Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Mini-Review Article

Research Progress and Future Development Potential of Oridonin in Pharmacological Activities

Author(s): Shiying Ye, Shaowei Sun, Jiye Cai and Jinhuan Jiang*

Volume 16, Issue 7, 2023

Published on: 02 February, 2023

Article ID: e301122211463 Pages: 16

DOI: 10.2174/1874467216666221130163634

Price: $65

Abstract

In recent years, attention has increasingly focused on herbal medicines and their bioactive components attributed to their multi-target pharmacological activity and low side effects. Oridonin is a natural diterpenoid extracted from the traditional Chinese herb and is one of the main active components of Rabdosia rubescens. Modern pharmacological studies have shown that oridonin has anti-tumor, anti-bacterial, anti-inflammatory, anti-oxidant, cardiovascular protective, immunomodulatory, and other effects. Based on the published literature in recent years, we outline the pharmacological activities of oridonin, aiming to provide a theoretical basis for the design and development of new oridonin-based drugs, as well as to facilitate the process of oridonin for clinical use.

Graphical Abstract

[1]
Imenshahidi, M.; Hosseinzadeh, H. Berberine and barberry (Berberis vulgaris): A clinical review. Phytother. Res., 2019, 33(3), 504-523.
[http://dx.doi.org/10.1002/ptr.6252] [PMID: 30637820]
[2]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[3]
Ma, N.; Zhang, Z.; Liao, F.; Jiang, T.; Tu, Y. The birth of artemisinin. Pharmacol. Ther., 2020, 216, 107658.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107658] [PMID: 32777330]
[4]
Ding, Y.; Ding, C.; Ye, N.; Liu, Z.; Wold, E.A.; Chen, H.; Wild, C.; Shen, Q.; Zhou, J. Discovery and development of natural product oridonin-inspired anticancer agents. Eur. J. Med. Chem., 2016, 122, 102-117.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.015] [PMID: 27344488]
[5]
Li, D.; Han, T.; Liao, J.; Hu, X.; Xu, S.; Tian, K.; Gu, X.; Cheng, K.; Li, Z.; Hua, H.; Xu, J. Oridonin, a promising ent-kaurane diterpenoid lead compound. Int. J. Mol. Sci., 2016, 17(9), 1395.
[http://dx.doi.org/10.3390/ijms17091395] [PMID: 27563888]
[6]
Li, X.; Zhang, C.T.; Ma, W.; Xie, X.; Huang, Q. Oridonin: a review of its pharmacology, pharmacokinetics and toxicity. Front. Pharmacol., 2021, 12, 645824.
[http://dx.doi.org/10.3389/fphar.2021.645824] [PMID: 34295243]
[7]
Xu, J.; Wold, E.; Ding, Y.; Shen, Q.; Zhou, J. Therapeutic potential of oridonin and its analogs: from anticancer and antiinflammation to neuroprotection. Molecules, 2018, 23(2), 474.
[http://dx.doi.org/10.3390/molecules23020474] [PMID: 29470395]
[8]
Cheng, W.; Huang, C.; Ma, W.; Tian, X.; Zhang, X. Recent development of oridonin derivatives with diverse pharmacological activities. Mini Rev. Med. Chem., 2018, 19(2), 114-124.
[http://dx.doi.org/10.2174/1389557517666170417170609] [PMID: 28425866]
[9]
Zhang, Y.; Wang, S.; Dai, M.; Nai, J.; Zhu, L.; Sheng, H. Solubility and bioavailability enhancement of oridonin: a review. Molecules, 2020, 25(2), 332.
[http://dx.doi.org/10.3390/molecules25020332] [PMID: 31947574]
[10]
Yang, H.; Gao, Y.; Fan, X.; Liu, X.; Peng, L.; Ci, X. Oridonin sensitizes cisplatin-induced apoptosis via AMPK/Akt/mTOR-dependent autophagosome accumulation in A549 Cells. Front. Oncol., 2019, 9, 769.
[http://dx.doi.org/10.3389/fonc.2019.00769] [PMID: 31475112]
[11]
Yiqun, D.; Jian, Z.; Shiyan, Y.; Zhonghua, T.; Chenchen, W.; Mingzhu, H.; Xiaowei, Z. Oridonin inhibits the proliferation, migration and invasion of human osteosarcoma cells via suppression of matrix metalloproteinase expression and stat3 signalling pathway. J. BUON, 2019, 24(3), 1175-1180.
[12]
Xu, L.; Bi, Y.; Xu, Y.; Zhang, Z.; Xu, W.; Zhang, S.; Chen, J. Oridonin inhibits the migration and epithelial-to-mesenchymal transition of small cell lung cancer cells by suppressing FAK-ERK1/2 signalling pathway. J. Cell. Mol. Med., 2020, 24(8), 4480-4493.
[http://dx.doi.org/10.1111/jcmm.15106] [PMID: 32168416]
[13]
Zhou, L.; Huang, Y.; Zhao, J.; Yang, H.; Kuai, F. Oridonin promotes osteogenesis through Wnt/β-catenin pathway and inhibits RANKL-induced osteoclastogenesis in vitro. Life Sci., 2020, 262, 118563.
[http://dx.doi.org/10.1016/j.lfs.2020.118563] [PMID: 33038376]
[14]
Chen, X.; Zhang, D.; Li, Y.; Wang, W.; Bei, W.; Guo, J. NLRP3 inflammasome and IL-1β pathway in type 2 diabetes and atherosclerosis: Friend or foe? Pharmacol. Res., 2021, 173, 105885.
[http://dx.doi.org/10.1016/j.phrs.2021.105885] [PMID: 34536551]
[15]
Wang, Y.; Zhu, Z. Oridonin inhibits metastasis of human ovarian cancer cells by suppressing the mTOR pathway. Arch. Med. Sci., 2019, 15(4), 1017-1027.
[http://dx.doi.org/10.5114/aoms.2018.77068] [PMID: 31360196]
[16]
Lu, J.; Chen, X.; Qu, S.; Yao, B.; Xu, Y.; Wu, J.; Jin, Y.; Ma, C. Oridonin induces G2/M cell cycle arrest and apoptosis via the PI3K/Akt signaling pathway in hormone-independent prostate cancer cells. Oncol. Lett., 2017, 13(4), 2838-2846.
[http://dx.doi.org/10.3892/ol.2017.5751] [PMID: 28454475]
[17]
Yang, Q.; Ma, W.; Yu, K.; Zhang, Q.; Ye, Z.; Xia, W.; Li, S. Oridonin suppresses human gastric cancer growth in Vitro and in Vivo via Inhibition of VEGF, Integrin β3, and PCNA. Biol. Pharm. Bull., 2020, 43(7), 1035-1045.
[http://dx.doi.org/10.1248/bpb.b19-00839] [PMID: 32612067]
[18]
Luo, D.; Yi, Y.; Peng, K.; Liu, T.; Yang, J.; Liu, S.; Zhao, W.; Qu, X.; Yu, W.; Gu, Y.; Wan, S. Oridonin derivatives as potential anticancer drug candidates triggering apoptosis through mitochondrial pathway in the liver cancer cells. Eur. J. Med. Chem., 2019, 178, 365-379.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.006] [PMID: 31200238]
[19]
Song, M.; Liu, X.; Liu, K.; Zhao, R.; Huang, H.; Shi, Y.; Zhang, M.; Zhou, S.; Xie, H.; Chen, H.; Li, Y.; Zheng, Y.; Wu, Q.; Liu, F.; Li, E.; Bode, A.M.; Dong, Z.; Lee, M.H. Targeting AKT with oridonin inhibits growth of esophageal squamous cell carcinoma In Vitro and patient-derived xenografts In Vivo. Mol. Cancer Ther., 2018, 17(7), 1540-1553.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0823] [PMID: 29695636]
[20]
Sun, B.; Wang, G.; Liu, H.; Liu, P.; Twal, W.O.; Cheung, H.; Carroll, S.L.; Ethier, S.P.; Mevers, E.E.; Clardy, J.; Roberts, T.; Chen, C.; Li, Q.; Wang, L.; Yang, M.; Zhao, J.J.; Wang, Q. Oridonin inhibits aberrant AKT activation in breast cancer. Oncotarget, 2018, 9(35), 23878-23889.
[http://dx.doi.org/10.18632/oncotarget.24378] [PMID: 29844859]
[21]
Lu, Y.; Sun, Y.; Zhu, J.; Yu, L.; Jiang, X.; Zhang, J.; Dong, X.; Ma, B.; Zhang, Q. Oridonin exerts anticancer effect on osteosarcoma by activating PPAR-γ; and inhibiting Nrf2 pathway. Cell Death Dis., 2018, 9(1), 15.
[http://dx.doi.org/10.1038/s41419-017-0031-6] [PMID: 29323103]
[22]
Han, J.M.; Hong, K.O.; Yang, I.H.; Ahn, C.H.; Jin, B.; Lee, W.; Jung, Y.C.; Kim, K.A.; Shin, J.A.; Cho, S.D.; Hong, S.D. Oridonin induces the apoptosis of mucoepidermoid carcinoma cell lines in a myeloid cell leukemia 1 dependent manner. Int. J. Oncol., 2020, 57(1), 377-385.
[http://dx.doi.org/10.3892/ijo.2020.5061] [PMID: 32467983]
[23]
Jöhrer, K.; Ҫiҫek, S.S. Multiple myeloma inhibitory activity of plant natural products. Cancers, 2021, 13(11), 2678.
[http://dx.doi.org/10.3390/cancers13112678] [PMID: 34072312]
[24]
Liu, Z.; Ouyang, L.; Peng, H.; Zhang, W.Z. Oridonin: targeting programmed cell death pathways as an anti-tumour agent. Cell Prolif., 2012, 45(6), 499-507.
[http://dx.doi.org/10.1111/j.1365-2184.2012.00849.x] [PMID: 23106297]
[25]
Gao, S.; Tan, H.; Zhu, N.; Gao, H.; Lv, C.; Gang, J.; Ji, Y. Oridonin induces apoptosis through the mitochondrial pathway in human gastric cancer SGC-7901 cells. Int. J. Oncol., 2016, 48(6), 2453-2460.
[http://dx.doi.org/10.3892/ijo.2016.3479] [PMID: 27082253]
[26]
Zhu, D.; Tian, X.; Yin, X.; Yan, H.; Li, W. Oridonin triggers G2/M cell cycle arrest, cellular apoptosis and autophagy in human gastric cancer cells. J. BUON, 2020, 25(5), 2308-2314.
[PMID: 33277850]
[27]
Bi, E.; Liu, D.; Li, Y.; Mao, X.; Wang, A.; Wang, J. Oridonin induces growth inhibition and apoptosis in human gastric carcinoma cells by enhancement of p53 expression and function. Braz. J. Med. Biol. Res., 2018, 51(12), e7599.
[http://dx.doi.org/10.1590/1414-431x20187599] [PMID: 30462771]
[28]
Bao, R.; Shu, Y.; Wu, X.; Weng, H.; Ding, Q.; Cao, Y.; Li, M.; Mu, J.; Wu, W.; Ding, Q.; Tan, Z.; Liu, T.; Jiang, L.; Hu, Y.; Gu, J.; Liu, Y. Oridonin induces apoptosis and cell cycle arrest of gallbladder cancer cells via the mitochondrial pathway. BMC Cancer, 2014, 14(1), 217.
[http://dx.doi.org/10.1186/1471-2407-14-217] [PMID: 24655726]
[29]
Xia, R.; Chen, S.X.; Qin, Q.; Chen, Y.; Zhang, W.W.; Zhu, R.R.; Deng, A.M. Oridonin suppresses proliferation of human ovarian cancer cells via blockage of mTOR signaling. Asian Pac. J. Cancer Prev., 2016, 17(2), 667-671.
[http://dx.doi.org/10.7314/APJCP.2016.17.2.667] [PMID: 26925661]
[30]
Xia, S.; Zhang, X.; Li, C.; Guan, H. Oridonin inhibits breast cancer growth and metastasis through blocking the Notch signaling. Saudi Pharm. J., 2017, 25(4), 638-643.
[http://dx.doi.org/10.1016/j.jsps.2017.04.037] [PMID: 28579904]
[31]
Jeon, M.Y.; Seo, S.U.; Woo, S.M.; Min, K.; Byun, H.S.; Hur, G.M.; Kang, S.C.; Kwon, T.K. Oridonin enhances TRAIL-induced apoptosis through GALNT14-mediated DR5 glycosylation. Biochimie, 2019, 165, 108-114.
[http://dx.doi.org/10.1016/j.biochi.2019.07.015] [PMID: 31336136]
[32]
Kou, B.; Yang, Y.; Bai, Y.E.; Shi, Y.H.; Gao, R.X.; Yang, F.L.; Zhang, S.Q.; Liu, W. Oridonin induces apoptosis of laryngeal carcinoma via endoplasmic reticulum stress. Cancer Manag. Res., 2020, 12, 8387-8396.
[http://dx.doi.org/10.2147/CMAR.S271759] [PMID: 32982432]
[33]
Liu, W.; Huang, G.; Yang, Y.; Gao, R.; Zhang, S.; Kou, B. Oridonin inhibits epithelial-mesenchymal transition of human nasopharyngeal carcinoma cells by negatively regulating AKT/STAT3 signaling pathway. Int. J. Med. Sci., 2021, 18(1), 81-87.
[http://dx.doi.org/10.7150/ijms.48552] [PMID: 33390776]
[34]
Ikezoe, T.; Yang, Y.; Bandobashi, K.; Saito, T.; Takemoto, S.; Machida, H.; Togitani, K.; Koeffler, H.P.; Taguchi, H. Oridonin, a diterpenoid purified from Rabdosia rubescens, inhibits the proliferation of cells from lymphoid malignancies in association with blockade of the NF-κB signal pathways. Mol. Cancer Ther., 2005, 4(4), 578-586.
[http://dx.doi.org/10.1158/1535-7163.MCT-04-0277] [PMID: 15827331]
[35]
Zeng, R.; Chen, Y.; Zhao, S.; Cui, G. Autophagy counteracts apoptosis in human multiple myeloma cells exposed to oridonin in vitro via regulating intracellular ROS and SIRT1. Acta Pharmacol. Sin., 2012, 33(1), 91-100.
[http://dx.doi.org/10.1038/aps.2011.143] [PMID: 22158107]
[36]
Zhao, J.; Zhang, M.; He, P.; Zhao, J.; Chen, Y.; Qi, J.; Wang, Y. Proteomic analysis of oridonin-induced apoptosis in multiple myeloma cells. Mol. Med. Rep., 2017, 15(4), 1807-1815.
[http://dx.doi.org/10.3892/mmr.2017.6213] [PMID: 28259901]
[37]
Zhen, T.; Wu, C.F.; Liu, P.; Wu, H.Y.; Zhou, G.B.; Lu, Y.; Liu, J.X.; Liang, Y.; Li, K.K.; Wang, Y.Y.; Xie, Y.Y.; He, M.M.; Cao, H.M.; Zhang, W.N.; Chen, L.M.; Petrie, K.; Chen, S.J.; Chen, Z. Targeting of AML1-ETO in t(8;21) leukemia by oridonin generates a tumor suppressor-like protein. Sci. Transl. Med., 2012, 4(127), 127ra38.
[http://dx.doi.org/10.1126/scitranslmed.3003562] [PMID: 22461642]
[38]
Li, F.; Yi, S.; Wen, L.; He, J.; Yang, L.; Zhao, J.; Zhang, B.; Cui, G.; Chen, Y. Oridonin induces NPM mutant protein translocation and apoptosis in NPM1c+ acute myeloid leukemia cells in vitro. Acta Pharmacol. Sin., 2014, 35(6), 806-813.
[http://dx.doi.org/10.1038/aps.2014.25] [PMID: 24902788]
[39]
Cao, Y.; Wei, W.; Zhang, N.; Yu, Q.; Xu, W.B.; Yu, W.J.; Chen, G.Q.; Wu, Y.L.; Yan, H. Oridonin stabilizes retinoic acid receptor alpha through ROS-activated NF-κB signaling. BMC Cancer, 2015, 15(1), 248.
[http://dx.doi.org/10.1186/s12885-015-1219-8] [PMID: 25886043]
[40]
Nasri, F.; Sadeghi, F.; Behranvand, N.; Samei, A.; Bolouri, M.R.; Azari, T.; Abdollahi, E.; Ghazizadeh, F.; Motevalian, M.; Mohammad Hassan, Z.; Falak, R. Oridonin could inhibit inflammation and T-cell immunoglobulin and Mucin-3/Galectin-9 (TIM-3/Gal-9) autocrine loop in the acute myeloid leukemia cell line (U937) as compared to doxorubicin. Iran. J. Allergy Asthma Immunol., 2020, 19(6), 602-611.
[http://dx.doi.org/10.18502/ijaai.v19i6.4929] [PMID: 33463129]
[41]
Liao, M.; Dong, Q.; Chen, R.; Xu, L.; Jiang, Y.; Guo, Z.; Xiao, M.; He, W.; Cao, C.; Hu, R.; Sun, W.; Jiang, H.; Wang, J. Oridonin inhibits DNMT3A R882 mutation-driven clonal hematopoiesis and leukemia by inducing apoptosis and necroptosis. Cell Death Discov., 2021, 7(1), 297.
[http://dx.doi.org/10.1038/s41420-021-00697-5] [PMID: 34663800]
[42]
Li, S.; Xu, H.X.; Wu, C.T.; Wang, W.Q.; Jin, W.; Gao, H.L.; Li, H.; Zhang, S.R.; Xu, J.Z.; Qi, Z.H.; Ni, Q.X.; Yu, X.J.; Liu, L. Angiogenesis in pancreatic cancer: current research status and clinical implications. Angiogenesis, 2019, 22(1), 15-36.
[http://dx.doi.org/10.1007/s10456-018-9645-2] [PMID: 30168025]
[43]
Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst., 1990, 82(1), 4-7.
[http://dx.doi.org/10.1093/jnci/82.1.4] [PMID: 1688381]
[44]
Baeriswyl, V.; Christofori, G. The angiogenic switch in carcinogenesis. Semin. Cancer Biol., 2009, 19(5), 329-337.
[http://dx.doi.org/10.1016/j.semcancer.2009.05.003] [PMID: 19482086]
[45]
Tian, L.; Xie, K.; Sheng, D.; Wan, X.; Zhu, G. Antiangiogenic effects of oridonin. BMC Complement. Altern. Med., 2017, 17(1), 192.
[http://dx.doi.org/10.1186/s12906-017-1706-3] [PMID: 28376864]
[46]
Meade-Tollin, L.C.; Wijeratne, E.M.K.; Cooper, D.; Guild, M.; Jon, E.; Fritz, A.; Zhou, G.X.; Whitesell, L.; Liang, J.; Gunatilaka, A.A.L. Ponicidin and oridonin are responsible for the antiangiogenic activity of Rabdosia rubescens, a constituent of the herbal supplement PC SPES. J. Nat. Prod., 2004, 67(1), 2-4.
[http://dx.doi.org/10.1021/np0304114] [PMID: 14738375]
[47]
Dong, Y.; Zhang, T.; Li, J.; Deng, H.; Song, Y.; Zhai, D.; Peng, Y.; Lu, X.; Liu, M.; Zhao, Y.; Yi, Z. Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the Notch signaling. PLoS One, 2014, 9(12), e113830.
[http://dx.doi.org/10.1371/journal.pone.0113830] [PMID: 25485753]
[48]
Liu, H.; Qian, C.; Shen, Z. Anti-tumor activity of oridonin on SNU-5 subcutaneous xenograft model via regulation of c-Met pathway. Tumour Biol., 2014, 35(9), 9139-9146.
[http://dx.doi.org/10.1007/s13277-014-2178-4] [PMID: 24916572]
[49]
Li, C.; Wang, Q.; Shen, S.; Wei, X.; Li, G. Oridonin inhibits VEGF A associated angiogenesis and epithelial mesenchymal transition of breast cancer in vitro and in vivo. Oncol. Lett., 2018, 16(2), 2289-2298.
[http://dx.doi.org/10.3892/ol.2018.8943] [PMID: 30008931]
[50]
Li, J.; Wu, Y.; Wang, D.; Zou, L.; Fu, C.; Zhang, J.; Leung, G.P.H. Oridonin synergistically enhances the anti-tumor efficacy of doxorubicin against aggressive breast cancer via pro-apoptotic and anti-angiogenic effects. Pharmacol. Res., 2019, 146, 104313.
[http://dx.doi.org/10.1016/j.phrs.2019.104313] [PMID: 31202781]
[51]
Liu, D.L.; Bu, H.Q.; Jin, H.M.; Zhao, J.F.; Li, Y.; Huang, H. Enhancement of the effects of gemcitabine against pancreatic cancer by oridonin via the mitochondrial caspase-dependent signaling pathway. Mol. Med. Rep., 2014, 10(6), 3027-3034.
[http://dx.doi.org/10.3892/mmr.2014.2584] [PMID: 25242370]
[52]
Tiwari, R.V.; Parajuli, P.; Sylvester, P.W. Synergistic anticancer effects of combined γ;-tocotrienol and oridonin treatment is associated with the induction of autophagy. Mol. Cell. Biochem., 2015, 408(1-2), 123-137.
[http://dx.doi.org/10.1007/s11010-015-2488-x] [PMID: 26112904]
[53]
Edwards, S.K.E.; Han, Y.; Liu, Y.; Kreider, B.Z.; Liu, Y.; Grewal, S.; Desai, A.; Baron, J.; Moore, C.R.; Luo, C.; Xie, P. Signaling mechanisms of bortezomib in TRAF3-deficient mouse B lymphoma and human multiple myeloma cells. Leuk. Res., 2016, 41, 85-95.
[http://dx.doi.org/10.1016/j.leukres.2015.12.005] [PMID: 26740054]
[54]
Qing, K.; Jin, Z.; Fu, W.; Wang, W.; Liu, Z.; Li, X.; Xu, Z.; Li, J. Synergistic effect of oridonin and a PI3K/mTOR inhibitor on the non-germinal center B cell-like subtype of diffuse large B cell lymphoma. J. Hematol. Oncol., 2016, 9(1), 72.
[http://dx.doi.org/10.1186/s13045-016-0303-0] [PMID: 27554093]
[55]
Wang, S.Q.; Wang, C.; Chang, L.M.; Zhou, K.R.; Wang, J.W.; Ke, Y.; Yang, D.X.; Shi, H.G.; Wang, R.; Shi, X.L.; Ma, L.Y.; Liu, H.M. Geridonin and paclitaxel act synergistically to inhibit the proliferation of gastric cancer cells through ROS-mediated regulation of the PTEN/PI3K/Akt pathway. Oncotarget, 2016, 7(45), 72990-73002.
[http://dx.doi.org/10.18632/oncotarget.12166] [PMID: 27659528]
[56]
Xiao, X.; He, Z.; Cao, W.; Cai, F.; Zhang, L.; Huang, Q.; Fan, C.; Duan, C.; Wang, X.; Wang, J.; Liu, Y. Oridonin inhibits gefitinib-resistant lung cancer cells by suppressing EGFR/ERK/MMP-12 and CIP2A/Akt signaling pathways. Int. J. Oncol., 2016, 48(6), 2608-2618.
[http://dx.doi.org/10.3892/ijo.2016.3488] [PMID: 27082429]
[57]
Li, S.; Shi, D.; Zhang, L.; Yang, F.; Cheng, G. Oridonin enhances the radiosensitivity of lung cancer cells by upregulating Bax and downregulating Bcl 2. Exp. Ther. Med., 2018, 16(6), 4859-4864.
[http://dx.doi.org/10.3892/etm.2018.6803] [PMID: 30546402]
[58]
Park, H.; Jeong, Y.; Han, N.K.; Kim, J.; Lee, H.J. Oridonin enhances radiation-induced cell death by promoting DNA damage in non-small cell lung cancer cells. Int. J. Mol. Sci., 2018, 19(8), 2378.
[http://dx.doi.org/10.3390/ijms19082378] [PMID: 30104472]
[59]
Spirin, P.; Lebedev, T.; Orlova, N.; Morozov, A.; Poymenova, N.; Dmitriev, S.E.; Buzdin, A.; Stocking, C.; Kovalchuk, O.; Prassolov, V. Synergistic suppression of t(8;21)-positive leukemia cell growth by combining oridonin and MAPK1/ERK2 inhibitors. Oncotarget, 2017, 8(34), 56991-57002.
[http://dx.doi.org/10.18632/oncotarget.18503] [PMID: 28915648]
[60]
Li, W.; Ma, L. Synergistic antitumor activity of oridonin and valproic acid on HL-60 leukemia cells. J. Cell. Biochem., 2019, 120(4), 5620-5627.
[http://dx.doi.org/10.1002/jcb.27845] [PMID: 30320906]
[61]
Zhang, W.; Lu, Y.; Zhen, T.; Chen, X.; Zhang, M.; Liu, P.; Weng, X.; Chen, B.; Wang, Y. Homoharringtonine synergy with oridonin in treatment of t(8; 21) acute myeloid leukemia. Front. Med., 2019, 13(3), 388-397.
[http://dx.doi.org/10.1007/s11684-018-0624-1] [PMID: 30206768]
[62]
Zheng, W.; Zhou, C.Y.; Zhu, X.Q.; Wang, X.J.; Li, Z.Y.; Chen, X.C.; Chen, F.; Che, X.Y.; Xie, X. Oridonin enhances the cytotoxicity of 5-FU in renal carcinoma cells by inducting necroptotic death. Biomed. Pharmacother., 2018, 106, 175-182.
[http://dx.doi.org/10.1016/j.biopha.2018.06.111] [PMID: 29958141]
[63]
Liu, J.; Zhang, N.; Li, N.; Fan, X.; Li, Y. Influence of verapamil on the pharmacokinetics of oridonin in rats. Pharm. Biol., 2019, 57(1), 787-791.
[http://dx.doi.org/10.1080/13880209.2019.1688844] [PMID: 31747844]
[64]
Kang, N.; Cao, S.; Jiang, B.; Zhang, Q.; Donkor, P.O.; Zhu, Y.; Qiu, F.; Gao, X. Cetuximab enhances oridonin-induced apoptosis through mitochondrial pathway and endoplasmic reticulum stress in laryngeal squamous cell carcinoma cells. Toxicol. In Vitro, 2020, 67, 104885.
[http://dx.doi.org/10.1016/j.tiv.2020.104885] [PMID: 32407876]
[65]
Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed., 2014, 53(46), 12320-12364.
[http://dx.doi.org/10.1002/anie.201403036] [PMID: 25294565]
[66]
Zhang, Z.; Zhang, X.; Xue, W.; Yangyang, Y.; Xu, D.; Zhao, Y.; Lou, H. Effects of oridonin nanosuspension on cell proliferation and apoptosis of human prostatic carcinoma PC-3 cell line. Int. J. Nanomedicine, 2010, 5, 735-742.
[http://dx.doi.org/10.2147/IJN.S13537] [PMID: 21042419]
[67]
Qi, X.; Zhang, D.; Xu, X.; Feng, F.; Ren, G.; Chu, Q.; Zhang, Q.; Tian, K. Oridonin nanosuspension was more effective than free oridonin on G2/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line. Int. J. Nanomedicine, 2012, 7, 1793-1804.
[PMID: 22619528]
[68]
Jiang, J-H.; Pi, J.; Jin, H.; Cai, J-Y. Functional graphene oxide as cancer-targeted drug delivery system to selectively induce oesophageal cancer cell apoptosis. Artific. Cells, Nanomedic. Biotechn., 2018, 46(s3), S297-S307.
[http://dx.doi.org/10.1080/21691401.2018.1492418]
[69]
Chen, G.; Luo, J.; Cai, M.; Qin, L.; Wang, Y.; Gao, L.; Huang, P.; Yu, Y.; Ding, Y.; Dong, X.; Yin, X.; Ni, J. Investigation of metal-organic framework-5 (mof-5) as an antitumor drug oridonin sustained release carrier. Molecules, 2019, 24(18), 3369.
[http://dx.doi.org/10.3390/molecules24183369] [PMID: 31527488]
[70]
Chen, B.; Liu, X.; Li, Y.; Shan, T.; Bai, L.; Li, C.; Wang, Y. iRGD tumor-penetrating peptide-modified nano-delivery system based on a marine sulfated polysaccharide for enhanced anti-tumor efficiency against breast cancer. Int. J. Nanomedicine, 2022, 17, 617-633.
[http://dx.doi.org/10.2147/IJN.S343902] [PMID: 35173433]
[71]
Hu, A.P.; Du, J.M.; Li, J.Y.; Liu, J.W. Oridonin promotes CD4+/CD25+ Treg differentiation, modulates Th1/Th2 balance and induces HO-1 in rat splenic lymphocytes. Inflamm. Res., 2008, 57(4), 163-170.
[http://dx.doi.org/10.1007/s00011-007-7193-0] [PMID: 18351433]
[72]
Ku, C.M.; Lin, J.Y. Anti-inflammatory effects of 27 selected terpenoid compounds tested through modulating Th1/Th2 cytokine secretion profiles using murine primary splenocytes. Food Chem., 2013, 141(2), 1104-1113.
[http://dx.doi.org/10.1016/j.foodchem.2013.04.044] [PMID: 23790892]
[73]
Wu, Q.J.; Zheng, X.C.; Wang, T.; Zhang, T.Y. Effects of oridonin on immune cells, Th1/Th2 balance and the expression of BLys in the spleens of broiler chickens challenged with Salmonella pullorum. Res. Vet. Sci., 2018, 119, 262-267.
[http://dx.doi.org/10.1016/j.rvsc.2018.07.008] [PMID: 30056311]
[74]
Shang, C.; Zhang, Q.; Zhou, J. Oridonin inhibits cell proliferation and induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes. Inflammation, 2016, 39(2), 873-880.
[http://dx.doi.org/10.1007/s10753-016-0318-2] [PMID: 26923246]
[75]
He, S.D.; Huang, S.G.; Zhu, H.J.; Luo, X.G.; Liao, K.H.; Zhang, J.Y.; Tan, N.; Li, D.Y. Oridonin suppresses autophagy and survival in rheumatoid arthritis fibroblast-like synoviocytes. Pharm. Biol., 2020, 58(1), 146-151.
[http://dx.doi.org/10.1080/13880209.2020.1711783] [PMID: 31971852]
[76]
Zang, K.; Shao, Y.; Zuo, X.; Rao, Z.; Qin, H. Oridonin alleviates visceral hyperalgesia in a rat model of postinflammatory irritable bowel syndrome: role of colonic enterochromaffin cell and serotonin availability. J. Med. Food, 2016, 19(6), 586-592.
[http://dx.doi.org/10.1089/jmf.2015.3595] [PMID: 27111743]
[77]
Huang, W.; Huang, M.; Ouyang, H.; Peng, J.; Liang, J. Oridonin inhibits vascular inflammation by blocking NF-κB and MAPK activation. Eur. J. Pharmacol., 2018, 826, 133-139.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.044] [PMID: 29518395]
[78]
He, H.; Jiang, H.; Chen, Y.; Ye, J.; Wang, A.; Wang, C.; Liu, Q.; Liang, G.; Deng, X.; Jiang, W.; Zhou, R. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun., 2018, 9(1), 2550.
[http://dx.doi.org/10.1038/s41467-018-04947-6] [PMID: 29959312]
[79]
Yang, H.; Lv, H.; Li, H.; Ci, X.; Peng, L. Oridonin protects LPS-induced acute lung injury by modulating Nrf2-mediated oxidative stress and Nrf2-independent NLRP3 and NF-κB pathways. Cell Commun. Signal., 2019, 17(1), 62.
[http://dx.doi.org/10.1186/s12964-019-0366-y] [PMID: 31186013]
[80]
Liu, H.; Gu, C.; Liu, M.; Liu, G.; Wang, Y. NEK7 mediated assembly and activation of NLRP3 inflammasome downstream of potassium efflux in ventilator-induced lung injury. Biochem. Pharmacol., 2020, 177, 113998.
[http://dx.doi.org/10.1016/j.bcp.2020.113998] [PMID: 32353421]
[81]
Liu, D.; Qin, H.; Yang, B.; Du, B.; Yun, X. Oridonin ameliorates carbon tetrachloride-induced liver fibrosis in mice through inhibition of the NLRP3 inflammasome. Drug Dev. Res., 2020, 81(4), 526-533.
[http://dx.doi.org/10.1002/ddr.21649] [PMID: 32219880]
[82]
Zhang, T.; Chen, Y.; Zhan, Z.; Mao, Z.; Wen, Y.; Liu, S.; Tang, L. Oridonin alleviates D-Gal N/LPS-induced acute liver injury by inhibiting NLRP3 inflammasome. Drug Dev. Res., 2021, 82(4), 575-580.
[http://dx.doi.org/10.1002/ddr.21776] [PMID: 33377532]
[83]
Yan, Y.; Tan, R.; Liu, P.; Li, J.; Zhong, X.; Liao, Y.; Lin, X.; Wei, C.; Wang, L. Oridonin alleviates iri-induced kidney injury by inhibiting inflammatory response of macrophages via akt-related pathways. Med. Sci. Monit., 2020, 26, e921114.
[http://dx.doi.org/10.12659/MSM.921114] [PMID: 32362652]
[84]
Huang, J.H.; Lan, C.C.; Hsu, Y.T.; Tsai, C.L.; Tzeng, I.S.; Wang, P.; Kuo, C.Y.; Hsieh, P.C. Oridonin Attenuates lipopolysaccharide-induced ROS accumulation and inflammation in HK-2 cells. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-8.
[http://dx.doi.org/10.1155/2020/9724520] [PMID: 32184902]
[85]
Yan, C.; Yan, H.; Mao, J.; Liu, Y.; Xu, L.; Zhao, H.; Shen, J.; Cao, Y.; Gao, Y.; Li, K.; Jin, W. Neuroprotective effect of oridonin on traumatic brain injury via inhibiting NLRP3 inflammasome in experimental mice. Front. Neurosci., 2020, 14, 557170.
[http://dx.doi.org/10.3389/fnins.2020.557170] [PMID: 33281541]
[86]
Jia, Y.; Tong, Y.; Min, L.; Li, Y.; Cheng, Y. Protective effects of oridonin against cerebral ischemia/reperfusion injury by inhibiting the NLRP3 inflammasome activation. Tissue Cell, 2021, 71, 101514.
[http://dx.doi.org/10.1016/j.tice.2021.101514] [PMID: 33676236]
[87]
Yang, H.; Huang, J.; Gao, Y.; Wen, Z.; Peng, L.; Ci, X. Oridonin attenuates carrageenan-induced pleurisy via activation of the KEAP-1/Nrf2 pathway and inhibition of the TXNIP/NLRP3 and NF-κB pathway in mice. Inflammopharmacology, 2020, 28(2), 513-523.
[http://dx.doi.org/10.1007/s10787-019-00644-y] [PMID: 31552548]
[88]
Lu, C.; Chen, C.; Chen, A.; Wu, Y.; Wen, J.; Huang, F.; Zeng, Z. Oridonin attenuates myocardial ischemia/reperfusion injury via downregulating oxidative stress and NLRP3 inflammasome pathway in mice. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/7395187] [PMID: 32565873]
[89]
Gao, R.F.; Li, X.; Xiang, H.Y.; Yang, H.; Lv, C.Y.; Sun, X.L.; Chen, H.Z.; Gao, Y.; Yang, J.S.; Luo, W.; Yang, Y.Q.; Tang, Y.H. The covalent NLRP3-inflammasome inhibitor oridonin relieves myocardial infarction induced myocardial fibrosis and cardiac remodeling in mice. Int. Immunopharmacol., 2021, 90, 107133.
[http://dx.doi.org/10.1016/j.intimp.2020.107133] [PMID: 33168408]
[90]
Mangan, M.S.J.; Olhava, E.J.; Roush, W.R.; Seidel, H.M.; Glick, G.D.; Latz, E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov., 2018, 17(8), 588-606.
[http://dx.doi.org/10.1038/nrd.2018.97] [PMID: 30026524]
[91]
White, N.J. Qinghaosu (artemisinin): the price of success. Science, 2008, 320(5874), 330-334.
[http://dx.doi.org/10.1126/science.1155165] [PMID: 18420924]
[92]
Kokoska, L.; Kloucek, P.; Leuner, O.; Novy, P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr. Med. Chem., 2019, 26(29), 5501-5541.
[http://dx.doi.org/10.2174/0929867325666180831144344] [PMID: 30182844]
[93]
Dai, J.; Han, R.; Xu, Y.; Li, N.; Wang, J.; Dan, W. Recent progress of antibacterial natural products: Future antibiotics candidates. Bioorg. Chem., 2020, 101, 103922.
[http://dx.doi.org/10.1016/j.bioorg.2020.103922] [PMID: 32559577]
[94]
Fujita, E.; Nagao, Y.; Kaneko, K.; Nakazawa, S.; Kuroda, H. The antitumor and antibacterial activity of the Isodon diterpenoids. Chem. Pharm. Bull. (Tokyo), 1976, 24(9), 2118-2127.
[http://dx.doi.org/10.1248/cpb.24.2118] [PMID: 991362]
[95]
Li, D.; Han, T.; Xu, S.; Zhou, T.; Tian, K.; Hu, X.; Cheng, K.; Li, Z.; Hua, H.; Xu, J. Antitumor and antibacterial derivatives of oridonin: a main composition of dong-ling-cao. Molecules, 2016, 21(5), 575.
[http://dx.doi.org/10.3390/molecules21050575] [PMID: 27144553]
[96]
Kadota, S.; Basnet, P.; Ishii, E.; Tamura, T.; Namba, T. Antibacterial activity of trichorabdal A from Rabdosia trichocarpa against Helicobacter pylori. Zentralbl. Bakteriol., 1997, 286(1), 63-67.
[http://dx.doi.org/10.1016/S0934-8840(97)80076-X] [PMID: 9241802]
[97]
Wu, Q.J.; Zheng, X.C.; Wang, T.; Zhang, T.Y. Effect of dietary oridonin supplementation on growth performance, gut health, and immune response of broilers infected with Salmonella pullorum. Ir. Vet. J., 2018, 71(1), 16.
[http://dx.doi.org/10.1186/s13620-018-0128-y] [PMID: 30079224]
[98]
Xu, S.; Li, D.; Pei, L.; Yao, H.; Wang, C.; Cai, H.; Yao, H.; Wu, X.; Xu, J. Design, synthesis and antimycobacterial activity evaluation of natural oridonin derivatives. Bioorg. Med. Chem. Lett., 2014, 24(13), 2811-2814.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.119] [PMID: 24835198]
[99]
Xu, S.; Pei, L.; Li, D.; Yao, H.; Cai, H.; Yao, H.; Wu, X.; Xu, J. Synthesis and antimycobacterial evaluation of natural oridonin and its enmein-type derivatives. Fitoterapia, 2014, 99, 300-306.
[http://dx.doi.org/10.1016/j.fitote.2014.10.005] [PMID: 25316557]
[100]
Selimoglu, E. Aminoglycoside-Induced ototoxicity. Curr. Pharm. Des., 2007, 13(1), 119-126.
[http://dx.doi.org/10.2174/138161207779313731] [PMID: 17266591]
[101]
Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; Djousse, L.; Elkind, M.S.V.; Ferguson, J.F.; Fornage, M.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Kwan, T.W.; Lackland, D.T.; Lewis, T.T.; Lichtman, J.H.; Longenecker, C.T.; Loop, M.S.; Lutsey, P.L.; Martin, S.S.; Matsushita, K.; Moran, A.E.; Mussolino, M.E.; Perak, A.M.; Rosamond, W.D.; Roth, G.A.; Sampson, U.K.A.; Satou, G.M.; Schroeder, E.B.; Shah, S.H.; Shay, C.M.; Spartano, N.L.; Stokes, A.; Tirschwell, D.L.; VanWagner, L.B.; Tsao, C.W. Heart disease and stroke statistics-2020 update: a report from the american heart association. Circulation, 2020, 141(9), e139-e596.
[http://dx.doi.org/10.1161/CIR.0000000000000757] [PMID: 31992061]
[102]
Liu, S.; Li, Y.; Zeng, X.; Wang, H.; Yin, P.; Wang, L.; Liu, Y.; Liu, J.; Qi, J.; Ran, S.; Yang, S.; Zhou, M. Burden of Cardiovascular Diseases in China, 1990-2016. JAMA Cardiol., 2019, 4(4), 342-352.
[http://dx.doi.org/10.1001/jamacardio.2019.0295] [PMID: 30865215]
[103]
Sacco, R.L.; Roth, G.A.; Reddy, K.S.; Arnett, D.K.; Bonita, R.; Gaziano, T.A.; Heidenreich, P.A.; Huffman, M.D.; Mayosi, B.M.; Mendis, S.; Murray, C.J.L.; Perel, P.; Piñeiro, D.J.; Smith, S.C., Jr; Taubert, K.A.; Wood, D.A.; Zhao, D.; Zoghbi, W.A. The Heart of 25 by 25: Achieving the goal of reducing global and regional premature deaths from cardiovascular diseases and stroke. Circulation, 2016, 133(23), e674-e690.
[http://dx.doi.org/10.1161/CIR.0000000000000395] [PMID: 27162236]
[104]
Zhou, M.; Wang, H.; Zhu, J.; Chen, W.; Wang, L.; Liu, S.; Li, Y.; Wang, L.; Liu, Y.; Yin, P.; Liu, J.; Yu, S.; Tan, F.; Barber, R.M.; Coates, M.M.; Dicker, D.; Fraser, M.; González-Medina, D.; Hamavid, H.; Hao, Y.; Hu, G.; Jiang, G.; Kan, H.; Lopez, A.D.; Phillips, M.R.; She, J.; Vos, T.; Wan, X.; Xu, G.; Yan, L.L.; Yu, C.; Zhao, Y.; Zheng, Y.; Zou, X.; Naghavi, M.; Wang, Y.; Murray, C.J.L.; Yang, G.; Liang, X. Cause-specific mortality for 240 causes in China during 1990–2013: a systematic subnational analysis for the Global Burden of Disease Study 2013. Lancet, 2016, 387(10015), 251-272.
[http://dx.doi.org/10.1016/S0140-6736(15)00551-6] [PMID: 26510778]
[105]
Gong, L.; Xu, H.; Zhang, X.; Zhang, T.; Shi, J.; Chang, H. Oridonin relieves hypoxia-evoked apoptosis and autophagy via modulating microRNA-214 in H9c2 cells. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2585-2592.
[http://dx.doi.org/10.1080/21691401.2019.1628037] [PMID: 31220945]
[106]
Xu, M.; Wan, C.; Huang, S.; Wang, H.; Fan, D.; Wu, H.M.; Wu, Q.; Ma, Z.; Deng, W.; Tang, Q.Z. Oridonin protects against cardiac hypertrophy by promoting P21-related autophagy. Cell Death Dis., 2019, 10(6), 403.
[http://dx.doi.org/10.1038/s41419-019-1617-y] [PMID: 31127082]
[107]
Zhang, J.; Zhou, Y.; Sun, Y.; Yan, H.; Han, W.; Wang, X.; Wang, K.; Wei, B.; Xu, X. Beneficial effects of Oridonin on myocardial ischemia/reperfusion injury: Insight gained by metabolomic approaches. Eur. J. Pharmacol., 2019, 861, 172587.
[http://dx.doi.org/10.1016/j.ejphar.2019.172587] [PMID: 31377155]
[108]
Du, X.; Que, W.; Hu, X.; Yu, X.; Guo, W.Z.; Zhang, S.; Li, X.K. Oridonin prolongs the survival of mouse cardiac allografts by attenuating the NF-κB/NLRP3 pathway. Front. Immunol., 2021, 12, 719574.
[http://dx.doi.org/10.3389/fimmu.2021.719574] [PMID: 34566976]
[109]
Alexander, M.; Loomis, A.K.; van der Lei, J.; Duarte-Salles, T.; Prieto-Alhambra, D.; Ansell, D.; Pasqua, A.; Lapi, F.; Rijnbeek, P.; Mosseveld, M.; Avillach, P.; Egger, P.; Dhalwani, N.N.; Kendrick, S.; Celis-Morales, C.; Waterworth, D.M.; Alazawi, W.; Sattar, N. Non-alcoholic fatty liver disease and risk of incident acute myocardial infarction and stroke: findings from matched cohort study of 18 million European adults. BMJ, 2019, 367, l5367.
[http://dx.doi.org/10.1136/bmj.l5367] [PMID: 31594780]
[110]
Xu, Y.; Xue, Y.; Wang, Y.; Feng, D.; Lin, S.; Xu, L. Multiple-modulation effects of Oridonin on the production of proinflammatory cytokines and neurotrophic factors in LPS-activated microglia. Int. Immunopharmacol., 2009, 9(3), 360-365.
[http://dx.doi.org/10.1016/j.intimp.2009.01.002] [PMID: 19185062]
[111]
Zhang, Z.Y.; Daniels, R.; Schluesener, H.J. Oridonin ameliorates neuropathological changes and behavioural deficits in a mouse model of cerebral amyloidosis. J. Cell. Mol. Med., 2013, 17(12), 1566-1576.
[http://dx.doi.org/10.1111/jcmm.12124] [PMID: 24034629]
[112]
Wang, S.; Yang, H.; Yu, L.; Jin, J.; Qian, L.; Zhao, H.; Xu, Y.; Zhu, X. Oridonin attenuates Aβ1-42-induced neuroinflammation and inhibits NF-κB pathway. PLoS One, 2014, 9(8), e104745.
[http://dx.doi.org/10.1371/journal.pone.0104745] [PMID: 25121593]
[113]
Wang, S.; Yu, L.; Yang, H.; Li, C.; Hui, Z.; Xu, Y.; Zhu, X. Oridonin attenuates synaptic loss and cognitive deficits in an Aβ1–42-induced mouse model of alzheimer’s disease. PLoS One, 2016, 11(3), e0151397.
[http://dx.doi.org/10.1371/journal.pone.0151397] [PMID: 26974541]
[114]
Zhao, Y.J.; Lv, H.; Xu, P.B.; Zhu, M.M.; Liu, Y.; Miao, C.H.; Zhu, Y. Protective effects of oridonin on the sepsis in mice. Kaohsiung J. Med. Sci., 2016, 32(9), 452-457.
[http://dx.doi.org/10.1016/j.kjms.2016.07.013] [PMID: 27638404]
[115]
Zhao, G.; Zhang, T.; Ma, X.; Jiang, K.; Wu, H.; Qiu, C.; Guo, M.; Deng, G. Oridonin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-induced RAW264.7 cells and acute lung injury. Oncotarget, 2017, 8(40), 68153-68164.
[http://dx.doi.org/10.18632/oncotarget.19249] [PMID: 28978105]
[116]
Fu, Y.; Zhao, P.; Xie, Z.; Wang, L.; Chen, S. Oridonin inhibits myofibroblast differentiation and bleomycin-induced pulmonary fibrosis by regulating transforming growth factor β (TGFβ)/smad pathway. Med. Sci. Monit., 2018, 24, 7548-7555.
[http://dx.doi.org/10.12659/MSM.912740] [PMID: 30347408]
[117]
Bohanon, F.J.; Wang, X.; Ding, C.; Ding, Y.; Radhakrishnan, G.L.; Rastellini, C.; Zhou, J.; Radhakrishnan, R.S. Oridonin inhibits hepatic stellate cell proliferation and fibrogenesis. J. Surg. Res., 2014, 190(1), 55-63.
[http://dx.doi.org/10.1016/j.jss.2014.03.036] [PMID: 24742622]
[118]
Deng, Y.; Chen, C.; Yu, H.; Diao, H.; Shi, C.; Wang, Y.; Li, G.; Shi, M. Oridonin ameliorates lipopolysaccharide/D-galactosamine-induced acute liver injury in mice via inhibition of apoptosis. Am. J. Transl. Res., 2017, 9(9), 4271-4279.
[PMID: 28979700]
[119]
Shi, M.; Deng, Y.; Yu, H.; Xu, L.; Shi, C.; Chen, J.; Li, G.; Du, Y.; Wang, Y. Protective effects of oridonin on acute liver injury via impeding posttranslational modifications of interleukin-1 receptor-associated kinase 4 (IRAK4) in the toll-like receptor 4 (TLR4) signaling pathway. Mediators Inflamm., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/7634761] [PMID: 31611735]
[120]
Cheng, B.; Jin, J.; Liu, D.; Shi, T.; Fu, X.; Liu, C.; Liu, S.; Wu, R. Oridonin interferes with simple steatosis of liver cells by regulating autophagy. Tissue Cell, 2021, 72, 101532.
[http://dx.doi.org/10.1016/j.tice.2021.101532] [PMID: 33823340]
[121]
Wang, X.; Gao, M.; Wang, Z.; Cui, W.; Zhang, J.; Zhang, W.; Xia, Y.; Wei, B.; Tang, Y.; Xu, X. Hepatoprotective effects of oridonin against bisphenol A induced liver injury in rats via inhibiting the activity of xanthione oxidase. Sci. Total Environ., 2021, 770, 145301.
[http://dx.doi.org/10.1016/j.scitotenv.2021.145301] [PMID: 33515877]
[122]
Jia, T.; Cai, M.; Ma, X.; Li, M.; Qiao, J.; Chen, T. Oridonin inhibits IL-1β-induced inflammation in human osteoarthritis chondrocytes by activating PPAR-γ. Int. Immunopharmacol., 2019, 69, 382-388.
[http://dx.doi.org/10.1016/j.intimp.2019.01.049] [PMID: 30776647]
[123]
Zou, B.; Tan, Y.; Deng, W.; Zheng, J.; Yang, Q.; Ke, M.; Ding, Z.; Li, X. Oridonin ameliorates inflammation-induced bone loss in mice via suppressing DC-STAMP expression. Acta Pharmacol. Sin., 2021, 42(5), 744-754.
[http://dx.doi.org/10.1038/s41401-020-0477-4] [PMID: 32753731]
[124]
Bohanon, F.J.; Wang, X.; Graham, B.M.; Ding, C.; Ding, Y.; Radhakrishnan, G.L.; Rastellini, C.; Zhou, J.; Radhakrishnan, R.S. Enhanced effects of novel oridonin analog CYD0682 for hepatic fibrosis. J. Surg. Res., 2015, 199(2), 441-449.
[http://dx.doi.org/10.1016/j.jss.2015.07.042] [PMID: 26409288]
[125]
Bohanon, F.J.; Wang, X.; Graham, B.M.; Prasai, A.; Vasudevan, S.J.; Ding, C.; Ding, Y.; Radhakrishnan, G.L.; Rastellini, C.; Zhou, J.; Radhakrishnan, R.S. Enhanced anti-fibrogenic effects of novel oridonin derivative CYD0692 in hepatic stellate cells. Mol. Cell. Biochem., 2015, 410(1-2), 293-300.
[http://dx.doi.org/10.1007/s11010-015-2562-4] [PMID: 26346163]
[126]
Zhou, J.; Yun, E.J.; Chen, W.; Ding, Y.; Wu, K.; Wang, B.; Ding, C.; Hernandez, E.; Santoyo, J.; Pong, R.C.; Chen, H.; He, D.; Zhou, J.; Hsieh, J.T. Targeting 3-phosphoinositide-dependent protein kinase 1 associated with drug-resistant renal cell carcinoma using new oridonin analogs. Cell Death Dis., 2017, 8(3), e2701.
[http://dx.doi.org/10.1038/cddis.2017.121] [PMID: 28333136]
[127]
Hu, X.; Wang, Y.; Gao, X.; Xu, S.; Zang, L.; Xiao, Y.; Li, Z.; Hua, H.; Xu, J.; Li, D. Recent progress of oridonin and its derivatives for the treatment of acute myelogenous leukemia. Mini Rev. Med. Chem., 2020, 20(6), 483-497.
[http://dx.doi.org/10.2174/1389557519666191029121809] [PMID: 31660811]
[128]
Liu, X.; Xu, J.; Zhou, J.; Shen, Q. Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance. Genes Dis., 2021, 8(4), 448-462.
[http://dx.doi.org/10.1016/j.gendis.2020.06.010] [PMID: 34179309]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy