Abstract
Objective: This study aimed to establish an academic basis for using a computed tomography (CT) model for predicting osteoporosis in the clinical setting by illustrating the effectiveness of morphometric texture analysis. We introduce texture analysis and quantitative approaches using CT Hounsfield units (HU) to screen osteoporosis.
Methods: From March 6th, 2013, to August 11th, 2020, a total of 4,333 cases (1,766 patients) were included in the study. After applying exclusion criteria concerning the patient status and scan interval between CT and DXA, we selected only 1,647 samples (736 patients) and analyzed both their CT and DXA bone mineral density (BMD) results. BMD was measured in the femoral neck and L1 spine body. A region of interest (ROI) was extracted from each patient’s CT as the maximum trabecular area of the L1 spine body and femoral neck. A total of 45 texture features were extracted from every ROI using gray-level co-occurrence matrices. Machine-learning techniques, including linear regression (LR) and artificial neural network (ANN), were applied to predict BMD.
Results: We assigned samples to (1) Set 1 (857 lumbar spine samples in chest model, L1 spine DXA BMD), (2) Set 2 (392 lumbar spine samples in lumbar spine CT model, L1 spine DXA BMD), (3) Set 3 (1,249 lumbar spine samples in both chest and lumbar spine CT model, L1 spine DXA BMD), (4) Set 4 (398 femoral neck samples in hip and pelvis CT model, femoral neck DXA BMD), and (5) Set 5 (a total of 1,647 samples). When we applied LR, the correlation coefficients between estimated and reference values for Sets 1, 2, 3, and 4 were 0.783, 0.784, 0.757, and 0.652, respectively. For total samples (Set 5), LR and ANN provided correlation coefficients of 0.707 and 0.782, respectively.
Conclusion: The modality using morphometric texture analysis with CT HU can be an additional diagnostic tool for osteoporosis and an alternative for DXA.
Graphical Abstract
[http://dx.doi.org/10.1007/s00198-011-1601-6] [PMID: 21461721]
[http://dx.doi.org/10.1016/j.ajog.2005.08.047] [PMID: 16448873]
[http://dx.doi.org/10.1056/NEJMcp042092] [PMID: 16014886]
[http://dx.doi.org/10.1016/j.bone.2005.11.024] [PMID: 16455317]
[http://dx.doi.org/10.1016/j.bone.2008.08.106] [PMID: 18793764]
[http://dx.doi.org/10.1016/j.jocd.2013.08.004] [PMID: 24183638]
[http://dx.doi.org/10.1097/01.brs.0000222030.32171.5f] [PMID: 16778698]
[http://dx.doi.org/10.1007/s40520-013-0074-1] [PMID: 24046042]
[http://dx.doi.org/10.1007/s00198-004-1600-y] [PMID: 14997287]
[http://dx.doi.org/10.1002/jbmr.428] [PMID: 21590738]
[http://dx.doi.org/10.7326/0003-4819-158-8-201304160-00003] [PMID: 23588747]
[http://dx.doi.org/10.1002/jbmr.1678] [PMID: 22692725]
[http://dx.doi.org/10.1002/jbmr.2028] [PMID: 23821454]
[http://dx.doi.org/10.1007/s00330-014-3584-0] [PMID: 25591750]
[http://dx.doi.org/10.1007/s00198-016-3804-3] [PMID: 28108802]
[http://dx.doi.org/10.2106/JBJS.J.00160] [PMID: 21655899]
[http://dx.doi.org/10.1007/s00330-015-4145-x] [PMID: 26801161]
[http://dx.doi.org/10.1385/JCD:5:3S:S11] [PMID: 12464707]
[http://dx.doi.org/10.1109/TSMC.1973.4309314]
[http://dx.doi.org/10.1109/PROC.1979.11328]
[http://dx.doi.org/10.1117/1.1631315]
[http://dx.doi.org/10.5720/kjcn.2013.18.2.177]
[http://dx.doi.org/10.1016/j.ejrad.2019.05.009] [PMID: 31153568]
[http://dx.doi.org/10.1002/jbmr.5650091210] [PMID: 7872056]
[http://dx.doi.org/10.1136/ard.55.10.749] [PMID: 8984941]
[http://dx.doi.org/10.1016/S8756-3282(00)00438-5] [PMID: 11165945]
[http://dx.doi.org/10.1007/s00223-004-0140-y] [PMID: 15906016]
[http://dx.doi.org/10.1007/s11999-009-0896-5] [PMID: 19472023]
[http://dx.doi.org/10.1016/j.bone.2013.05.023] [PMID: 23756232]
[http://dx.doi.org/10.1155/2013/895474]
[http://dx.doi.org/10.1016/j.ejrad.2009.04.074] [PMID: 19682815]
[http://dx.doi.org/10.1515/med-2019-0061] [PMID: 31410366]
[http://dx.doi.org/10.24920/003548] [PMID: 30961775]
[http://dx.doi.org/10.1590/1678-9199-jvatitd-2020-0011] [PMID: 32952531]
[http://dx.doi.org/10.1007/s12194-019-00543-5] [PMID: 31686300]
[http://dx.doi.org/10.14419/ijet.v7i2.21.12378]
[http://dx.doi.org/10.4258/hir.2016.22.4.299] [PMID: 27895962]