Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Carbon Nanodots/Cajuput Oil Composites for Potential Antibacterial Applications

Author(s): Ariswan Ariswan, Isnaeni Isnaeni, Warsono Warsono, Fika Fauzi, Irvany Nurita Pebriana, Suparno Suparno, Emi Kurnia Sari, Bian Itsna Ashfa Al Ashfiya and Wipsar Sunu Brams Dwandaru*

Volume 19, Issue 4, 2023

Published on: 09 December, 2022

Page: [612 - 619] Pages: 8

DOI: 10.2174/1573413719666221114094255

Price: $65

Abstract

Background: We reported for the first time the preparation of carbon nanodots/ cajuput oil (C-dots/CJO) composites for potential antibacterial applications.

Methods: The C-dots were synthesized from CJO distillation wastes via the low carbonization method. Then, the C-dots were mixed with CJO to obtain C-dots/CJO composites. The characteristics of the C-dots were determined using UV-Vis, PL, TRPL, FTIR, and HRTEM, whereas the C-dots/CJO composites were characterized using UV-Vis and FTIR.

Results: Antibacterial properties were investigated for samples of C-dots, CJO, and C-dots/CJO with no-light, white light, and UV/violet light treatments. The C-dots produced cyan luminescence with a decay lifetime of 6.54 ns. Based on the antibacterial tests, the C-dots/CJO composites have DIZ higher than the pure C-dots.

Conclusion: The C-dots/CJO composites reached the highest DIZ of 3.6 nm under white light, which was attributed to the photodynamic effect and photodisinfection of the C-dots and CJO, respectively. Hence, the C-dots/CJO composites can be potential antibacterial agents against E. coli bacteria.

Graphical Abstract

[1]
Cacciatore, F.A.; Brandelli, A.; Malheiros, P.S. Combining natural antimicrobials and nanotechnology for disinfecting food surfaces and control microbial biofilm formation. Crit. Rev. Food Sci. Nutr., 2020, 61(22), 3771-3782.
[http://dx.doi.org/10.1080/10408398.2020.1806782]
[2]
Wang, J.; Fan, H.; He, X.; Zhang, F.; Xiao, J.; Yan, Z.; Feng, J.; Li, R. Response of bacterial communities to variation in water quality and physicochemical conditions in a river-reservoir system. Glob. Ecol. Conserv., 2021, 27, e01541.
[http://dx.doi.org/10.1016/j.gecco.2021.e01541]
[3]
Dong, X.; Awak, M.A.; Tomlinson, N.; Tang, Y.; Sun, Y.P.; Yang, L. Antibacterial effects of carbon dots in combination with other antimicrobial reagents. PLoS One, 2017, 12(9), e0185324.
[http://dx.doi.org/10.1371/journal.pone.0185324] [PMID: 28934346]
[4]
Dong, X.; Liang, W.; Meziani, M.J.; Sun, Y.P.; Yang, L. Carbon dots as potent antimicrobial agents. Theranostics, 2020, 10(2), 671-686.
[http://dx.doi.org/10.7150/thno.39863] [PMID: 31903144]
[5]
Sun, H.; Gao, N.; Dong, K.; Ren, J.; Qu, X. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano, 2014, 8(6), 6202-6210.
[http://dx.doi.org/10.1021/nn501640q] [PMID: 24870970]
[6]
Yang, J.; Zhang, X.; Ma, Y.H.; Gao, G.; Chen, X.; Jia, H.R.; Li, Y.H.; Chen, Z.; Wu, F.G. Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Appl. Mater. Interfaces, 2016, 8(47), 32170-32181.
[http://dx.doi.org/10.1021/acsami.6b10398] [PMID: 27786440]
[7]
Liu, W.; Li, C.; Sun, X.; Pan, W.; Yu, G.; Wang, J. Highly crystalline carbon dots from fresh tomato: UV emission and quantum confinement. Nanotechnology, 2017, 28(48), 485705.
[http://dx.doi.org/10.1088/1361-6528/aa900b] [PMID: 28961145]
[8]
Peng, Z.; Han, X.; Li, S.; Al-Youbi, A.O.; Bashammakh, A.S.; El-Shahawi, M.S.; Leblanc, R.M. Carbon dots: Biomacromolecule interaction, bioimaging and nanomedicine. Coord. Chem. Rev., 2017, 343, 256-277.
[http://dx.doi.org/10.1016/j.ccr.2017.06.001]
[9]
Xia, C.; Zhu, S.; Feng, T.; Yang, M.; Yang, B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci., 2019, 6(23), 1901316.
[http://dx.doi.org/10.1002/advs.201901316] [PMID: 31832313]
[10]
Phadke, C.; Mewada, A.; Dharmatti, R.; Thakur, M.; Pandey, S.; Sharon, M. Biogenic synthesis of fluorescent carbon dots at ambient temperature using Azadirachta indica (Neem) gum. J. Fluoresc., 2015, 25(4), 1103-1107.
[http://dx.doi.org/10.1007/s10895-015-1598-x] [PMID: 26123675]
[11]
Dwandaru, W.S.B.; Bilqis, S.M.; Wisnuwijaya, R.I. Isnaeni, Optical properties comparison of carbon nanodots synthesized from commercial granulated sugar using hydrothermal method and microwave. Mater. Res. Express, 2019, 6(10), 105041.
[http://dx.doi.org/10.1088/2053-1591/ab3952]
[12]
Hou, Y.; Lu, Q.; Deng, J.; Li, H.; Zhang, Y. One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal. Chim. Acta, 2015, 866, 69-74.
[http://dx.doi.org/10.1016/j.aca.2015.01.039] [PMID: 25732694]
[13]
Deng, J.; Lu, Q.; Mi, N.; Li, H.; Liu, M.; Xu, M.; Tan, L.; Xie, Q.; Zhang, Y.; Yao, S. Electrochemical synthesis of carbon nanodots directly from alcohols. Chemistry, 2014, 20(17), 4993-4999.
[http://dx.doi.org/10.1002/chem.201304869] [PMID: 24623706]
[14]
Ang, W.L.; Boon, M.C.A.L.; Sambudi, N.S.; Mohammad, A.W.; Leo, C.P.; Mahmoudi, E.; Ba-Abbad, M.; Benamor, A. Microwave-assisted conversion of palm kernel shell biomass waste to photoluminescent carbon dots. Sci. Rep., 2020, 10(1), 21199.
[http://dx.doi.org/10.1038/s41598-020-78322-1] [PMID: 33273663]
[15]
Zhou, J.; Sheng, Z.; Han, H.; Zou, M.; Li, C. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater. Lett., 2012, 66(1), 222-224.
[http://dx.doi.org/10.1016/j.matlet.2011.08.081]
[16]
Li, L.; Zhang, R.; Lu, C.; Sun, J.; Wang, L.; Qu, B.; Li, T.; Liu, Y.; Li, S. In situ synthesis of NIR-light emitting carbon dots derived from spinach for bio-imaging applications. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(35), 7328-7334.
[http://dx.doi.org/10.1039/C7TB00634A] [PMID: 32264182]
[17]
Thakur, M.; Pandey, S.; Mewada, A.; Patil, V.; Khade, M.; Goshi, E.; Sharon, M. Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity. J. Drug Deliv., 2014, 2014, 282193.
[http://dx.doi.org/10.1155/2014/282193] [PMID: 24744921]
[18]
Kumar, V.B.; Natan, M.; Jacobi, G.; Porat, Z.; Banin, E.; Gedanken, A. Ga@C-dots as an antibacterial agent for the eradication of Pseudomonas aeruginosa. Int. J. Nanomedicine, 2017, 12, 725-730.
[http://dx.doi.org/10.2147/IJN.S116150] [PMID: 28176980]
[19]
Abu, R.D.I.; Mohammed, O.O.; Dong, X.; Patel, A.K.; Overton, C.M.; Tang, Y.; Kathariou, S.; Sun, Y.P.; Yang, L. Carbon dots for highly effective photodynamic inactivation of multidrug-resistant bacteria. Mater. Adv., 2020, 1(3), 321-325.
[http://dx.doi.org/10.1039/D0MA00078G]
[20]
Pham, J.V.; Yilma, M.A.; Feliz, A.; Majid, M.T.; Maffetone, N.; Walker, J.R.; Kim, E.; Cho, H.J.; Reynolds, J.M.; Song, M.C.; Park, S.R.; Yoon, Y.J. A review of the microbial production of bioactive natural products and biologics. Front. Microbiol., 2019, 10, 1404.
[http://dx.doi.org/10.3389/fmicb.2019.01404] [PMID: 31281299]
[21]
Musta, R.; Nurliana, L. Damhuri; Asranudin; Darlian, L.; Rudi, L. Kinetics study of antibacterial activity of Cajuput oil (Melaleuca cajuputi) on Eschericia coli, Staphylococcus, and Bacillus cereus. Curr. Appl. Sci. Technol., 2021, 22(3), 3.
[http://dx.doi.org/10.55003/cast.2022.03.22.002]
[22]
Chaudhari, A.K.; Singh, V.K.; Das, S.; Kujur, A. Deepika, Dubey, N.K. Unveiling the cellular and molecular mode of action of Melaleuca cajuputi Powell. essential oil against aflatoxigenic strains of Aspergillus flavus isolated from stored maize samples. Food Control, 2022, 138, 109000.
[http://dx.doi.org/10.1016/j.foodcont.2022.109000]
[23]
Desdiani, D.; Fadilah, F.; Sutarto, A.P. The effects of melaleuca cajuput oil (Melaleuca cajuputi) herbal treatment on clinical, laboratory, and radiological improvement and length of hospital stay in COVID-19 patients. J. Appl. Pharm. Sci., 2022, 12(06), 122-127.
[http://dx.doi.org/10.7324/JAPS.2022.120611]
[24]
Chiocchio, I.; Mandrone, M.; Tomasi, P.; Marincich, L.; Poli, F. Plant secondary metabolites: an opportunity for circular economy. Molecules, 2021, 26(2), 495.
[http://dx.doi.org/10.3390/molecules26020495] [PMID: 33477709]
[25]
Wu, Z.L.; Liu, Z.X.; Yuan, Y.H. Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(21), 3794-3809.
[http://dx.doi.org/10.1039/C7TB00363C] [PMID: 32264241]
[26]
Dwandaru, W.S.B.; Fadli, A.L.; Sari, E.K. Cdots and Cdots/S synthesis from Nam-nam fruit (Cyanometra cauliflora L.) via frying method using cooking oil. Dig. J. Nanomater. Biostruct., 2020, 15(2), 555-560.
[27]
Isnaeni, I.; Suliyanti, M.M.; Shiddiq, M. Optical properties of toluene-soluble carbon dots prepared from laser-ablated coconut fiber. Makara J. Sci., 2019, 23(4), 187-192.
[http://dx.doi.org/10.7454/mss.v23i4.10639]
[28]
Mewada, A.; Pandey, S.; Shinde, S.; Mishra, N.; Oza, G.; Thakur, M.; Sharon, M.; Sharon, M. Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel. Mater. Sci. Eng. C, 2013, 33(5), 2914-2917.
[http://dx.doi.org/10.1016/j.msec.2013.03.018] [PMID: 23623114]
[29]
Fan, T.; Zeng, W.; Tang, W.; Yuan, C.; Tong, S.; Cai, K.; Liu, Y.; Huang, W.; Min, Y.; Epstein, A.J. Controllable size-selective method to prepare graphene quantum dots from graphene oxide. Nanoscale Res. Lett., 2015, 10(1), 55.
[http://dx.doi.org/10.1186/s11671-015-0783-9] [PMID: 25852352]
[30]
Bao, L.; Liu, C.; Zhang, Z.L.; Pang, D.W. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Adv. Mater., 2015, 27(10), 1663-1667.
[http://dx.doi.org/10.1002/adma.201405070] [PMID: 25589141]
[31]
Pretsch, E.; Buhlmann, P.; Affolter, C. Structure and Determination of Organic Compounds (Tables of spectral data); Springer-Verlag: Berlin, 2000.
[http://dx.doi.org/10.1007/978-3-662-04201-4]
[32]
Gualdron, A.F.; Becerra, E.N.; Pena, D.Y. Inhibitory effect of Eucalyptus and Lippia Alba essential oils on the corrosion of mild steel in hydrochloric acid. J. Mater. Environ. Sci., 2013, 4, 143-158.https://www.jmaterenvironsci.com/Document/vol4/19-JMES-353-2013-Gualdron.pdf
[33]
Sattarahmady, N.; Rezaie, Y.M.; Tondro, G.H.; Akbari, N. Bactericidal laser ablation of carbon dots: An in vitro study on wild-type and antibiotic-resistant Staphylococcus aureus. J. Photochem. Photobiol. B, 2017, 166, 323-332.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.006] [PMID: 28024283]
[34]
Elgayyar, M.; Draughon, F.A.; Golden, D.A.; Mount, J.R. Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. J. Food Prot., 2001, 64(7), 1019-1024.
[http://dx.doi.org/10.4315/0362-028X-64.7.1019] [PMID: 11456186]
[35]
Muktha, H.; Sharath, R.; Kottam, N.; Smrithi, S.P.; Samrat, K.; Ankitha, P. Green synthesis of carbon dots and evaluation of its pharmacological activities. Bionanoscience, 2020, 10(3), 731-744.
[http://dx.doi.org/10.1007/s12668-020-00741-1]
[36]
Wu, X.; Abbas, K.; Yang, Y.; Li, Z.; Tedesco, A.C.; Bi, H. Photodynamic anti-bacteria by carbon dots and their nano-composites. Pharmaceuticals, 2022, 15(4), 487.
[http://dx.doi.org/10.3390/ph15040487] [PMID: 35455484]
[37]
Li, Z.H.; Cai, M.; Liu, Y.S.; Sun, P.L.; Luo, S.L. Antibacterial activity and mechanisms of essential oil from Citrus medica L. var. sarcodactylis. Molecules, 2019, 24(8), 1577.
[http://dx.doi.org/10.3390/molecules24081577] [PMID: 31013583]
[38]
Marqués, C.M.S.; Codony, F.; Agustí, G.; Lahera, C. Visible light enhances the antimicrobial effect of some essential oils. Photodiagn. Photodyn. Ther., 2017, 17, 180-184.
[http://dx.doi.org/10.1016/j.pdpdt.2016.12.002] [PMID: 27965057]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy