promotes their engraftment and improves post-stroke regeneration and recovery. Stem Cells Dev 2018; 27(16): 1085-96.
[http://dx.doi.org/10.1089/scd.2018.0055] [PMID: 29893190]
[58]
Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ. Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: Mechanism for deficient glutamatergic transmission? Mol Neurodegener 2011; 6(1): 55.
[http://dx.doi.org/10.1186/1750-1326-6-55] [PMID: 21801442]
[59]
Heppner FL, Ransohoff RM, Becher B. Immune attack: The role of inflammation in Alzheimer disease. Nat Rev Neurosci 2015; 16(6): 358-72.
[http://dx.doi.org/10.1038/nrn3880] [PMID: 25991443]
[60]
Liu Y, Tang G, Zhang Z, Wang Y, Yang GY. Metformin promotes focal angiogenesis and neurogenesis in mice following middle cerebral artery occlusion. Neurosci Lett 2014; 579: 46-51.
[http://dx.doi.org/10.1016/j.neulet.2014.07.006] [PMID: 25026071]
[61]
Wang J, Gallagher D, DeVito LM, et al. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 2012; 11(1): 23-35.
[http://dx.doi.org/10.1016/j.stem.2012.03.016] [PMID: 22770240]
[62]
Neumann B, Baror R, Zhao C, et al. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell 2019; 25(4): 473-485.e8.
[http://dx.doi.org/10.1016/j.stem.2019.08.015] [PMID: 31585093]
[63]
Qu Z, Ji S, Zheng S. BRAF controls the effects of metformin on neuroblast cell divisions in C. elegans. Int J Mol Sci 2020; 22(1): 178.
[http://dx.doi.org/10.3390/ijms22010178] [PMID: 33375360]
[64]
Chen K, Lin ZW, He S, et al. Metformin inhibits the proliferation of rheumatoid arthritis fibroblast-like synoviocytes through IGF-IR/PI3K/AKT/m-TOR pathway. Biomed Pharmacother 2019; 115: 108875.
[http://dx.doi.org/10.1016/j.biopha.2019.108875] [PMID: 31028998]
[65]
Demaré S, Kothari A, Calcutt NA, Fernyhough P. Metformin as a potential therapeutic for neurological disease: Mobilizing AMPK to repair the nervous system. Expert Rev Neurother 2021; 21(1): 45-63.
[http://dx.doi.org/10.1080/14737175.2021.1847645] [PMID: 33161784]
[66]
Sritawan N, Prajit R, Chaisawang P, et al. Metformin alleviates memory and hippocampal neurogenesis decline induced by methotrexate chemotherapy in a rat model. Biomed Pharmacother 2020; 131: 110651.
[http://dx.doi.org/10.1016/j.biopha.2020.110651] [PMID: 32841896]
[67]
Wang H, Zheng Z, Han W, et al. Metformin promotes axon regeneration after spinal cord injury through inhibiting oxidative stress and stabilizing microtubule. Oxid Med Cell Longev 2020; 2020: 9741369.
[http://dx.doi.org/10.1155/2020/9741369] [PMID: 31998447]
[68]
Chen D, Xia D, Pan Z, et al. Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo. Cell Death Dis 2016; 7(10): e2441.
[http://dx.doi.org/10.1038/cddis.2016.334] [PMID: 27787519]
[69]
Zhang J, Huang L, Shi X, et al. Metformin protects against myocardial ischemia-reperfusion injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway. Aging 2020; 12(23): 24270-87.
[http://dx.doi.org/10.18632/aging.202143] [PMID: 33232283]
[70]
Li A, Zhang S, Li J, Liu K, Huang F, Liu B. Metformin and resveratrol inhibit Drp1-mediated mitochondrial fission and prevent ER stress-associated NLRP3 inflammasome activation in the adipose tissue of diabetic mice. Mol Cell Endocrinol 2016; 434: 36-47.
[http://dx.doi.org/10.1016/j.mce.2016.06.008] [PMID: 27276511]
[71]
Vieira M, Saraiva MJ. Transthyretin: A multifaceted protein. Biomol Concepts 2014; 5(1): 45-54.
[http://dx.doi.org/10.1515/bmc-2013-0038] [PMID: 25372741]
[72]
Elovaara I, Maury CPJ, Palo J. Serum amysoid A protein, albumin and prealbumin in Alzheimer’s disease and in demented patients with Down’s syndrome. Acta Neurol Scand 1986; 74(3): 245-50.
[http://dx.doi.org/10.1111/j.1600-0404.1986.tb07863.x] [PMID: 2947417]
[73]
Han SH, Jung ES, Sohn JH, et al. Human serum transthyretin levels correlate inversely with Alzheimer’s disease. J Alzheimers Dis 2011; 25(1): 77-84.
[http://dx.doi.org/10.3233/JAD-2011-102145] [PMID: 21335655]
[74]
Ribeiro CA, Santana I, Oliveira C, et al. Transthyretin decrease in plasma of MCI and AD patients: Investigation of mechanisms for disease modulation. Curr Alzheimer Res 2012; 9(8): 881-9.
[http://dx.doi.org/10.2174/156720512803251057] [PMID: 22698061]
[75]
Schwarzman AL. Transthyretin sequesters amyloid beta protein and prevents amyloid formation. Proceedings of the National Academy of Sciences of the United States of America. 8368-72.
[76]
Lazarov O, Robinson J, Tang YP, et al. Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 2005; 120(5): 701-13.
[http://dx.doi.org/10.1016/j.cell.2005.01.015] [PMID: 15766532]
[77]
Mao J, O’Gorman C, Sutovsky M, Zigo M, Wells KD, Sutovsky P. Ubiquitin A-52 residue ribosomal protein fusion product 1 ( Uba52 ) is essential for preimplantation embryo development. Biol Open 2018; 7(10): bio.035717.
[http://dx.doi.org/10.1242/bio.035717] [PMID: 30135083]
[78]
Kobayashi M, Oshima S, Maeyashiki C, et al. The ubiquitin hybrid gene UBA52 regulates ubiquitination of ribosome and sustains embryonic development. Sci Rep 2016; 6(1): 36780.
[http://dx.doi.org/10.1038/srep36780] [PMID: 27829658]
[79]
Zhou Q, Hou Z, Zuo S, et al. LUCAT1 promotes colorectal cancer tumorigenesis by targeting the ribosomal protein L40‐ MDM 2‐p53 pathway through binding withUBA 52. Cancer Sci 2019; 110(4): 1194-207.
[http://dx.doi.org/10.1111/cas.13951] [PMID: 30690837]
[80]
Sun L. Withdrawal: Isolation and functional analysis of mouse UbA52 gene and its relevance to diabetic nephropathy. Biol Chem 2019; 294(26): 1038281.
[81]
Rahman MR. Network-based approach to identify molecular signatures and therapeutic agents in Alzheimer’s disease. Comput Biol Chem 2019; 78: 431-9.
[82]
Wang X, Wang L. Screening and identification of potential peripheral blood biomarkers for Alzheimer’s disease based on bioinformatics analysis. Med Sci Monit 2020; 26: e924263.
[http://dx.doi.org/10.12659/MSM.924263] [PMID: 32812532]
[83]
Verras M, Theodoraki MA, Mintzas AC. Cloning, characterization, and developmental expression of the ribosomal proteinS21 gene of the Mediterranean fruit flyCeratitis capitata. Arch Insect Biochem Physiol 2004; 56(3): 133-42.
[http://dx.doi.org/10.1002/arch.20004] [PMID: 15211551]
[84]
Wang T, Wang ZY, Zeng LY, Gao YZ, Yan YX, Zhang Q. Down-regulation of ribosomal protein RPS21 inhibits invasive behavior of osteosarcoma cells through the inactivation of MAPK pathway. Cancer Manag Res 2020; 12: 4949-55.
[http://dx.doi.org/10.2147/CMAR.S246928] [PMID: 32612383]
[85]
Sawyer JK, Kabiri Z, Montague RA, et al. Exploiting codon usage identifies intensity-specific modifiers of Ras/MAPK signaling in vivo. PLoS Genet 2020; 16(12): e1009228.
[http://dx.doi.org/10.1371/journal.pgen.1009228] [PMID: 33296356]
[86]
Dinh TTH, Iseki H, Mizuno S, et al. Disruption of entire Cables2 locus leads to embryonic lethality by diminished Rps21 gene expression and enhanced p53 pathway. eLife 2021; 10: e50346.
[http://dx.doi.org/10.7554/eLife.50346]
[87]
Perotti C, Wiedl T, Florin L, et al. Characterization of mammary epithelial cell line HC11 using the NIA 15k gene array reveals potential regulators of the undifferentiated and differentiated phenotypes. Differentiation 2009; 78(5): 269-82.
[http://dx.doi.org/10.1016/j.diff.2009.05.003] [PMID: 19523745]
[88]
Bretones G, Álvarez MG, Arango JR, et al. Altered patterns of global protein synthesis and translational fidelity in RPS15-mutated chronic lymphocytic leukemia. Blood 2018; 132(22): 2375-88.
[http://dx.doi.org/10.1182/blood-2017-09-804401] [PMID: 30181176]
[89]
Wu S, Xu S, Li R, et al. mTORC1-Rps15 axis contributes to the mechanisms underlying global translation reduction during senescence of mouse embryonic fibroblasts. Front Cell Dev Biol 2019; 7: 337.
[http://dx.doi.org/10.3389/fcell.2019.00337] [PMID: 31921849]
[90]
Sun B, Hou YL, Hou WR, Zhang SN, Ding X, Su XL. cDNA cloning, overexpression, purification and pharmacologic evaluation for anticancer activity of ribosomal protein L23A gene (RPL23A) from the Giant Panda. Int J Mol Sci 2012; 13(2): 2133-47.
[http://dx.doi.org/10.3390/ijms13022133] [PMID: 22408443]
[91]
Ma Y, Liu Y, Ruan X, et al. Gene expression signature of traumatic brain injury. Front Genet 2021; 12: 646436.
[http://dx.doi.org/10.3389/fgene.2021.646436] [PMID: 33859672]
[92]
Maeda Y, Kurakawa T, Umemoto E, et al. Dysbiosis Contributes to Arthritis Development via Activation of Autoreactive T Cells in the Intestine. Arthritis Rheumatol 2016; 68(11): 2646-61.
[http://dx.doi.org/10.1002/art.39783] [PMID: 27333153]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy