Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Flexible Graphene Sheet Loaded Curved Patch Applicator for Superficial Hyperthermia Treatment Planning Utilizing Ripple Effect of Armchair and Zigzag Bending

Author(s): Alka Singla*, Anupma Marwaha, Sanjay Marwaha and Surekha Rani

Volume 19, Issue 4, 2023

Published on: 26 September, 2022

Page: [589 - 600] Pages: 12

DOI: 10.2174/1573413718666220701145146

Price: $65

Abstract

Background: Non-invasive microwave hyperthermia approaches suffer from several limitations, such as maximum energy localization in the target tissue, reduced unwanted hotspots, less penetration time at specific penetration depth, and maximum directivity of applicators. For conformal body structures, curved patch applicators avoid mismatch losses and provide circular polarization to achieve maximum power deposition at the target tissue. At microwave frequencies, graphene also exhibits good absorption properties and utilizing graphene strips on both sides of a curved patch offers potential benefits of enhancement of gain, directional radiation pattern, and suppressed sidelobes.

Objective: Designing a flexible graphene sheet-loaded curved patch for a non-invasive microwave hyperthermia applicator resonating at 2.45 GHz is the prime objective of current work. The proposed work is based on utilizing the absorbing properties of graphene sheets with hybrid hexagonal boron nitride (hBN) under various bending conditions on both sides of a curved patch.

Methods: Graphene-loaded curved design offers structural flexibility due to the presence of ripples on the surface and their alignment in armchair configuration (ARC) and zigzag configuration (ZGC). The bending flexibility along the two configurations alters the electronic properties and opens the band gap. Thus, the FEM model has been developed for coupling bio-electromagnetic problems of human body phantom with graphene-loaded curved patch applicator by bending it in two different configurations.

Results: For both ARC and ZGC antenna design, parameters, such as return loss and realized gain, have been investigated. The proposed design achieved a maximum return loss value of -30 dB and gain of 7.1 dBi for ARC configuration since it provides the maximum difference in valance band and conduction band in band gap structure, while these values are relatively less in the case of ZGC. The implementation of the design on cylindrical body phantom is realized for ARC with a maximum Efield value of 80.2 V/m at a maximum penetration depth of 40 mm. Further simulations are performed for evaluation of penetration time and fractional tissue damage due to necrosis, and it has been observed that 10 W of input power is sufficient to achieve maximum temperature range and tissue necrosis in a duration of 15 minutes.

Conclusion: The results show that a curved graphene patch applicator provides a potential solution for targeted heating in hyperthermia applications.

Keywords: Flexible graphene sheet, Armchair configuration, Zigzag configuration, Hexagonal boron nitride, Curved patch, Microwave hyperthermia.

Graphical Abstract

[1]
Maiti, D.; Tong, X.; Mou, X.; Yang, K. Carbon-based nanomaterials for biomedical applications: A recent study. Front. Pharmacol., 2019, 9, 1401.
[http://dx.doi.org/10.3389/fphar.2018.01401] [PMID: 30914959]
[2]
Singh, V.; Yadav, P.; Mishra, V. Recent advances on classification, properties, synthesis, and characterization of nanomaterials. In: Green Synthesis of Nanomaterials for Bioenergy Applications; Wiley Online Liberary, 2020; pp. 83-97.
[http://dx.doi.org/10.1002/9781119576785.ch3]
[3]
Chen, X.; Tan, L.; Liu, T.; Meng, X. Micro-Nanomaterials for tumor microwave hyperthermia: Design, preparation, and application. Curr. Drug Deliv., 2017, 14(3), 307-322.
[http://dx.doi.org/10.2174/1567201813666160108113805] [PMID: 26743355]
[4]
Kumar, D.; Dhar, P.; Paul, A. Thermal response of dielectric nanoparticle infused tissue phantoms during microwave assisted hyperthermia. J. Therm. Sci. Eng. Appl., 2021, 13(6), 61029.
[http://dx.doi.org/10.1115/1.4050665]
[5]
Maamoun, W.; Badawi, M.I.; Aly, A.A.; Khedr, Y. Nanoparticles in enhancing microwave imaging and microwave hyperthermia effect for liver cancer treatment. Rev. Adv. Mater. Sci., 2021, 60(1), 223-236.
[http://dx.doi.org/10.1515/rams-2021-0014]
[6]
Chang, D.; Lim, M.; Goos, J.A.C.M.; Qiao, R.; Ng, Y.Y.; Mansfeld, F.M.; Jackson, M.; Davis, T.P.; Kavallaris, M. Biologically targeted magnetic hyperthermia: Potential and limitations. Front. Pharmacol., 2018, 9, 831.
[http://dx.doi.org/10.3389/fphar.2018.00831] [PMID: 30116191]
[7]
Hu, T.; Mei, X.; Wang, Y.; Weng, X.; Liang, R.; Wei, M. Two-dimensional nanomaterials: Fascinating materials in biomedical field. Sci. Bull. (Beijing), 2019, 64(22), 1707-1727.
[http://dx.doi.org/10.1016/j.scib.2019.09.021]
[8]
Feng, W.; Long, P.; Feng, Y.; Li, Y. Two-dimensional fluorinated graphene: Synthesis, structures, properties and applications. Adv. Sci. (Weinh.), 2016, 3(7), 1500413.
[http://dx.doi.org/10.1002/advs.201500413] [PMID: 27981018]
[9]
Lei, J.C.; Zhang, X.; Zhou, Z. Recent advances in MXene: Preparation, properties, and applications. Front. Phys., 2015, 10(3), 276-286.
[http://dx.doi.org/10.1007/s11467-015-0493-x]
[10]
Liu, H.; Du, Y.; Deng, Y.; Ye, P.D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev., 2015, 44(9), 2732-2743.
[http://dx.doi.org/10.1039/C4CS00257A] [PMID: 25307017]
[11]
Li, L.H.; Chen, Y. Atomically thin boron nitride: Unique properties and applications. Adv. Funct. Mater., 2016, 26(16), 2594-2608.
[http://dx.doi.org/10.1002/adfm.201504606]
[12]
Reina, G.; González-Domínguez, J.M.; Criado, A.; Vázquez, E.; Bianco, A.; Prato, M. Promises, facts and challenges for graphene in biomedical applications. Chem. Soc. Rev., 2017, 46(15), 4400-4416.
[http://dx.doi.org/10.1039/C7CS00363C] [PMID: 28722038]
[13]
Nguyen, P.T.; Abbosh, A.; Crozier, S. Three-dimensional microwave hyperthermia for breast cancer treatment ina realistic environment using particle swarm optimization. IEEE Trans. Biomed. Eng., 2017, 64(6), 1335-1344.
[http://dx.doi.org/10.1109/TBME.2016.2602233] [PMID: 28113219]
[14]
Bellizzi, G.G.; Crocco, L.; Battaglia, G.M.; Isernia, T. Multifrequency constrained SAR focusing for patient specific hyperthermia treatment. IEEE J. Electromagn. RF Microw. Med. Biol., 2017, 1(2), 74-80.
[http://dx.doi.org/10.1109/JERM.2017.2766569]
[15]
Altintas, G.; Akduman, I.; Janjic, A.; Yilmaz, T. A Novel approachon microwave hyperthermia. Diagnostics, 2021, 11(3), 493.
[16]
Shehata, R.M.; Badawi, M.I.; Ismail, N.E. Hyperthermia for breast cancer treatment using a slotted microstrip patch antenna array. J. AlAzhar Univ. Eng. Sector, 2021, 16(61), 1135-1155.
[http://dx.doi.org/10.21608/auej.2021.207671]
[17]
Iero, D.A.; Crocco, L.; Isernia, T. Thermal and microwave constrained focusing for patient-specific breast cancer hyperthermia: A robustness assessment. IEEE Trans. Antenn. Propag., 2013, 62(2), 814-821.
[http://dx.doi.org/10.1109/TAP.2013.2293336]
[18]
Kellomäki, T. Analysis of circular polarization of cylindrically bent microstrip antennas. Int. J. Antennas Propag., 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/858031]
[19]
Halheit, H.; Vander Vorst, A.; Tedjini, S.; Touhami, R. Flexible dual-frequency applicator for local hyperthermia. Int. J. Antennas Propag., 2012, 2012, 1-7.
[http://dx.doi.org/10.1155/2012/389214]
[20]
Kotchapradit, S.; Thongsopa, C.; Thosdeekoraphat, T. Analysis and design of microwave dielectric heating with curved plate applicator for deep hyperthermia in breast cancer treatment. Radioengineeri, 2019, 28(4), 703-713.
[http://dx.doi.org/10.13164/re.2019.0703]
[21]
Curto, S.; Ramasamy, M.; Suh, M.; Prakash, P. Design and analysis of a conformal patch antenna for a wearable breast hyperthermia treatment system. Energy-Based Treat. Tissue Assess. VIII, 2015, 2015, 9326.
[22]
Rani, S.; Marwaha, A.; Marwaha, S. Utilization of graphene oxide-based microwave absorber for pattern enhancement of patch antenna array. J. Nanophotonics, 2018, 12(3), 36012.
[http://dx.doi.org/10.1117/1.JNP.12.036012]
[23]
Yildiz, G.; Bolton-Warberg, M.; Awaja, F. Graphene and graphene oxide for bio-sensing: General properties and the effects of graphene ripples. Acta Biomater., 2021, 131, 62-79.
[http://dx.doi.org/10.1016/j.actbio.2021.06.047] [PMID: 34237423]
[24]
Sfyris, D.; Galiotis, C. Curvature dependent surface energy for freestanding monolayer graphene. Math. Mech. Solids, 2016, 21(7), 812-825.
[http://dx.doi.org/10.1177/1081286514537667]
[25]
Cortijo, A.; Vozmediano, M.A. Electronic properties of curved graphene sheets. Europhys. Lett., 2007, 77(4), 47002.
[http://dx.doi.org/10.1209/0295-5075/77/47002]
[26]
Chiang, C.W.; Haider, G.; Tan, W.C.; Liou, Y.R.; Lai, Y.C.; Ravindranath, R.; Chang, H.T.; Chen, Y.F. Highly stretchable and sensitive photodetectors based on hybrid graphene and graphene quantum dots. ACS Appl. Mater. Interfaces, 2016, 8(1), 466-471.
[http://dx.doi.org/10.1021/acsami.5b09373] [PMID: 26696193]
[27]
Tang, D.; Wang, Q.; Wang, Z.; Liu, Q.; Zhang, B.; He, D.; Wu, Z.; Mu, S. Highly sensitive wearable sensor based on a flexible multi-layer graphene film antenna. Sci. Bull. (Beijing), 2018, 63(9), 574-579.
[http://dx.doi.org/10.1016/j.scib.2018.03.014]
[28]
Savvas, D.; Stefanou, G. Determination of random material properties of graphene sheets with different types of defects. Compos., Part B Eng., 2018, 143, 47-54.
[http://dx.doi.org/10.1016/j.compositesb.2018.01.008]
[29]
Han, E.; Yu, J.; Annevelink, E.; Son, J.; Kang, D.A.; Watanabe, K.; Taniguchi, T.; Ertekin, E.; Huang, P.Y.; van der Zande, A.M. Ultrasoft slip-mediated bending in few-layer graphene. Nat. Mater., 2020, 19(3), 305-309.
[http://dx.doi.org/10.1038/s41563-019-0529-7] [PMID: 31712745]
[30]
Vanhala, T.I.; Pollet, L. Constrained random phase approximation of the effective Coulomb interaction in lattice models of twisted bilayer graphene. Phys. Rev. B, 2020, 102(3), 35154.
[http://dx.doi.org/10.1103/PhysRevB.102.035154]
[31]
Bala, R.; Singh, R.; Marwaha, A.; Marwaha, S. wearable graphene based curved patch antenna for. medical telemetry applications. ACES, 2016, 5, 31.
[32]
Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; Hone, J. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol., 2010, 5(10), 722-726.
[http://dx.doi.org/10.1038/nnano.2010.172] [PMID: 20729834]
[33]
Cohen, M.L. Measurement of the thermal properties of human skin. A review. J. Invest. Dermatol., 1977, 69(3), 333-338.
[http://dx.doi.org/10.1111/1523-1747.ep12507965] [PMID: 894075]
[34]
Singh, S.; Repaka, R. Effect of different breast density compositions on thermal damage of breast tumor during radiofrequency ablation. Appl. Therm. Eng., 2017, 125, 443-451.
[http://dx.doi.org/10.1016/j.applthermaleng.2017.07.057]
[35]
Curto, S.; Garcia-Miquel, A.; Suh, M.; Vidal, N.; Lopez-Villegas, J.M.; Prakash, P. Design and characterisation of a phased antenna array for intact breast hyperthermia. Int. J. Hyperthermia, 2018, 34(3), 250-260.
[http://dx.doi.org/10.1080/02656736.2017.1337935] [PMID: 28605946]
[36]
Lim, S.; Yoon, Y.J. Phase compensation technique for effective heat focusing in microwave hyperthermia systems. Appl. Sci. (Basel), 2021, 11(13), 5972-5972.
[http://dx.doi.org/10.3390/app11135972]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy