Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Role of Docking in Anticancer Drug Discovery

Author(s): Asif Alavi and Vikas Sharma*

Volume 20, Issue 10, 2023

Published on: 19 December, 2022

Page: [1490 - 1511] Pages: 22

DOI: 10.2174/1570180820666221111151104

Price: $65

Abstract

The computational method is widely used in the field of drug design as well as discovery. It aids the drug discovery and design process by making the procedure faster while also ensuring fewer human errors. Cancer is a condition with the development of abnormal cells expressing features like uncontrolled growth and cell division. This leads to abnormal tissue enlargement and interrupts the normal functioning of the tissue. Computational methods, mainly the molecular docking method, have been utilised extensively in the field of anticancer drug discovery. Docking is a virtual screening method that can be performed on a large database of compounds. Molecular docking helps in identifying the predominant binding modes of a ligand with a protein whose three-dimensional structure is known. The docking process can predict the method of inhibition of the target molecule by the ligand molecule. Utilities of molecular docking include structure-activity relationship studies, lead identification by virtual screening, optimization of the identified lead, combinatorial library design and more. This review discusses the process of docking, its role in anticancer drug discovery, and a comparison of different docking software. Docking programs are used to make the docking process much more quick, efficient, and with fewer human errors, as it mostly depends on computational algorithms. A description of some representative studies in anticancer drug discovery related to selected docking software, Autodock, SwissDock, ICM, GOLD and Glide, are also mentioned. This paper concludes by emphasizing the importance of docking programs in the field of drug discovery and how it influences the modern drug discovery processes.

Graphical Abstract

[1]
Koonin, E.V. On the origin of cells and viruses: Primordial virus world scenario. Ann. N. Y. Acad. Sci., 2009, 1178(1), 47-64.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04992.x] [PMID: 19845627]
[2]
The origin of cells: A symbiosis between genes, catalysts, and membranes.Cavalier-Smith, T., Ed.; In: Cold Spring Harbor Symposia on Quantitative Biology; Cold; Spring Harbor Laboratory Press, 1987; 52, pp. 805-824.
[3]
Bailar, J.C., III; Gornik, H.L. Cancer undefeated. N. Engl. J. Med., 1997, 336(22), 1569-1574.
[http://dx.doi.org/10.1056/NEJM199705293362206] [PMID: 9164814]
[4]
Ou-Yang, S.; Lu, J.; Kong, X.; Liang, Z.; Luo, C.; Jiang, H. Computational drug discovery. Acta Pharmacol. Sin., 2012, 33(9), 1131-1140.
[http://dx.doi.org/10.1038/aps.2012.109] [PMID: 22922346]
[5]
Nussbaumer, S.; Bonnabry, P.; Veuthey, J.L.; Fleury-Souverain, S. Analysis of anticancer drugs: A review. Talanta, 2011, 85(5), 2265-2289.
[http://dx.doi.org/10.1016/j.talanta.2011.08.034] [PMID: 21962644]
[6]
Baron, R. Computational drug discovery and design; Methods in Molecular Biology: Springer Humana Totowa, NJ, 2012, p. 819.
[http://dx.doi.org/10.1007/978-1-61779-465-0]
[7]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery. Pharmacol. Rev., 2014, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[8]
Jhoti, H.; Leach, A.R. Structure-based drug discovery; Springer: Dordrecht, 2007.
[http://dx.doi.org/10.1007/1-4020-4407-0]
[9]
Batool, M.; Ahmad, B.; Choi, S. A structure-based drug discovery paradigm. Int. J. Mol. Sci., 2019, 20(11), 2783.
[http://dx.doi.org/10.3390/ijms20112783] [PMID: 31174387]
[10]
Kalyaanamoorthy, S.; Chen, Y.P.P. Structure-based drug design to augment hit discovery. Drug Discov. Today, 2011, 16(17-18), 831-839.
[http://dx.doi.org/10.1016/j.drudis.2011.07.006] [PMID: 21810482]
[11]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[12]
Bommu, U.D.; Konidala, K.K.; Pamanji, R.; Yeguvapalli, S. Computational screening, ensemble docking and pharmacophore analysis of potential gefitinib analogues against epidermal growth factor receptor. J. Recept. Signal Transduct. Res., 2018, 38(1), 48-60.
[http://dx.doi.org/10.1080/10799893.2018.1426603] [PMID: 29369008]
[13]
Dincel, E.D.; Guzeldemirci, N.U. Synthesis and computer-aided drug design studies of novel thiosemicarbazide derivatives as potent and target-oriented anti-cancer agents. Medicine (Baltimore), 2020, 9(2), 305-313.
[14]
Loeffler, J.R.; Ehmki, E.S.R.; Fuchs, J.E.; Liedl, K.R. Kinetic barriers in the isomerization of substituted ureas: Implications for computer-aided drug design. J. Comput. Aided Mol. Des., 2016, 30(5), 391-400.
[http://dx.doi.org/10.1007/s10822-016-9913-4] [PMID: 27272323]
[15]
Chen, C.Y.C. A novel integrated framework and improved methodology of computer-aided drug design. Curr. Top. Med. Chem., 2013, 13(9), 965-988.
[http://dx.doi.org/10.2174/1568026611313090002] [PMID: 23651478]
[16]
Mehralitabar, H.; Ghasemi, A.S.; Gholizadeh, J. Abiraterone and D4, 3-keto Abiraterone binding to CYP17A1, a structural comparison study by molecular dynamic simulation. Steroids, 2021, 167, 108799.
[http://dx.doi.org/10.1016/j.steroids.2021.108799] [PMID: 33465380]
[17]
Cui, J.J.; Tran-Dubé, M.; Shen, H.; Nambu, M.; Kung, P.P.; Pairish, M.; Jia, L.; Meng, J.; Funk, L.; Botrous, I.; McTigue, M.; Grodsky, N.; Ryan, K.; Padrique, E.; Alton, G.; Timofeevski, S.; Yamazaki, S.; Li, Q.; Zou, H.; Christensen, J.; Mroczkowski, B.; Bender, S.; Kania, R.S.; Edwards, M.P. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem., 2011, 54(18), 6342-6363.
[http://dx.doi.org/10.1021/jm2007613] [PMID: 21812414]
[18]
Talele, T.; Khedkar, S.; Rigby, A. Successful applications of computer aided drug discovery: Moving drugs from concept to the clinic. Curr. Top. Med. Chem., 2010, 10(1), 127-141.
[http://dx.doi.org/10.2174/156802610790232251] [PMID: 19929824]
[19]
Fu, D.Y.; Meiler, J. Predictive power of different types of experimental restraints in small molecule docking: A review. J. Chem. Inf. Model., 2018, 58(2), 225-233.
[http://dx.doi.org/10.1021/acs.jcim.7b00418] [PMID: 29286651]
[20]
Tripathi, A.; Misra, K. Molecular docking: A structure-based drug designing approach. JSM Chem., 2017, 5(2), 1042-1047.
[21]
Rosenfeld, R.; Vajda, S.; DeLisi, C. Flexible docking and design. Annu. Rev. Biophys. Biomol. Struct., 1995, 24(1), 677-700.
[http://dx.doi.org/10.1146/annurev.bb.24.060195.003333] [PMID: 7663131]
[22]
Balakrishnan, R.; Krishnamoorthy, M. Docking studies for screening anticancer compounds of Azadirachta indica using Saccharomyces cerevisiae as model system. J. Nat. Sci. Biol. Med., 2014, 5(1), 108-111.
[http://dx.doi.org/10.4103/0976-9668.127298] [PMID: 24678207]
[23]
Yu, W.; MacKerell, A.D. Computer-aided drug design methods. Methods Mol. Biol., 2017, 1520, 85-106.
[24]
Lengauer, T.; Rarey, M. Computational methods for biomolecular docking. Curr. Opin. Struct. Biol., 1996, 6(3), 402-406.
[http://dx.doi.org/10.1016/S0959-440X(96)80061-3] [PMID: 8804827]
[25]
Andersson, C.D.; Thysell, E.; Lindström, A.; Bylesjö, M.; Raubacher, F.; Linusson, A. A multivariate approach to investigate docking parameters’ effects on docking performance. J. Chem. Inf. Model., 2007, 47(4), 1673-1687.
[http://dx.doi.org/10.1021/ci6005596] [PMID: 17559207]
[26]
Chen, Y.C. Beware of docking! Trends Pharmacol. Sci., 2015, 36(2), 78-95.
[http://dx.doi.org/10.1016/j.tips.2014.12.001] [PMID: 25543280]
[27]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[28]
Pham, T.A.; Jain, A.N. Customizing scoring functions for docking. J. Comput. Aided Mol. Des., 2008, 22(5), 269-286.
[http://dx.doi.org/10.1007/s10822-008-9174-y] [PMID: 18273558]
[29]
Blaney, J.M.; Dixon, J.S. A good ligand is hard to find: Automated docking methods. Perspect. Drug Discov. Des., 1993, 1(2), 301-319.
[http://dx.doi.org/10.1007/BF02174531]
[30]
Gaillard, T. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark. J. Chem. Inf. Model., 2018, 58(8), 1697-1706.
[http://dx.doi.org/10.1021/acs.jcim.8b00312] [PMID: 29989806]
[31]
Nguyen, N.T.; Nguyen, T.H.; Pham, T.N.H.; Huy, N.T.; Bay, M.V.; Pham, M.Q.; Nam, P.C.; Vu, V.V.; Ngo, S.T. Autodock vina adopts more accurate binding poses but autodock4 forms better binding affinity. J. Chem. Inf. Model., 2020, 60(1), 204-211.
[http://dx.doi.org/10.1021/acs.jcim.9b00778] [PMID: 31887035]
[32]
Cosconati, S.; Forli, S.; Perryman, A.L.; Harris, R.; Goodsell, D.S.; Olson, A.J. Virtual screening with AutoDock: Theory and practice. Expert Opin. Drug Discov., 2010, 5(6), 597-607.
[http://dx.doi.org/10.1517/17460441.2010.484460] [PMID: 21532931]
[33]
Khodade, P.; Prabhu, R.; Chandra, N.; Raha, S.; Govindarajan, R. Parallel implementation of AutoDock. J. Appl. Cryst., 2007, 40(3), 598-599.
[http://dx.doi.org/10.1107/S0021889807011053]
[34]
Goodsell, DS Computational docking of biomolecular complexes with AutoDock. Cold Spring Harbor Protocols, 2009, May 1;2009(5), pdb-rot5200.
[http://dx.doi.org/10.1101/pdb.prot5200]
[35]
Morris, GM; Goodsell, DS; Huey, R; Hart, WE; Halliday, S; Belew, R. Olson, A.J. AutoDock. Automated docking of flexible ligands to receptor-User Guide. 2001.
[36]
Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res., 2011, 39(Web Server issue)(Suppl.), W270-W277.
[http://dx.doi.org/10.1093/nar/gkr366] [PMID: 21624888]
[37]
Bitencourt-Ferreira, G.; de Azevedo, W.F. Docking with SwissDock. In: Docking Screens for Drug Discovery; de Azevodo,W.F, Ed.; Springer Humana, 2019; pp. 189-202.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_12]
[38]
Arnautova, Y.A.; Abagyan, R.; Totrov, M. Protein-RNA docking using ICM. J. Chem. Theory Comput., 2018, 14(9), 4971-4984.
[http://dx.doi.org/10.1021/acs.jctc.8b00293] [PMID: 30016588]
[39]
Abagyan, R.; Totrov, M.; Kuznetsov, D. ICM?A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem., 1994, 15(5), 488-506.
[http://dx.doi.org/10.1002/jcc.540150503]
[40]
Neves, M.A.C.; Totrov, M.; Abagyan, R. Docking and scoring with ICM: The benchmarking results and strategies for improvement. J. Comput. Aided Mol. Des., 2012, 26(6), 675-686.
[http://dx.doi.org/10.1007/s10822-012-9547-0] [PMID: 22569591]
[41]
Verdonk, M.L.; Chessari, G.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Nissink, J.W.M.; Taylor, R.D.; Taylor, R. Modeling water molecules in protein-ligand docking using GOLD. J. Med. Chem., 2005, 48(20), 6504-6515.
[http://dx.doi.org/10.1021/jm050543p] [PMID: 16190776]
[42]
Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins, 2003, 52(4), 609-623.
[http://dx.doi.org/10.1002/prot.10465] [PMID: 12910460]
[43]
Joy, S.; Nair, P.S.; Hariharan, R.; Pillai, M.R. Detailed comparison of the protein-ligand docking efficiencies of GOLD, a commercial package and ArgusLab, a licensable freeware. In Silico Biol., 2006, 6(6), 601-605.
[PMID: 17518767]
[44]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[45]
Repasky, M.P.; Shelley, M.; Friesner, R.A. Flexible ligand docking with Glide. Curr. Prot. Bioinform., 2007, 18(1), 1-8.
[http://dx.doi.org/10.1002/0471250953.bi0812s18]
[46]
Singh, T.; Biswas, D.; Jayaram, B. AADS--an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors. J. Chem. Inf. Model., 2011, 51(10), 2515-2527.
[http://dx.doi.org/10.1021/ci200193z] [PMID: 21877713]
[47]
Jayaram, B.; Singh, T.; Mukherjee, G.; Mathur, A.; Shekhar, S.; Shekhar, V. Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics, 2012, 13(Suppl. 17), S7.
[48]
Kim, D.S.; Kim, C.M.; Won, C.I.; Kim, J.K.; Ryu, J.; Cho, Y.; Lee, C.; Bhak, J. BetaDock: Shape-priority docking method based on beta-complex. J. Biomol. Struct. Dyn., 2011, 29(1), 219-242.
[http://dx.doi.org/10.1080/07391102.2011.10507384] [PMID: 21696235]
[49]
Haque, R.; Mohammad, M.; Islam, M.M. Molecular docking an important tool for drug desining. Mod Apro Drug Des., 2018, 1, 1-9.
[50]
Protein-Ligand Docking Based on ß-shape. 2009 Sixth International Symposium on Voronoi Diagrams, 23-26 June 2009; Kim, C-M.; Won, C-I.; Ryu, J.; Kim, J-K.; Bhak, J.; Kim, D-S., Eds.; Copenhagen,Denmark, 2009.
[http://dx.doi.org/10.1109/ISVD.2009.27]
[51]
Yang, J.M.; Kao, C.Y. Flexible ligand docking using a robust evolutionary algorithm. J. Comput. Chem., 2000, 21(11), 988-998.
[http://dx.doi.org/10.1002/1096-987X(200008)21:11<988:AID-JCC8>3.0.CO;2-H]
[52]
Clark, K.P. Ajay, Flexible ligand docking without parameter adjustment across four ligand-receptor complexes. J. Comput. Chem., 1995, 16(10), 1210-1226.
[http://dx.doi.org/10.1002/jcc.540161004]
[53]
Moustakas, D.T.; Lang, P.T.; Pegg, S.; Pettersen, E.; Kuntz, I.D.; Brooijmans, N.; Rizzo, R.C. Development and validation of a modular, extensible docking program: DOCK 5. J. Comput. Aided Mol. Des., 2006, 20(10-11), 601-619.
[http://dx.doi.org/10.1007/s10822-006-9060-4] [PMID: 17149653]
[54]
Allen, W.J.; Balius, T.E.; Mukherjee, S.; Brozell, S.R.; Moustakas, D.T.; Lang, P.T.; Case, D.A.; Kuntz, I.D.; Rizzo, R.C. DOCK 6: Impact of new features and current docking performance. J. Comput. Chem., 2015, 36(15), 1132-1156.
[http://dx.doi.org/10.1002/jcc.23905] [PMID: 25914306]
[55]
Jenkins, J.L.; Kao, R.Y.T.; Shapiro, R. Virtual screening to enrich hit lists from high-throughput screening: A case study on small-molecule inhibitors of angiogenin. Proteins, 2003, 50(1), 81-93.
[http://dx.doi.org/10.1002/prot.10270] [PMID: 12471601]
[56]
Cummings, M.D.; DesJarlais, R.L.; Gibbs, A.C.; Mohan, V.; Jaeger, E.P. Comparison of automated docking programs as virtual screening tools. J. Med. Chem., 2005, 48(4), 962-976.
[http://dx.doi.org/10.1021/jm049798d] [PMID: 15715466]
[57]
Trosset, J.Y.; Scheraga, H.A. Flexible docking simulations: Scaled collective variable Monte Carlo minimization approach using Bezier splines, and comparison with a standard Monte Carlo algorithm. J. Comput. Chem., 1999, 20(2), 244-252.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19990130)20:2<244:AID-JCC6>3.0.CO;2-A]
[58]
Bentham Science Publisher. B.S.P.; Reid, D.; Simon, A.; Sadjad, B.S.; Johnson, A.P. eHiTS: An innovative approach to the docking and scoring function problems. Curr. Protein Pept. Sci., 2006, 7(5), 421-435.
[http://dx.doi.org/10.2174/138920306778559412] [PMID: 17073694]
[59]
Ravitz, O.; Zsoldos, Z.; Simon, A. Improving molecular docking through eHiTS’ tunable scoring function. J. Comput. Aided Mol. Des., 2011, 25(11), 1033-1051.
[http://dx.doi.org/10.1007/s10822-011-9482-5] [PMID: 22076470]
[60]
Zhao, Y.; Sanner, M.F. FLIPDock: Docking flexible ligands into flexible receptors. Proteins, 2007, 68(3), 726-737.
[http://dx.doi.org/10.1002/prot.21423] [PMID: 17523154]
[61]
Totrov, M.; Abagyan, R. Flexible ligand docking to multiple receptor conformations: A practical alternative. Curr. Opin. Struct. Biol., 2008, 18(2), 178-184.
[http://dx.doi.org/10.1016/j.sbi.2008.01.004] [PMID: 18302984]
[62]
Zhao, Y.; Sanner, M.F. Protein-ligand docking with multiple flexible side chains. J. Comput. Aided Mol. Des., 2008, 22(9), 673-679.
[http://dx.doi.org/10.1007/s10822-007-9148-5] [PMID: 18034309]
[63]
Pérez-Cano, L.; Solernou, A.; Pons, C.; Fernández-Recio, J. Structural prediction of protein-RNA interaction by computational docking with propensity-based statistical potentials. Biocomputing; World Scientific, 2010, pp. 293-301.
[64]
Cheng, T.M.K.; Blundell, T.L.; Fernandez-Recio, J. pyDock: Electrostatics and desolvation for effective scoring of rigid-body protein-protein docking. Proteins, 2007, 68(2), 503-515.
[http://dx.doi.org/10.1002/prot.21419] [PMID: 17444519]
[65]
Ritchie, D.W. Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2. Proteins, 2003, 52(1), 98-106.
[http://dx.doi.org/10.1002/prot.10379] [PMID: 12784374]
[66]
Macindoe, G.; Mavridis, L.; Venkatraman, V.; Devignes, M.D.; Ritchie, D.W. HexServer: An FFT-based protein docking server powered by graphics processors Nucleic Acids Res., 2010, 38(Web Server)(Suppl. 2), W445-W449.
[http://dx.doi.org/10.1093/nar/gkq311] [PMID: 20444869]
[67]
Venkatachalam, C.M.; Jiang, X.; Oldfield, T.; Waldman, M. LigandFit: A novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model., 2003, 21(4), 289-307.
[http://dx.doi.org/10.1016/S1093-3263(02)00164-X] [PMID: 12479928]
[68]
Kontoyianni, M.; McClellan, L.M.; Sokol, G.S. Evaluation of docking performance: Comparative data on docking algorithms. J. Med. Chem., 2004, 47(3), 558-565.
[http://dx.doi.org/10.1021/jm0302997] [PMID: 14736237]
[69]
Sato, H.; Shewchuk, L.M.; Tang, J. Prediction of multiple binding modes of the CDK2 inhibitors, anilinopyrazoles, using the automated docking programs GOLD, FlexX, and LigandFit: An evaluation of performance. J. Chem. Inf. Model., 2006, 46(6), 2552-2562.
[http://dx.doi.org/10.1021/ci600186b] [PMID: 17125195]
[70]
Liu, M.; Wang, S. MCDOCK: A Monte Carlo simulation approach to the molecular docking problem. J. Comput. Aided Mol. Des., 1999, 13(5), 435-451.
[http://dx.doi.org/10.1023/A:1008005918983] [PMID: 10483527]
[71]
Abagyan, R.; Totrov, M. High-throughput docking for lead generation. Curr. Opin. Chem. Biol., 2001, 5(4), 375-382.
[http://dx.doi.org/10.1016/S1367-5931(00)00217-9] [PMID: 11470599]
[72]
Mizutani, M.Y.; Takamatsu, Y.; Ichinose, T.; Nakamura, K.; Itai, A. Effective handling of induced-fit motion in flexible docking. Proteins, 2006, 63(4), 878-891.
[http://dx.doi.org/10.1002/prot.20931] [PMID: 16532451]
[73]
Mizutani, M.Y.; Itai, A. Efficient method for high-throughput virtual screening based on flexible docking: Discovery of novel acetylcholinesterase inhibitors. J. Med. Chem., 2004, 47(20), 4818-4828.
[http://dx.doi.org/10.1021/jm030605g] [PMID: 15369385]
[74]
Burkhard, P.; Taylor, P.; Walkinshaw, M.D. An example of a protein ligand found by database mining: Description of the docking method and its verification by a 2.3 Å X-ray structure of a Thrombin-Ligand complex. J. Mol. Biol., 1998, 277(2), 449-466.
[http://dx.doi.org/10.1006/jmbi.1997.1608] [PMID: 9514757]
[75]
Burkhard, P.; Hommel, U.; Sanner, M.; Walkinshaw, M.D. The discovery of steroids and other novel FKBP inhibitors using a molecular docking program. J. Mol. Biol., 1999, 287(5), 853-858.
[http://dx.doi.org/10.1006/jmbi.1999.2621] [PMID: 10222195]
[76]
Fradera, X.; Mestres, J. Guided docking approaches to structure-based design and screening. Curr. Top. Med. Chem., 2004, 4(7), 687-700.
[http://dx.doi.org/10.2174/1568026043451104] [PMID: 15032682]
[77]
Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: The prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys., 2016, 18(18), 12964-12975.
[http://dx.doi.org/10.1039/C6CP01555G] [PMID: 27108770]
[78]
Ruiz-Carmona, S.; Alvarez-Garcia, D.; Foloppe, N.; Garmendia-Doval, A.B.; Juhos, S.; Schmidtke, P.; Barril, X.; Hubbard, R.E.; Morley, S.D. rDock: A fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLOS Comput. Biol., 2014, 10(4), e1003571.
[http://dx.doi.org/10.1371/journal.pcbi.1003571] [PMID: 24722481]
[79]
Li, L.; Chen, R.; Weng, Z. RDOCK: Refinement of rigid-body protein docking predictions. Proteins, 2003, 53(3), 693-707.
[http://dx.doi.org/10.1002/prot.10460] [PMID: 14579360]
[80]
Kurcinski, M.; Jamroz, M.; Blaszczyk, M.; Kolinski, A.; Kmiecik, S. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res., 2015, 43(W1), W419-W424.
[http://dx.doi.org/10.1093/nar/gkv456] [PMID: 25943545]
[81]
Kurcinski, M.; Badaczewska-Dawid, A.; Kolinski, M.; Kolinski, A.; Kmiecik, S. Flexible docking of peptides to proteins using CABS‐dock. Protein Sci., 2020, 29(1), 211-222.
[http://dx.doi.org/10.1002/pro.3771] [PMID: 31682301]
[82]
Blaszczyk, M.; Ciemny, M.P.; Kolinski, A.; Kurcinski, M.; Kmiecik, S. Protein–peptide docking using CABS-dock and contact information. Brief. Bioinform., 2019, 20(6), 2299-2305.
[http://dx.doi.org/10.1093/bib/bby080] [PMID: 30247502]
[83]
Taylor, J.S.; Burnett, R.M. DARWIN: A program for docking flexible molecules. Proteins, 2000, 41(2), 173-191.
[http://dx.doi.org/10.1002/1097-0134(20001101)41:2<173:AID-PROT30>3.0.CO;2-3] [PMID: 10966571]
[84]
Taylor, J.S. Computational biology: Methods in automated molecular docking with applications in structural virology and antibody-antigen recognition; University of Pennsylvania, 1998.
[85]
Kramer, B.; Rarey, M.; Lengauer, T. Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins, 1999, 37(2), 228-241.
[http://dx.doi.org/10.1002/(SICI)1097-0134(19991101)37:2<228:AID-PROT8>3.0.CO;2-8] [PMID: 10584068]
[86]
Hindle, S.A.; Rarey, M.; Buning, C.; Lengauer, T. Flexible docking under pharmacophore type constraints. J. Comput. Aided Mol. Des., 2002, 16(2), 129-149.
[http://dx.doi.org/10.1023/A:1016399411208] [PMID: 12188022]
[87]
Tiwari, R.; Mahasenan, K.; Pavlovicz, R.; Li, C.; Tjarks, W. Carborane clusters in computational drug design: A comparative docking evaluation using AutoDock, FlexX, Glide, and Surflex. J. Chem. Inf. Model., 2009, 49(6), 1581-1589.
[http://dx.doi.org/10.1021/ci900031y] [PMID: 19449853]
[88]
Chaudhary, B.; Singh, S. Molecular docking studies on pyrazolopyrimidine and their derivatives as human phosphoinositide 3-kinase inhibitors. Int. J. Adv. Bioinfo. Comp. Biol., 2012, 1, 1-11.
[89]
Usha, T.; Middha, S.K.; Goyal, A.K.; Karthik, M.; Manoj, D.; Faizan, S.; Goyal, P.; Prashanth, H.; Pande, V. Molecular docking studies of anti-cancerous candidates in Hippophae rhamnoides and Hippophae salicifolia. J. Biomed. Res., 2014, 28(5), 406-415.
[PMID: 25332713]
[90]
kanwal, S.; Jamil, F.; Ali, A.; Sehgal, S.A. Comparative modeling, molecular docking, and revealing of potential binding pockets of RASSF2; a candidate cancer gene. Interdiscip. Sci., 2017, 9(2), 214-223.
[http://dx.doi.org/10.1007/s12539-016-0145-z] [PMID: 26782783]
[91]
Bhargavi, M.; Sivan, S.K.; Potlapally, S.R. Identification of novel anti cancer agents by applying insilico methods for inhibition of TSPO protein. Comput. Biol. Chem., 2017, 68, 43-55.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.12.016] [PMID: 28235666]
[92]
Hemalatha, C.N.; Muthkumar, V.A. Application of 3D QSAR and docking studies in optimization of perylene diimides as anti-cancer agent. Indian J. Pharm. Educ. Res., 2018, 52(4), 666-675.
[http://dx.doi.org/10.5530/ijper.52.4.77]
[93]
Azad, I.; Nasibullah, M.; Khan, T.; Hassan, F.; Akhter, Y. Exploring the novel heterocyclic derivatives as lead molecules for design and development of potent anticancer agents. J. Mol. Graph. Model., 2018, 81, 211-228.
[http://dx.doi.org/10.1016/j.jmgm.2018.02.013] [PMID: 29609141]
[94]
Iheagwam, F.N.; Ogunlana, O.O.; Ogunlana, O.E.; Isewon, I.; Oyelade, J. Potential anti-cancer flavonoids isolated from Caesalpinia bonduc young twigs and leaves: Molecular docking and in silico studies. Bioinform. Biol. Insights, 2019, 13.
[http://dx.doi.org/10.1177/1177932218821371] [PMID: 30670919]
[95]
Qawoogha, S.S.; Shahiwala, A. Identification of potential anticancer phytochemicals against colorectal cancer by structure-based docking studies. J. Recept. Signal Transduct. Res., 2020, 40(1), 67-76.
[http://dx.doi.org/10.1080/10799893.2020.1715431] [PMID: 31971455]
[96]
Yasman, S.; Yanuar, A.; Tamimi, Z.; Rezi Riadhi, S. In silico analysis of sea cucumber bioactive compounds as anti-breast cancer mechanism using autodock vina. Indian J. Pharm. Sci., 2020, 16(1), 1-8.
[97]
Oyebamiji, AK; Tolufashe, GF; Oyawoye, OM; Oyedepo, TA; Semire, B Biological activity of selected compounds from Annona muricata seed as antibreast cancer agents: Theoretical study. J.Chem., 2020, 2020
[98]
Ali, K.M.; Kedhari, S.M.; Hamza, A.; Quraishi, U.; Gunasekera, D.; Ramesh, L. Sulforaphane reverses the expression of various tumor suppressor genes by targeting DNMT3B and HDAC1 in human cervical cancer cells. Evid. Based Compl. Altern. Med., 2015, 2015
[99]
Madadi, N.R.; Zong, H.; Ketkar, A.; Zheng, C.; Penthala, N.R.; Janganati, V.; Bommagani, S.; Eoff, R.L.; Guzman, M.L.; Crooks, P.A. Synthesis and evaluation of a series of resveratrol analogues as potent anti-cancer agents that target tubulin. MedChemComm, 2015, 6(5), 788-794.
[http://dx.doi.org/10.1039/C4MD00478G] [PMID: 26257861]
[100]
Madadi, N.R.; Ketkar, A.; Penthala, N.R.; Bostian, A.C.L.; Eoff, R.L.; Crooks, P.A. Dioxol and dihydrodioxin analogs of 2- and 3-phenylacetonitriles as potent anti-cancer agents with nanomolar activity against a variety of human cancer cells. Bioorg. Med. Chem. Lett., 2016, 26(9), 2164-2169.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.068] [PMID: 27017113]
[101]
Singh, P.; Banik, R.M.; Shah, P. Amino acid sequence determination, in silico tertiary structure prediction and anticancer activity assessment of l-glutaminase from Bacillus cereus. Netw. Model. Anal. Health Inform. Bioinform., 2016, 5(1), 11.
[http://dx.doi.org/10.1007/s13721-016-0118-5]
[102]
Park, H.J.; Min, T.R.; Chi, G.Y.; Choi, Y.H.; Park, S.H. Induction of apoptosis by morusin in human non-small cell lung cancer cells by suppression of EGFR/STAT3 activation. Biochem. Biophys. Res. Commun., 2018, 505(1), 194-200.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.085] [PMID: 30243717]
[103]
Min, T.R.; Park, H.J.; Ha, K.T.; Chi, G.Y.; Choi, Y.H.; Park, S.H. Suppression of EGFR/STAT3 activity by lupeol contributes to the induction of the apoptosis of human non small cell lung cancer cells. Int. J. Oncol., 2019, 55(1), 320-330.
[http://dx.doi.org/10.3892/ijo.2019.4799] [PMID: 31115519]
[104]
Hassan, A.H.E.; Park, H.R.; Yoon, Y.M.; Kim, H.I.; Yoo, S.Y.; Lee, K.W.; Lee, Y.S. Antiproliferative 3-deoxysphingomyelin analogs: Design, synthesis, biological evaluation and molecular docking of pyrrolidine-based 3-deoxysphingomyelin analogs as anticancer agents. Bioorg. Chem., 2019, 84, 444-455.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.040] [PMID: 30576908]
[105]
Fazeli-Nasab, B.; Sayyed, R.Z.; Sobhanizadeh, A. In silico molecular docking analysis of α-pinene: An antioxidant and anticancer drug obtained from Myrtus communis. Int. J. Cancer Manag., 2021, 14(2), e89116.
[http://dx.doi.org/10.5812/ijcm.89116]
[106]
Prakash, P.; Vijayasarathi, D.; Selvam, K.; Karthi, S.; Manivasagaperumal, R. Pharmacore maping based on docking, ADME/toxicity, virtual screening on 3,5-dimethyl-1,3,4-hexanetriol and dodecanoic acid derivates for anticancer inhibitors. J. Biomol. Struct. Dyn., 2021, 39(12), 4490-4500.
[http://dx.doi.org/10.1080/07391102.2020.1778533] [PMID: 32567489]
[107]
Scarpino, A.; Ferenczy, G.G. Keserű G.M. Ferenczy GrG, Keserű GrM. Comparative evaluation of covalent docking tools. J. Chem. Inf. Model., 2018, 58(7), 1441-1458.
[http://dx.doi.org/10.1021/acs.jcim.8b00228] [PMID: 29890081]
[108]
Lv, P.C.; Wang, K.R.; Li, Q.S.; Chen, J.; Sun, J.; Zhu, H.L. Design, synthesis and biological evaluation of chrysin long-chain derivatives as potential anticancer agents. Bioorg. Med. Chem., 2010, 18(3), 1117-1123.
[http://dx.doi.org/10.1016/j.bmc.2009.12.048] [PMID: 20056425]
[109]
Ismail, M.M.F.; Rateb, H.S.; Hussein, M.M.M. Synthesis and docking studies of novel benzopyran-2-ones with anticancer activity. Eur. J. Med. Chem., 2010, 45(9), 3950-3959.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.050] [PMID: 20580139]
[110]
Khalifa, M.; Ismail, M.; Eissa, S.; Ammar, Y. Design and synthesis, of some novel 6-methoxynaphthalene derivatives with potential anti-cancer activity. Der. Pharma. Chem., 2012, 4(4), 1552-1566.
[111]
El-Nezhawy, A.O.H.; Eweas, A.F.; Radwan, M.A.A.; El-Naggar, T.B.A. Synthesis and molecular docking studies of novel 2-phenyl-4-substituted oxazole derivatives as potential anti-cancer agents. J. Heterocycl. Chem., 2016, 53(1), 271-279.
[http://dx.doi.org/10.1002/jhet.2422]
[112]
Kharlyngdoh, J.B.; Asnake, S.; Pradhan, A.; Olsson, P.E. TBECH, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane, alters androgen receptor regulation in response to mutations associated with prostate cancer. Toxicol. Appl. Pharmacol., 2016, 307, 91-101.
[http://dx.doi.org/10.1016/j.taap.2016.07.018] [PMID: 27473015]
[113]
Ziemska, J. Guśpiel, A.; Jarosz, J.; Nasulewicz-Goldeman, A.; Wietrzyk, J.; Kawęcki, R.; Pypowski, K.; Jarończyk, M.; Solecka, J. Molecular docking studies, biological and toxicity evaluation of dihydroisoquinoline derivatives as potential anticancer agents. Bioorg. Med. Chem., 2016, 24(21), 5302-5314.
[http://dx.doi.org/10.1016/j.bmc.2016.08.054] [PMID: 27624521]
[114]
Arthur, D.E.; Uzairu, A.; Mamza, P.; Abechi, S.E.; Shallangwa, G.A. Structure-based optimization of tyrosine kinase inhibitors: A molecular docking study. Netw. Model. Anal. Health Inform. Bioinform., 2018, 7(1), 9.
[http://dx.doi.org/10.1007/s13721-018-0170-4]
[115]
Arthur, D.E.; Uzairu, A. Molecular docking studies on the interaction of NCI anticancer analogues with human Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit. J. King Saud Univ. Sci., 2019, 31(4), 1151-1166.
[http://dx.doi.org/10.1016/j.jksus.2019.01.011]
[116]
Arthur, D.E.; Samuel, A.N.; Ejeh, S.; Adeniji, S.E.; Adedirin, O.; Abdullahi, M. Computational study of some cancer drugs as potent inhibitors of GSK3β. Sci. Am., 2020, 10, e00612.
[117]
Maddali, N.K.; Ivaturi, V.K.V.; Murthy Yellajyosula, L.N.; Malkhed, V.; Brahman, P.K.; Pindiprolu, S.K.S.S.; Kondaparthi, V.; Nethinti, S.R. New 1,2,4‐triazole scaffolds as anticancer agents: Synthesis, biological evaluation and docking studies. ChemistrySelect, 2021, 6(26), 6788-6796.
[http://dx.doi.org/10.1002/slct.202101387]
[118]
Sundarapandian, T.; Shalini, J.; Sugunadevi, S.; Woo, L.K. Docking-enabled pharmacophore model for histone deacetylase 8 inhibitors and its application in anti-cancer drug discovery. J. Mol. Graph. Model., 2010, 29(3), 382-395.
[http://dx.doi.org/10.1016/j.jmgm.2010.07.007] [PMID: 20870437]
[119]
Chuang, C.H.; Cheng, T.C.; Leu, Y.L.; Chuang, K.H.; Tzou, S.C.; Chen, C.S. Discovery of Akt kinase inhibitors through structure-based virtual screening and their evaluation as potential anticancer agents. Int. J. Mol. Sci., 2015, 16(2), 3202-3212.
[http://dx.doi.org/10.3390/ijms16023202] [PMID: 25648320]
[120]
Mahdavi, M.; Moreau, V. In silico designing breast cancer peptide vaccine for binding to MHC class I and II: A molecular docking study. Comput. Biol. Chem., 2016, 65, 110-116.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.10.007] [PMID: 27816827]
[121]
Nagamani, C.; Devi, K.; Sridharbabu, G.; Rajashekar, V.; Enaganti, S. Molecular docking studies of synthetic and natural compounds against cFLIP protein in cancer. J. Appl. Pharm. Sci., 2017, 7(03), 109-112.
[122]
Bakherad, Z.; Safavi, M.; Fassihi, A.; Sadeghi-Aliabadi, H.; Bakherad, M.; Rastegar, H.; Ghasemi, J.B.; Sepehri, S.; Saghaie, L.; Mahdavi, M. Anti-cancer, anti-oxidant and molecular docking studies of thiosemicarbazone indole-based derivatives. Res. Chem. Intermed., 2019, 45(5), 2827-2854.
[http://dx.doi.org/10.1007/s11164-019-03765-9]
[123]
Kashaw, S.K.; Agarwal, S.; Mishra, M.; Sau, S.; Iyer, A.K. Molecular docking analysis of caspase-3 activators as potential anticancer agents. Curr. Comput. Aided Drug Des., 2018, 15(1), 55-66.
[http://dx.doi.org/10.2174/1573409914666181015150731] [PMID: 30324892]
[124]
Nafie, M.S.; Tantawy, M.A.; Elmgeed, G.A. Screening of different drug design tools to predict the mode of action of steroidal derivatives as anti-cancer agents. Steroids, 2019, 152, 108485.
[http://dx.doi.org/10.1016/j.steroids.2019.108485] [PMID: 31491446]
[125]
Chrobak, E.; Kadela-Tomanek, M. Bębenek, E.; Marciniec, K.; Wietrzyk, J.; Trynda, J.; Pawełczak, B.; Kusz, J.; Kasperczyk, J.; Chodurek, E.; Paduszyński, P.; Boryczka, S. New phosphate derivatives of betulin as anticancer agents: Synthesis, crystal structure, and molecular docking study. Bioorg. Chem., 2019, 87, 613-628.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.060] [PMID: 30947097]
[126]
Kantankar, A.; Jayaprakash Rao, Y.; Mallikarjun, G.; Hemasri, Y.; Kethiri, R.R. Rational design, synthesis, biological evaluation and molecular docking studies of chromone-pyrimidine derivatives as potent anti-cancer agents. J. Mol. Struct., 2021, 1239, 130502.
[http://dx.doi.org/10.1016/j.molstruc.2021.130502]
[127]
Wabdan, A.; Mahdi, M.; Khan, A. Molecular docking, synthesis and ADME studies of new pyrazoline derivatives as potential anticancer agents. Egypt. J. Chem., 2021, 64(8), 4311-4322.
[http://dx.doi.org/10.21608/ejchem.2021.64042.3377]
[128]
Noolvi, M.N.; Patel, H.M.; Kaur, M. Benzothiazoles: Search for anticancer agents. Eur. J. Med. Chem., 2012, 54, 447-462.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.028] [PMID: 22703845]
[129]
Subhani, S.; Jayaraman, A.; Jamil, K. Homology modelling and molecular docking of MDR1 with chemotherapeutic agents in non-small cell lung cancer. Biomed. Pharmacother., 2015, 71, 37-45.
[http://dx.doi.org/10.1016/j.biopha.2015.02.009] [PMID: 25960213]
[130]
Anantaraju, H.S.; Battu, M.B.; Viswanadha, S.; Sriram, D.; Yogeeswari, P. Cathepsin D inhibitors as potential therapeutics for breast cancer treatment: Molecular docking and bioevaluation against triple-negative and triple-positive breast cancers. Mol. Divers., 2016, 20(2), 521-535.
[http://dx.doi.org/10.1007/s11030-015-9645-8] [PMID: 26563150]
[131]
Subhani, S.; Jamil, K. Molecular docking of chemotherapeutic agents to CYP3A4 in non-small cell lung cancer. Biomed. Pharmacother., 2015, 73, 65-74.
[http://dx.doi.org/10.1016/j.biopha.2015.05.018] [PMID: 26211584]
[132]
Sharma, V.; Sharma, P.C.; Kumar, V. in silico molecular docking analysis of natural pyridoacridines as anticancer agents. Adv. Chem., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/5409387]
[133]
Alam, R.; Wahi, D.; Singh, R.; Sinha, D.; Tandon, V.; Grover, A. Rahisuddin, Design, synthesis, cytotoxicity, HuTopoIIα inhibitory activity and molecular docking studies of pyrazole derivatives as potential anticancer agents. Bioorg. Chem., 2016, 69, 77-90.
[http://dx.doi.org/10.1016/j.bioorg.2016.10.001] [PMID: 27744115]
[134]
Trejo-Soto, P.J.; Hernández-Campos, A.; Romo-Mancillas, A.; Medina-Franco, J.L.; Castillo, R. In search of AKT kinase inhibitors as anticancer agents: Structure-based design, docking, and molecular dynamics studies of 2,4,6-trisubstituted pyridines. J. Biomol. Struct. Dyn., 2018, 36(2), 423-442.
[http://dx.doi.org/10.1080/07391102.2017.1285724] [PMID: 28150530]
[135]
Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Comparative insilico docking analysis of curcumin and resveratrol on breast cancer proteins and their synergistic effect on MCF-7 cell line. J. Young Pharm., 2017, 9(4), 480-485.
[http://dx.doi.org/10.5530/jyp.2017.9.94]
[136]
Manupati, K.; Debnath, S.; Goswami, K.; Bhoj, P.S.; Chandak, H.S.; Bahekar, S.P.; Das, A. Glutathione S ‐transferase omega 1 inhibition activates JNK ‐mediated apoptotic response in breast cancer stem cells. FEBS J., 2019, 286(11), 2167-2192.
[http://dx.doi.org/10.1111/febs.14813] [PMID: 30873742]
[137]
Kode, J.; Kovvuri, J.; Nagaraju, B.; Jadhav, S.; Barkume, M.; Sen, S.; Kasinathan, N.K.; Chaudhari, P.; Mohanty, B.S.; Gour, J.; Sigalapalli, D.K.; Ganesh Kumar, C.; Pradhan, T.; Banerjee, M.; Kamal, A. Synthesis, biological evaluation, and molecular docking analysis of phenstatin based indole linked chalcones as anticancer agents and tubulin polymerization inhibitors. Bioorg. Chem., 2020, 105, 104447.
[http://dx.doi.org/10.1016/j.bioorg.2020.104447] [PMID: 33207276]
[138]
Leelananda, S.P.; Lindert, S. Computational methods in drug discovery. Beilstein J. Org. Chem., 2016, 12(1), 2694-2718.
[http://dx.doi.org/10.3762/bjoc.12.267] [PMID: 28144341]
[139]
Tropsha, A; Bajorath, Jr Computational methods for drug discovery and design. J. Med. Chem.,, 2016, 59(1), 01.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy