Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Short Communication

Mass Spectrometry-based Alkaloid Profiling of Cyclea peltata Roots and Evaluation of In vitro Cytotoxic Activity

Author(s): Bhagya Nekrakaleya* and Chandrashekar Konambi Ramaiah

Volume 19, Issue 6, 2023

Published on: 18 January, 2023

Article ID: e011222211479 Pages: 10

DOI: 10.2174/1573407219666221201103555

Price: $65

Abstract

Background: Cyclea peltata (Lam.) Hook. f. and Thoms., an ethnomedicinal herb with antitoxin and anti-herpes activities, is used to cure smallpox, wounds, diabetic disorders of the skin, and its use as a cooling agent. In the present study, an attempt has been made to screen different alkaloids present in Cyclea peltata roots using LC-ESI-MS/MS and to evaluate the in vitro cytotoxic activity of alkaloids.

Methods: The detection of alkaloids in C. peltata root extract was carried out by performing MRM-based assay using liquid chromatography-mass spectrometry. The cytotoxic effect of the acetone crystalized fraction was performed against human pancreatic cancer using MIA PaCa-2 cells.

Results: The study revealed the presence of tetrandrine and fangchinoline as the major BBI alkaloids in the roots of this herb, along with cycleacurine, isochondrodendrine, cycleahomine and tetrandrine mono-N-2’-oxide. Furthermore, the present study also detected two precursors of BBI alkaloids such as d-Coclaurine, (-)-N-methylcoclaurine. The study also showed a significant (p<0.05) cytotoxic effect of the acetone crystalized fraction with an IC50 value of 59.85 μg/ml.

Conclusion: C. peltata root is the major source of tetrandrine and fangchinoline with potent cytotoxic effect.

Graphical Abstract

[1]
Gamble, J.S. Flora of the Presidency of Madras, Sri Gouranga Press Pvt. Ltd: Calcutta, India, 1958, pp-I-III.
[2]
Bhagya, N.; Chandrashekar, K.R.; Muralidharan, K.; Amarnath, C.H. Phytochemical analysis and antioxidant activity of in vitro cultured stem callus of Cyclea peltata (Lam.) Hook. f. &. Thoms. J. Trop. Med. Plants., 2012, 13(2), 117-123.
[3]
Bhagya, N.; Chandrashekar, K.R. Optimization of column chromatography technique for the isolation of tetrandrine from Cyclea peltata and LC-ESI-MS based quantification and validation of the method. Nat. Prod. Res., 2019, 33(19), 2873-2877.
[http://dx.doi.org/10.1080/14786419.2018.1503660] [PMID: 30873865]
[4]
Bhagya, N.; Chandrashekar, K.R. Tetrandrine-A molecule of wide bioactivity. Phytochemistry, 2016, 125, 5-13.
[http://dx.doi.org/10.1016/j.phytochem.2016.02.005] [PMID: 26899361]
[5]
Bhagya, N.; Chandrashekar, K.R. Tetrandrine and cancer - An overview on the molecular approach. Biomed. Pharmacother., 2018, 97, 624-632. b
[http://dx.doi.org/10.1016/j.biopha.2017.10.116] [PMID: 29101806]
[6]
Kupchan, S.M.; Liepa, A.J.; Baxter, R.L.; Hintz, H.P.J. Tumor Inhibitors. LXXIX. New alkaloids and related artifacts from Cyclea peltata. J. Org. Chem., 1973, 38(10), 1846-1852.
[http://dx.doi.org/10.1021/jo00950a016] [PMID: 4698926]
[7]
Shine, V.J.; Latha, P.G.; Suja, S.N.R.; Anuja, G.I.; Raj, G.; Rajasekharan, S.N. Ameliorative effect of alkaloid extract of Cyclea peltata (Poir.) Hook. f. & Thoms. roots (ACP) on APAP/CCl4 induced liver toxicity in Wistar rats and in vitro free radical scavenging property. Asian Pac. J. Trop. Biomed., 2014, 4(2), 143-151.
[http://dx.doi.org/10.1016/S2221-1691(14)60223-9] [PMID: 25182286]
[8]
Nakamura, Y.; Asahi, H.; Altaf-Ul-Amin, Md.; Kurokawa, K.; Kanaya, S. KNApSAcK: A comprehensive species-metabolite relationship database. 2018. Available from: http://www.knapsackfamily.com/KNApSAcK/
[9]
Koh, H.L.; Wang, H.; Zhou, S.; Chan, E.; Woo, S.O. Detection of aristolochic acid I, tetrandrine and fangchinoline in medicinal plants by high performance liquid chromatography and liquid chromatography/mass spectrometry. J. Pharm. Biomed. Anal., 2006, 40(3), 653-661.
[http://dx.doi.org/10.1016/j.jpba.2005.08.001] [PMID: 16168604]
[10]
Nardin, T.; Piasentier, E.; Barnaba, C.; Larcher, R. Alkaloid profiling of herbal drugs using high resolution mass spectrometry. Drug Test. Anal., 2018, 10(3), 423-448.
[http://dx.doi.org/10.1002/dta.2252] [PMID: 28730714]
[11]
Wang, Y.; Li, Y.; Cang, S.; Cai, Q.; Xu, H.; Wang, Y.; Liu, R.; Xu, H.; Li, Q. Qualitative and quantitative analysis of pyrrolizidine alkaloids for the entire process quality control from Senecio scandens to Senecio scandens -containing preparations by high performance liquid chromatography-tandem mass spectrometry. J. Mass Spectrom., 2020, 55(10), e4532.
[http://dx.doi.org/10.1002/jms.4532] [PMID: 32662582]
[12]
Bhagya, N.; Chandrashekar, K.R.; Prabhu, A.; Rekha, P.D. Tetrandrine isolated from Cyclea peltata induces cytotoxicity and apoptosis through ROS and caspase pathways in breast and pancreatic cancer cells. In Vitro Cell. Dev. Biol. Anim., 2019, 55(5), 331-340.
[http://dx.doi.org/10.1007/s11626-019-00332-9] [PMID: 30945115]
[13]
Kupchan, S.M.; Asbun, W.L.; Thyagarajan, B.S. Menispermaceae alkaloids. III. Alkaloids of Stephania hernandifolia. J. Pharm. Sci., 1961, 50(10), 819-822.
[http://dx.doi.org/10.1002/jps.2600501003] [PMID: 14460650]
[14]
Pelletier, S.W. Alkaloids: chemical and biological perspective; Elsevier Science Ltd: Oxford, UK, 1999, p. 14.
[15]
Saroya, A.S. Herbal drugs as therapeutic agents. In: CRC Press; Taylor, 2015.
[16]
Singla, D.; Sharma, A.; Kaur, J.; Panwar, B.; Raghava, G.P.S. BIAdb: A curated database of benzylisoquinoline alkaloids. BMC Pharmacol., 2010, 10(1), 4.
[http://dx.doi.org/10.1186/1471-2210-10-4] [PMID: 20205728]
[17]
Bhakuni, D.S.; Jain, S.; Singh, A.N. Biosynthesis of the bisbenzylisoquinoline alkaloid, tetrandrine. Phytochemistry, 1980, 19(11), 2347-2350.
[http://dx.doi.org/10.1016/S0031-9422(00)91024-0]
[18]
Sim, H.J.; Kim, J.; Lee, K.; Hong, J. Simultaneous determination of structurally diverse compounds in different Fangchi species by UHPLC-DAD and UHPLC-ESI-MS/MS. Molecules, 2013, 18(5), 5235-5250.
[http://dx.doi.org/10.3390/molecules18055235] [PMID: 23652992]
[19]
Xie, Z.; Xu, X.; Xie, C.; Liang, Z.; Yang, M.; Huang, J.; Yang, D. Preparative isolation of tetrandrine and fangchinoline from Radix Stephania tetrandra using reversed-phase flash chromatography. J. Liq. Chromatogr. Relat. Technol., 2014, 37(3), 343-352.
[http://dx.doi.org/10.1080/10826076.2012.745139]
[20]
Meena, J.; Santhy, K.S. Efficacy of methanolic extract of Cyclea peltata as a potent anticancer equivalent. Eur. J. Environment. Ecol., 2015, 2, 65-71.
[21]
Mérarchi, M.; Sethi, G.; Fan, L.; Mishra, S.; Arfuso, F.; Ahn, K. Molecular targets modulated by fangchinoline in tumor cells and preclinical models. Molecules, 2018, 23(10), 2538.
[http://dx.doi.org/10.3390/molecules23102538] [PMID: 30301146]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy