Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Cyclodextrin based Nanosponges for the Oral Delivery of Actarit: Physicochemical Characterisation and Dissolution Studies

Author(s): M. Madhavi* and G.S. Kumar

Volume 19, Issue 4, 2023

Published on: 03 October, 2022

Page: [601 - 611] Pages: 11

DOI: 10.2174/1573413718666220820120310

Price: $65

Abstract

Introduction: The current research aims to formulate a controlled release formulation of Actarit utilizing cyclodextrin based nanosponges as a nanocarriers. β-Cyclodextrin built nanosponges were prepared by condensation reaction using diphenyl carbonate as crosslinking agent.

Methods: A 3-level, 3-factor Box-Behnken design was used to optimize the reaction conditions. The particle size, zeta potential and solubilization efficiency of prepared nanosponges were determined. Actarit was loaded into nanosponges by freeze drying method. Actarit loaded nanosponges were further evaluated for particle size, zeta potential, surface morphology, FTIR, DSC, XRD and Dissolution characteristics. The cyclodextrin nanosponges prepared under optimum conditions exhibited a particle size range of 143.42 to 152.76 nm with low polydispersity indices. FTIR spectra confirmed the formation of carbonyl bond between the β-Cyclodextrin molecules.

Results and Discussion: Actarit loaded nanosponges exhibited a particle size range of 157.13 to 168.34 nm with minimum polydispersity index. The zeta potential value was sufficiently high to maintain the stability of colloidal nanosponges. TEM image exposed the spherical structure of drug loaded nanosponges that could be retained and released gradually over time. The FTIR, DSC and XRPD studies inveterate the interaction between Actarit and nanosponges. The drug loaded nanosponges displayed a significant progress in dissolution of drug when compared to plain Actarit. The initial rapid release of Actarit from nanosponges formulations was observed. After 24 h of study, around 90 % of the drug released from nanoformulation and only around 20 % of the drug from free drug suspension.

Conclusion: Cyclodextrin based nanosponges displayed superior complexing capability with increased solubility of poorly soluble Actarit.

Keywords: Actarit, β-Cyclodextrin, Nanosponges, Solubilization, Optimization, Experimental design.

Graphical Abstract

[1]
Inoue, Y.; Yamazoe, T.; Watanabe, S.; Murata, I.; Kanamoto, I. Examination of intermolecular interaction as a result of cogrinding actarit and β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem., 2014, 78(1), 457-464.
[http://dx.doi.org/10.1007/s10847-013-0317-y]
[2]
Fujisawa, H.; Nishimura, T.; Inoue, Y.; Ogaya, S.; Shibata, Y.; Nakagawa, Y.; Sato, S.; Kimura, K. Antiinflammatory properties of the new antirheumatic agent 4-acetylaminophenylacetic acid. Arzneimittelforschung, 1990, 40(6), 693-697.
[PMID: 2168705]
[3]
Fujisawa, H.; Nishimura, T.; Motonaga, A.; Inoue, Y.; Inoue, K.; Suzuka, H.; Yoshifusa, H.; Kimura, K.; Muramatsu, M. Effect of actarit on type II collagen-induced arthritis in mice. Arzneimittelforschung, 1994, 44(1), 64-68.
[PMID: 8135880]
[4]
Fujisawa, H. Effect of MS-932 on glomerular lesions in MRL/1 mice. Jpn J Inf, 1986, 6(3), 285-290.
[5]
Nakagawa, Y. Immunophar-macological studies of 4-acetylamino-phenylacetic acid (MS-932). Int. J. Immunother., 1990, 6, 131-140.
[6]
Nakagawa, Y. Suppressive effect of 4-acetylaminophenylacetic acid (MS-932) on delayed-type hypersensiticity in mice. Int. J. Immunother., 1990, 3, 141-148.
[7]
Nakagawa, Y. Characterization of suppressor cells activated by 4-acetylaminophenylacetic acid (MS-932) on delayed-type hypersensitivity. Int. J. Immunother., 1990, 6, 149-156.
[8]
Nishimura, T. Effect of MS-932 (4-acetylaminophenylacetic acid) on delayed-type hypersensitivity reaction induced by the influenza virus A/Kumamoto haemagglutinin in cyclophosphamide-treated mice. Int. J. Immunopharmacol., 1998, 4, 73-77.
[9]
Yoshida, H. Effect of MS-932 (4-acetylaminophenylacetic acid) on articular lesions in MRL/1 mice. Int. J. Immunother., 1987, 4, 261-264.
[10]
Takeba, Y.; Suzuki, N.; Wakisaka, S.; Nagafuchi, H.; Mihara, S.; Kaneko, A.; Asai, T.; Sakane, T. Effects of actarit on synovial cell functions in patients with rheumatoid arthritis. J. Rheumatol., 1999, 26(1), 25-33.
[PMID: 9918236]
[11]
Takeba, Y.; Suzuki, N.; Kaneko, A.; Asai, T.; Sakane, T. Evidence for neural regulation of inflammatory synovial cell functions by secreting calcitonin gene-related peptide and vasoactive intestinal peptide in patients with rheumatoid arthritis. Arthritis Rheum., 1999, 42(11), 2418-2429.
[http://dx.doi.org/10.1002/1529-0131(199911)42:11<2418::AIDANR21>3.0.CO;2-7] [PMID: 10555038]
[12]
Inoue, Y.; Watanabe, S.; Suzuki, R.; Murata, I.; Kanamoto, I. Evaluation of actarit/γ-cyclodextrin complex prepared by different methods. J. Incl. Phenom. Macrocycl. Chem., 2015, 81(1), 161-168.
[http://dx.doi.org/10.1007/s10847-014-0445-z]
[13]
Sugihara, K.; Morino, A.; Nomura, A.; Iida, S.; Sugiyama, M. Pharmacokinetics of 4-acetylaminophenylacetic acid. 1st communication: Absorption, distribution, metabolism and excretion in mice, rats, dogs and monkeys after single administration of 14C-labeled compound. Arzneimittelforschung, 1990, 40(7), 800-805.
[PMID: 2222556]
[14]
Matsubara, T. The basic and clinical use of DMARDs. Rheumatology, 1999, 22, 81-97.
[15]
Dolati, S.; Sadreddini, S.; Rostamzadeh, D.; Ahmadi, M.; Jadidi-Niaragh, F.; Yousefi, M. Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomed. Pharmacother., 2016, 80, 30-41.
[http://dx.doi.org/10.1016/j.biopha.2016.03.004] [PMID: 27133037]
[16]
Ye, J.; Wang, Q.; Zhou, X.; Zhang, N. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int. J. Pharm., 2008, 352(1-2), 273-279.
[http://dx.doi.org/10.1016/j.ijpharm.2007.10.014] [PMID: 18054182]
[17]
Li, Y.; Pan, H.; Duan, H.; Chen, J.; Zhu, Z.; Fan, J.; Li, P.; Yang, X.; Pan, W. Double-layered osmotic pump controlled release tablets of actarit: In vitro and in vivo evaluation. J. Pharma. Sci., 2019, 14(3), 340-348.
[http://dx.doi.org/10.1016/j.ajps.2018.05.009] [PMID: 32104464]
[18]
Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in oral drug delivery. Front. Pharmacol., 2021, 12, 618411.
[http://dx.doi.org/10.3389/fphar.2021.618411] [PMID: 33679401]
[19]
Venuti, V.; Rossi, B.; Mele, A.; Melone, L.; Punta, C.; Majolino, D.; Masciovecchio, C.; Caldera, F.; Trotta, F. Tuning structural parameters for the optimization of drug delivery performance of cyclodextrin-based nanosponges. Expert Opin. Drug Deliv., 2017, 14(3), 331-340.
[http://dx.doi.org/10.1080/17425247.2016.1215301] [PMID: 27449474]
[20]
Trotta, F.; Zanetti, M.; Cavalli, R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J. Org. Chem., 2012, 8, 2091-2099.
[http://dx.doi.org/10.3762/bjoc.8.235] [PMID: 23243470]
[21]
Utzeri, G.; Matias, P.M.C.; Murtinho, D.; Valente, A.J.M. Cyclodextrin-based nanosponges: Overview and opportunities. Front Chem., 2022, 10, 859406.
[PMID: 35402388]
[22]
Pawar, S.; Shende, P.; Trotta, F. Diversity of β-cyclodextrin-based nanosponges for transformation of actives. Int. J. Pharm., 2019, 565, 333-350.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.015] [PMID: 31082468]
[23]
Deng, J.; Chen, Q.J.; Li, W.; Zuberi, Z.; Feng, J.X.; Lin, Q.L.; Ren, J.L.; Luo, F.J.; Ding, Q.M.; Zeng, X.X.; Ma, L. Toward improvements for carrying capacity of the cyclodextrin-based nanosponges: Recent progress from a material and drug delivery. J. Mater. Sci., 2021, 56(10), 5995-6015.
[http://dx.doi.org/10.1007/s10853-020-05646-8]
[24]
Singireddy, A.; Subramanian, S. Cyclodextrin nanosponges to enhance the dissolution profile of quercetin by inclusion complex formation. Particul. Sci. Technol., 2016, 34(3), 341-346.
[http://dx.doi.org/10.1080/02726351.2015.1081658]
[25]
Gharakhloo, M.; Sadjadi, S.; Rezaeetabar, M.; Askari, F.; Rahimi, A. Cyclodextriná‐based nanosponges for improving solubility and sustainable release of curcumin. ChemistrySelect, 2020, 5(5), 1734-1738.
[http://dx.doi.org/10.1002/slct.201904007]
[26]
Sherje, A.P.; Surve, A.; Shende, P. CDI cross-linked β-cyclodextrin nanosponges of paliperidone: Synthesis and physicochemical characterization. J. Mater. Sci. Mater. Med., 2019, 30(6), 74.
[http://dx.doi.org/10.1007/s10856-019-6268-0] [PMID: 31197491]
[27]
Anandam, S.; Selvamuthukumar, S. Optimization of microwave-assisted synthesis of cyclodextrin nanosponges using response surface methodology. J. Porous Mater., 2014, 21(6), 1015-1023.
[http://dx.doi.org/10.1007/s10934-014-9851-2]
[28]
Singireddy, A.; Pedireddi, S.R.; Subramanian, S. Optimization of reaction parameters for synthesis of cyclodextrin nanosponges in controlled nanoscopic size dimensions. J. Polym. Res., 2019, 26(4), 1-12.
[http://dx.doi.org/10.1007/s10965-019-1754-0]
[29]
Anandam, S.; Selvamuthukumar, S. Fabrication of cyclodextrin nanosponges for quercetin delivery: Physicochemical characterization, photostability, and antioxidant effects. J. Mater. Sci., 2014, 49(23), 8140-8153.
[http://dx.doi.org/10.1007/s10853-014-8523-6]
[30]
Krabicová, I.; Appleton, S.L.; Tannous, M.; Hoti, G.; Caldera, F.; Rubin Pedrazzo, A.; Cecone, C.; Cavalli, R.; Trotta, F. History of cyclodextrin nanosponges. Polymers (Basel), 2020, 12(5), 1122.
[http://dx.doi.org/10.3390/polym12051122] [PMID: 32423091]
[31]
Mane, P.T.; Wakure, B.S.; Wakte, P.S. Cyclodextrin based nanosponges: A multidimensional drug delivery system and its biomedical applications. Curr. Drug Deliv., 2021, 18(10), 1467-1493.
[http://dx.doi.org/10.2174/1567201818666210423091250] [PMID: 33902410]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy