Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Construction of lncRNA-ceRNA Networks to Reveal the Potential Role of Lfng/Notch1 Signaling Pathway in Alzheimer’s Disease

Author(s): Wanpeng Yu, Man Wang and Yuan Zhang*

Volume 19, Issue 11, 2022

Published on: 13 December, 2022

Page: [772 - 784] Pages: 13

DOI: 10.2174/1567205020666221130090103

Price: $65

Abstract

Background: Alzheimer’s disease (AD) develops through a complex pathological process, in which many genes play a synergistic or antagonistic role. LncRNAs represent a kind of noncoding RNA, which can regulate gene expression at the epigenetic, transcriptional and posttranscriptional levels. Multiple lncRNAs have been found to have important regulatory functions in AD. Thus, their expression patterns, targets and functions should be explored as therapeutic targets.

Methods: We used deep RNA-seq analysis to detect the dysregulated lncRNAs in the hippocampus of APP/PS1 mice. We performed Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to predict the biological roles and potential signaling pathways of dysregulated lncRNAs. Finally, we constructed lncRNA-miRNA-mRNA and lncRNA-mRNA co-expression networks to reveal the potential regulator roles in AD pathogenesis.

Results: Our findings revealed 110 significantly dysregulated lncRNAs. GO and KEGG annotations showed the dysregulated lncRNAs to be closely related to the functions of axon and protein digestion and absorption. The lncRNA-mRNA network showed that 19 lncRNAs regulated App, Prnp, Fgf10 and Il33, while 5 lncRNAs regulated Lfng via the lncRNA-miR-3102-3p-Lfng axis. Furthermore, we preliminarily demonstrated the important regulatory role of the Lfng/Notch1 signaling pathway through lncRNA-ceRNA networks in AD.

Conclusion: We revealed the important regulatory roles of dysregulated lncRNAs in the etiopathogenesis of AD through lncRNA expression profiling. Our results showed that the mechanism involves the regulation of the Lfng/Notch1 signaling pathway.

[1]
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 2019; 14: 5541-54.
[http://dx.doi.org/10.2147/IJN.S200490] [PMID: 31410002]
[2]
Gouras GK, Olsson TT, Hansson O. β -Amyloid peptides and amyloid plaques in Alzheimer’s disease. Neurotherapeutics 2015; 12(1): 3-11.
[http://dx.doi.org/10.1007/s13311-014-0313-y] [PMID: 25371168]
[3]
Gallardo G, Holtzman DM. Amyloid-β and Tau at the Crossroads of Alzheimer’s Disease. Adv Exp Med Biol 2019; 1184: 187-203.
[http://dx.doi.org/10.1007/978-981-32-9358-8_16] [PMID: 32096039]
[4]
Šerý O, Povová J, Míšek I, Pešák L, Janout V. Molecular mechanisms of neuropathological changes in Alzheimer’s disease: A review. Folia Neuropathol 2013; 1(1): 1-9.
[http://dx.doi.org/10.5114/fn.2013.34190] [PMID: 23553131]
[5]
Moore JB IV, Uchida S. Functional characterization of long noncoding RNAs. Curr Opin Cardiol 2020; 35(3): 199-206.
[http://dx.doi.org/10.1097/HCO.0000000000000725] [PMID: 32068613]
[6]
Yamada H, Kimura T, Yamada H. Regulatory non-coding RNAs in nervous system development and disease. Front Biosci 2019; 24(7): 1203-40.
[http://dx.doi.org/10.2741/4776] [PMID: 31136976]
[7]
Dykes IM, Emanueli C. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics 2017; 15(3): 177-86.
[http://dx.doi.org/10.1016/j.gpb.2016.12.005] [PMID: 28529100]
[8]
Kazimierczyk M, Wrzesinski J. Long non-coding RNA epigenetics. Int J Mol Sci 2021; 22(11): 6166.
[http://dx.doi.org/10.3390/ijms22116166] [PMID: 34200507]
[9]
Chen M, Lai X, Wang X, et al. Long non-coding RNAs and circular RNAs: Insights Into microglia and astrocyte mediated neurological diseases. Front Mol Neurosci 2021; 14: 745066.
[http://dx.doi.org/10.3389/fnmol.2021.745066] [PMID: 34675776]
[10]
Tang L, Xiang Q, Xiang J, Li J. lncRNA-Associated Competitive Endogenous RNA regulatory network in an Aβ25-35-induced AD Mouse Model Treated with Tripterygium Glycoside. Neuropsychiatr Dis Treat 2021; 17: 1531-41.
[http://dx.doi.org/10.2147/NDT.S310271] [PMID: 34040378]
[11]
Sargin D, Botly LCP, Higgs G, et al. Disrupting Jagged1–Notch signaling impairs spatial memory formation in adult mice. Neurobiol Learn Mem 2013; 103: 39-49.
[http://dx.doi.org/10.1016/j.nlm.2013.03.001] [PMID: 23567106]
[12]
Zhang Y, Qian L, Liu Y, Liu Y, Yu W, Zhao Y. CircRNA-ceRNA network revealing the potential regulatory roles of CircRNA in Alzheimer’s disease involved the cGMP-PKG signal pathway. Front Mol Neurosci 2021; 14: 665788.
[http://dx.doi.org/10.3389/fnmol.2021.665788] [PMID: 34093124]
[13]
Ben-Avraham D, Karasik D, Verghese J, et al. The complex genetics of gait speed: genome-wide meta-analysis approach. Aging (Albany NY) 2017; 9(1): 209-46.
[http://dx.doi.org/10.18632/aging.101151] [PMID: 28077804]
[14]
Jiao J, Kavdia K, Pagala V, et al. An age-downregulated ribosomal RpS28 protein variant regulates the muscle proteome. Genetics 2021; 11(7): jkab165.
[http://dx.doi.org/10.1093/g3journal/jkab165]
[15]
Ofengeim D, Mazzitelli S, Ito Y, et al. RIPK1 mediates a disease-associated microglial response in Alzheimer’s disease. Proc Natl Acad Sci USA 2017; 114(41): E8788-97.
[http://dx.doi.org/10.1073/pnas.1714175114] [PMID: 28904096]
[16]
Chik MW, Hazalin NAMN, Singh GKS. Regulation of phase I and phase II neurosteroid enzymes in the hippocampus of an Alzheimer’s disease rat model: A focus on sulphotransferases and UDP-glucuronosyltransferases. Steroids 2022; 184: 109035.
[http://dx.doi.org/10.1016/j.steroids.2022.109035] [PMID: 35405201]
[17]
Wu J, Chen L, Zheng C, Xu S, Gao Y, Wang J. Co-expression network analysis revealing the potential regulatory roles of lncRNAs in Alzheimer’s disease. Interdiscip Sci 2019; 11(4): 645-54.
[http://dx.doi.org/10.1007/s12539-019-00319-w] [PMID: 30715720]
[18]
Wang L, Zeng L, Jiang H, Li Z, Liu R. Microarray profile of long noncoding RNA and messenger RNA expression in a model of Alzheimer’s disease. Life (Basel) 2020; 10(5): 64.
[http://dx.doi.org/10.3390/life10050064] [PMID: 32423012]
[19]
Usuda K, Kawase T, Shigeno Y, et al. Hippocampal metabolism of amino acids by L-amino acid oxidase is involved in fear learning and memory. Sci Rep 2018; 8(1): 11073.
[http://dx.doi.org/10.1038/s41598-018-28885-x] [PMID: 30038322]
[20]
Szabo A, Akkouh IA, Vandenberghe M, et al. A human iPSC-astroglia neurodevelopmental model reveals divergent transcriptomic patterns in schizophrenia. Transl Psychiatry 2021; 11(1): 554.
[http://dx.doi.org/10.1038/s41398-021-01681-4] [PMID: 34716291]
[21]
Liu Y, Cheng X, Li H, et al. Non-coding RNAs as novel regulators of neuroinflammation in Alzheimer’s disease. Front Immunol 2022; 13: 908076.
[http://dx.doi.org/10.3389/fimmu.2022.908076] [PMID: 35720333]
[22]
Liu Y, Chen X, Che Y, et al. LncRNAs as the regulators of brain function and therapeutic targets for Alzheimer’s disease. Aging Dis 2022; 13(3): 837-51.
[http://dx.doi.org/10.14336/AD.2021.1119] [PMID: 35656102]
[23]
Magister Š, Kos J. Cystatins in immune system. J Cancer 2013; 4(1): 45-56.
[http://dx.doi.org/10.7150/jca.5044] [PMID: 23386904]
[24]
Watson J, Francavilla C. Regulation of FGF10 signaling in development and disease. Front Genet 2018; 9: 500.
[http://dx.doi.org/10.3389/fgene.2018.00500] [PMID: 30405705]
[25]
Tan X, Zhu H, Tao Q, et al. FGF10 protects against renal ischemia/reperfusion injury by regulating autophagy and inflammatory signaling. Front Genet 2018; 9: 556.
[http://dx.doi.org/10.3389/fgene.2018.00556] [PMID: 30532765]
[26]
Sabaie H, Amirinejad N, Asadi MR, et al. Molecular insight into the therapeutic potential of long non-coding RNA-associated competing endogenous RNA axes in Alzheimer’s disease: A systematic scoping review. Front Aging Neurosci 2021; 13: 742242.
[http://dx.doi.org/10.3389/fnagi.2021.742242] [PMID: 34899268]
[27]
Zhang J, Wang R. Deregulated lncRNA MAGI2-AS3 in Alzheimer’s disease attenuates amyloid-β induced neurotoxicity and neuroinflammation by sponging miR-374b-5p. Exp Gerontol 2021; 144: 111180.
[http://dx.doi.org/10.1016/j.exger.2020.111180] [PMID: 33279663]
[28]
O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 2011; 34(1): 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613] [PMID: 21456963]
[29]
Fang M, Jiang S, Zhu J, et al. Protective effects of FGF10 on neurovascular unit in a rat model of neonatal hypoxic-ischemic brain injury. Exp Neurol 2020; 332: 113393.
[http://dx.doi.org/10.1016/j.expneurol.2020.113393] [PMID: 32610105]
[30]
Derada Troletti C, Lopes Pinheiro MA, Charabati M, et al. Notch signaling is impaired during inflammation in a Lunatic Fringe-dependent manner. Brain Behav Immun 2018; 69: 48-56.
[http://dx.doi.org/10.1016/j.bbi.2017.12.016] [PMID: 29289661]
[31]
Kato TM, Kawaguchi A, Kosodo Y, Niwa H, Matsuzaki F. Lunatic fringe potentiates Notch signaling in the developing brain. Mol Cell Neurosci 2010; 45(1): 12-25.
[http://dx.doi.org/10.1016/j.mcn.2010.05.004] [PMID: 20510365]
[32]
Chen J, Yuan XY, Zhang X. Intracerebral hemorrhage influences hippocampal neurogenesis and neurological function recovery via Notch1 signaling. Neuroreport 2021; 32(6): 489-97.
[http://dx.doi.org/10.1097/WNR.0000000000001614] [PMID: 33657078]
[33]
Zhang X, Yang C, Gao J, et al. Voluntary running-enhanced synaptic plasticity, learning and memory are mediated by Notch1 signal pathway in C57BL mice. Brain Struct Funct 2018; 223(2): 749-67.
[http://dx.doi.org/10.1007/s00429-017-1521-0] [PMID: 28932899]
[34]
Saad MA, Eltarzy MA, Abdel Salam RM, Ahmed MAE. Liraglutide mends cognitive impairment by averting Notch signaling pathway overexpression in a rat model of polycystic ovary syndrome. Life Sci 2021; 265: 118731.
[http://dx.doi.org/10.1016/j.lfs.2020.118731] [PMID: 33160995]
[35]
Zhang S, Wang P, Ren L, Hu C, Bi J. Protective effect of melatonin on soluble Aβ1–42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus. Alzheimers Res Ther 2016; 8(1): 40.
[http://dx.doi.org/10.1186/s13195-016-0206-x] [PMID: 27630117]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy