Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Systematic Review Article

Natural Antioxidants of the Underutilized and Neglected Plant Species of Asia and South America

Author(s): Mohamad Hesam Shahrajabian, Diorge Jonatas Marmitt, Qi Cheng and Wenli Sun*

Volume 20, Issue 10, 2023

Published on: 08 September, 2022

Page: [1512 - 1537] Pages: 26

DOI: 10.2174/1570180819666220616145558

Price: $65

Abstract

Background: Plants have played an essential role in the search for new compounds for the most diverse therapeutic purposes. Recently, more attention has been paid to natural antioxidants because of the possible insecurity of synthetic antioxidants

Objective: The review is aimed at summarizing the most important and common natural antioxidants and their resources from medicinal plants.

Methods: The research was performed using databases of PubMed, Google Scholar, Science Direct, Taylor and Francis, etc., to search for all collected scientific publications.

Results: The most important medicinal plants with antioxidant activities in Iran are Artemisia, berberry fruit, borage, calendula, coriander, cumin, green tea, hawthorn, jujube, pomegranate, rose, rosemary, black zira, tea, and thyme. Important traditional medicinal plants with antioxidant activities in China are Asparagus, bindii, blueberries, camellia, Chinese bayberry, Chinese bitter melon, Chinese cabbage, Chinese cherry, Chinese jujube, Chinese olive, pomegranate, Chinese rose tea, Chinese toon, Chinese watermelon, black tea, knotweed, Chinese quince, Chinese rhubarb, sumac, wolfberry, dendrobium, drumstick tree, Fiscus species, ginger, ginkgo, goji berry, grape, Jerusalem thorn, kiwifruit seed oil, and liquorice root. Anacardium occidentale L., Ananas comosus (L.) Merril, Baccharis trimera (Less) DC., Carapa guianensis Aubl., Casearia sylvestris Sw., Cordia verbenacea DC., Croton lechleri Müll. Arg., and Eugenia uniflora L. are the main medicinal plants with antioxidant activities in Brazil.

Conclusion: Antioxidants are those molecules that are involved in the scavenging of these reactive species causing oxidative stress and are defined as those substances which could prevent the oxidation of the substrate at low concentrations. The main derived exogenous natural antioxidants are derived from medicinal plants, fruits, foods, flowers, and traditional herbal medicines in different parts of the world.

Keywords: Antioxidants, Medicinal Plants, Traditional Iranian Medicine, Natural Products, Traditional Chinese Medicine, Brazilian Medicinal Science.

[1]
Shahrajabian, M.H.; Sun, W.; Zandi, P.; Cheng, Q. A review of Chrysanthemum, the eastern queen in traditional Chinese medicine with healing power in modern pharmaceutical sciences. Appl. Ecol. Environ. Res., 2019, 17(6), 13355-13369.
[http://dx.doi.org/10.15666/aeer/1706_1335513369]
[2]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. A review of astragalus species as foodstuffs, dietary supplements, a traditional Chinese medicine and a part of modern pharmaceutical science. Appl. Ecol. Environ. Res., 2019, 17(6), 13371-13382.
[http://dx.doi.org/10.15666/aeer/1706_1337113382]
[3]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric. Scand. B Soil Plant Sci., 2019, 69(6), 546-556.
[http://dx.doi.org/10.1080/09064710.2019.1606930]
[4]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Anise (Pimpinella anisum l.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biol., 2019, 5(1673688), 1-25.
[http://dx.doi.org/10.1080/23312025.2019.1673688]
[5]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. The insight and survey on medicinal properties and nutritive components of shallot. J. Med. Plants Res., 2019, 13(18), 452-457.
[http://dx.doi.org/10.5897/JMPR2019.6836]
[6]
Wrona, M.; Silva, F.; Salafranca, J.; Nerin, C.; Alfonso, M.J.; Caballero, M.A. Design of new natural antioxidant active packaging: Screening flowsheet from pure essential oils and vegetable oils to ex vivo testing in meat samples. Food Control, 2021, 120, 107536.
[http://dx.doi.org/10.1016/j.foodcont.2020.107536]
[7]
Halliwell, B. How to characterize a biological antioxidant. Free Radic. Res. Commun., 1990, 9(1), 1-32.
[http://dx.doi.org/10.3109/10715769009148569] [PMID: 2159941]
[8]
Gong, Y.; Huang, X-Y.; Pei, D.; Duan, W-D.; Zhang, X.; Sun, X.; Di, D-L. The applicability of high-speed counter current chromatography to the separation of natural antioxidants. J. Chromatogr. A, 2020, 1623, 461150.
[http://dx.doi.org/10.1016/j.chroma.2020.461150] [PMID: 32505270]
[9]
Keddar, M.N.; Ballesteros-Gomez, A.; Amiali, M.; Siles, M.A.; Zerrouki, D.; Martin, M.A.; Rubio, S. Efficient extraction of hydrophilic and lipophilic antioxidants from microalgae with superamolecular solvents. Separ. Purif. Tech., 2020, 251, 117327.
[http://dx.doi.org/10.1016/j.seppur.2020.117327]
[10]
Diamantis, D.A.; Oblukova, M.; Chatziathanasiadou, M.V.; Gemenetzi, A.; Papaemmanouil, C.; Gerogianni, P.S.; Syed, N.; Crook, T.; Galaris, D.; Deligiannakis, Y.; Sokolova, R.; Tzakos, A.G. Bioinspired tailoring of fluorogenic thiol responsive antioxidant precursors to protect cells against H2O2-induced DNA damage. Free Radic. Biol. Med., 2020, 160, 540-551.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.08.025] [PMID: 32871232]
[11]
Sarangarajan, R.; Meera, S.; Rukkumani, R.; Sankar, P.; Anuradha, G. Antioxidants: Friend or foe? Asian Pac. J. Trop. Med., 2017, 10(12), 1111-1116.
[http://dx.doi.org/10.1016/j.apjtm.2017.10.017] [PMID: 29268965]
[12]
Halliwell, B.; Gutteridge, J.M. The definition and measurement of antioxidants in biological systems. Free Radic. Biol. Med., 1995, 18(1), 125-126.
[http://dx.doi.org/10.1016/0891-5849(95)91457-3] [PMID: 7896166]
[13]
Bi, X.; Soong, Y.Y.; Lim, S.W.; Henry, C.J. Evaluation of antioxidant capacity of Chinese five-spice ingredients. Int. J. Food Sci. Nutr., 2015, 66(3), 289-292.
[http://dx.doi.org/10.3109/09637486.2015.1007452] [PMID: 25666419]
[14]
Tlili, N.; Elfalleh, W.; Hannachi, H.; Yahia, Y.; Khaldi, A.; Ferchichi, A.; Nasri, N. Screening of natural antioxidants from selected medicinal plants. Int. J. Food Prop., 2013, 16(5), 1117-1126.
[http://dx.doi.org/10.1080/10942912.2011.576360]
[15]
Abd-ElGawad, A.; El Gendy, A.E-N.; El-Amier, Y.; Gaara, A.; Omer, E.; Al-Rowaily, S.; Assaeed, A.; Al-Rashed, S.; Elshamy, A. Essential oil of Bassia muricata: Chemical characterization, antioxidant activity, and allelopathic effect on the weed Chenopodium murale. Saudi J. Biol. Sci., 2020, 27(7), 1900-1906.
[http://dx.doi.org/10.1016/j.sjbs.2020.04.018] [PMID: 32565712]
[16]
Zhao, Q.; Bowles, E.J.; Zhang, H-Y. Antioxidant activities of eleven Australian essential oils. Nat. Prod. Commun., 2008, 3(5), 837-842.
[http://dx.doi.org/10.1177/1934578X0800300531]
[17]
Wong, F-C.; Xiao, J.; Wang, S.; Ee, K-Y.; Chai, T-T. Advances on the antioxidant peptides from edible plant sources. Trends Food Sci. Technol., 2020, 99, 44-57.
[http://dx.doi.org/10.1016/j.tifs.2020.02.012]
[18]
Mason, S.A.; Trewin, A.J.; Parker, L.; Wadley, G.D. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol., 2020, 35, 101471.
[http://dx.doi.org/10.1016/j.redox.2020.101471] [PMID: 32127289]
[19]
Jäger, R.; Purpura, M.; Kerksick, C.M. Eight weeks of a high dose of curcumin supplementation may attenuate performance decrements following muscle-damaging excersie. Nutrients, 2019, 11(7), E1692.
[http://dx.doi.org/10.3390/nu11071692] [PMID: 31340534]
[20]
Nguyen, T.M.H.; Le, H.L.; Ha, T.T.; Bui, B.H.; Le, N.T.; Nguyen, V.H.; Nguyen, T.V.A. Inhibitory effect on human platelet aggregation and coagulation and antioxidant activity of C. edulis Ker Gawl rhizome and its secondary metabolites. J. Ethnopharmacol., 2020, 263, 113136.
[http://dx.doi.org/10.1016/j.jep.2020.113136] [PMID: 32758576]
[21]
Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Zabermawi, N.M.; Arif, M.; Batiha, G.E.; Khafaga, A.F.; Abd El-Hakim, Y.M.; Al-Sagheer, A.A. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int. J. Biol. Macromol., 2020, 164, 2726-2744.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.153] [PMID: 32841671]
[22]
Juárez-Gómez, J.; Ramírez-Silva, M.T.; Guzmán-Hernández, D.S.; Romero-Romo, M.; Palomar-Pardavé, M. Novel electrochemical method to evaluate the antioxidant capacity of infusions and beverages, based on in situ formation of free superoxide radicals. Food Chem., 2020, 332, 127409.
[http://dx.doi.org/10.1016/j.foodchem.2020.127409] [PMID: 32615388]
[23]
Lima, A.P.; dos Santos, W.T.P.; Nossol, E.; Richter, E.M.; Munoz, R.A.A. Critical evaluation of voltammetric techniques for antioxidant capacity and activity: Presence for alumina on glassy-carbon electrodes alters the results. Electrochim. Acta, 2020, 358, 136925.
[http://dx.doi.org/10.1016/j.electacta.2020.136925]
[24]
Qin, L.; Wang, H.; Zhang, W.; Pan, M.; Xie, H.; Guo, X. Effects of different drying methods on phenolic substances and antioxidant activities of seedless raisins. Lebensm. Wiss. Technol., 2020, 131, 109807.
[http://dx.doi.org/10.1016/j.lwt.2020.109807]
[25]
Magro, A.E.A.; de Castro, R.J.S. Effects of solid-state fermentation and extraction solvents on the antioxidant properties of lentils. Biocatal. Agric. Biotechnol., 2020, 28, 101753.
[http://dx.doi.org/10.1016/j.bcab.2020.101753]
[26]
Serna-Escolano, V.; Martinez-Romero, D.; Gimenez, M.J.; Serrano, M.; Garcia-Martinez, S.; Valero, D.; Valverde, J.M.; Zapata, P.J. Enhancing antioxidant systems by preharvest treatments with methyl jasmonate and salicylic acid leads to maintain lemon quality during cold storage. Food Chem., 2020.
[http://dx.doi.org/10.1016/j.foodchem.2020.128044] [PMID: 32932092]
[27]
Casadey, R.; Broglia, M.; Barbero, C.; Criado, S.; Rivarola, C. Controlled release systems of natural phenolic antioxidants encapsulated inside biocompatible hydrogels. React. Funct. Polym., 2020.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104729]
[28]
Rebelatto, E.A.; Rodriguez, L.G.G.; Rudke, A.R.; Andrade, K.S.; Ferreira, S.R.S. Sequential green-based extraction processes applied to recover antioxidant extracts from pink pepper fruits. J. Supercrit. Fluids, 2020, 166, 105034.
[http://dx.doi.org/10.1016/j.supflu.2020.105034]
[29]
Tinello, F.; Lante, A. Accelerated storage conditions effect on ginger- and turmeric-enriched soybean oils with comparing a synthetic antioxidant BHT. Lebensm. Wiss. Technol., 2020, 131, 109797.
[http://dx.doi.org/10.1016/j.lwt.2020.109797]
[30]
Saranchina, N.V.; Damzina, A.A.; Ermolaev, Y.E.; Urazov, E.V.; Gavrilenko, N.A.; Gavrilenko, M.A. Determination of antioxidant capacity of medicinal tinctures using cuprac method involving Cu(II) neocuproine immobilized into polymethacrylate matrix. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 240, 118581.
[http://dx.doi.org/10.1016/j.saa.2020.118581] [PMID: 32554138]
[31]
Arnaud, J.; Bost, M.; Vitoux, D.; Labarère, J.; Galan, P.; Faure, H.; Hercberg, S.; Bordet, J-C.; Roussel, A-M.; Chappuis, P. Effect of low dose antioxidant vitamin and trace element supplementation on the urinary concentrations of thromboxane and prostacyclin metabolites. J. Am. Coll. Nutr., 2007, 26(5), 405-411.
[http://dx.doi.org/10.1080/07315724.2007.10719629] [PMID: 17914127]
[32]
Zhang, X.; Liu, Q.; Chen, Z.; Zuo, X. Colorimetric sensor array for accurate detection and identification of antioxidants based on metal ions as sensor receptors. Talanta, 2020, 215, 120935.
[http://dx.doi.org/10.1016/j.talanta.2020.120935] [PMID: 32312471]
[33]
Birinci, Y.; Niazi, J.H.; Aktay-Çetin, O.; Basaga, H. Quercetin in the form of a nano-antioxidant (QTiO2) provides stabilization of quercetin and maximizes its antioxidant capacity in the mouse fibroblast model. Enzyme Microb. Technol., 2020, 138, 109559.
[http://dx.doi.org/10.1016/j.enzmictec.2020.109559] [PMID: 32527528]
[34]
Jaberie, H.; Momeni, S.; Nabipour, I. Total antioxidant capacity assessment by a development of an antioxidant assay based on green synthesized MnO2 nanosheets. Microchem. J., 2020, 157, 104908.
[http://dx.doi.org/10.1016/j.microc.2020.104908]
[35]
Ran, L.; Chi, Y.; Huang, Y.; He, Q.; Ren, Y. Synergistic antioxidant effect of glutathione and edible phenolic acids and improvement of the activity protection by coencapsulation into chitosan-coated liposomes. Lebensm. Wiss. Technol., 2020, 127, 109409.
[http://dx.doi.org/10.1016/j.lwt.2020.109409]
[36]
Ibrahim, T.A.; El-Hefnawy, H.M.; El-Hela, A.A. Antioxidant potential and phenolic acid content of certain cucurbitaceous plants cultivated in Egypt. Nat. Prod. Res., 2010, 24(16), 1537-1545.
[http://dx.doi.org/10.1080/14786419.2010.489049] [PMID: 20835955]
[37]
Liu, L.; Zhao, Y-F.; Han, W-H.; Chen, T.; Hou, G-X.; Tong, X-Z. Protective effect of antioxidant on renal damage caused by doxorubicin chemotherapy in mice with hepatic cancer. Asian Pac. J. Trop. Med., 2016, 9(11), 1101-1104.
[http://dx.doi.org/10.1016/j.apjtm.2016.08.003] [PMID: 27890372]
[38]
Undeğer, U.; Başaran, A.; Degen, G.H.; Başaran, N. Antioxidant activities of major thyme ingredients and lack of (oxidative) DNA damage in V79 Chinese hamster lung fibroblast cells at low levels of carvacrol and thymol. Food Chem. Toxicol., 2009, 47(8), 2037-2043.
[http://dx.doi.org/10.1016/j.fct.2009.05.020] [PMID: 19477215]
[39]
Lu, M.; Yuan, B.; Zing, M.; Chen, J. Antioxidant capacity and major phenolic compounds of spices commonly consumed in China. Food Res. Int., 2011, 44(2), 530-536.
[http://dx.doi.org/10.1016/j.foodres.2010.10.055]
[40]
West, I.C. Radicals and oxidative stress in diabetes. Diabet. Med., 2000, 17(3), 171-180.
[http://dx.doi.org/10.1046/j.1464-5491.2000.00259.x] [PMID: 10784220]
[41]
Newsholme, P.; Cruzat, V.F.; Keane, K.N.; Carlessi, R.; de Bittencourt, P.I. Jr Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J., 2016, 473(24), 4527-4550.
[http://dx.doi.org/10.1042/BCJ20160503C] [PMID: 27941030]
[42]
Ziegler, D.; Nowak, H.; Kempler, P.; Vargha, P.; Low, P.A. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: A meta-analysis. Diabet. Med., 2004, 21(2), 114-121.
[http://dx.doi.org/10.1111/j.1464-5491.2004.01109.x] [PMID: 14984445]
[43]
Song, Y.; Cook, N.R.; Albert, C.M.; Van Denburgh, M.; Manson, J.E. Effects of vitamins C and E and beta-carotene on the risk of type 2 diabetes in women at high risk of cardiovascular disease: A randomized controlled trial. Am. J. Clin. Nutr., 2009, 90(2), 429-437.
[http://dx.doi.org/10.3945/ajcn.2009.27491] [PMID: 19491386]
[44]
Szkudlinska, M.A.; von Frankenberg, A.D.; Utzschneider, K.M. The antioxidant N-Acetylcysteine does not improve glucose tolerance or β-cell function in type 2 diabetes. J. Diabetes Complications, 2016, 30(4), 618-622.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.02.003] [PMID: 26922582]
[45]
Godic, A.; Poljšak, B.; Adamic, M.; Dahmane, R. The role of antioxidants in skin cancer prevention and treatment. Oxid. Med. Cell. Longev., 2014, 2014(5), 860479.
[http://dx.doi.org/10.1155/2014/860479] [PMID: 24790705]
[46]
Ma, J.; Zhang, Q.; Chen, S.; Fang, B.; Yang, Q.; Chen, C.; Miele, L.; Sarkar, F.H.; Xia, J.; Wang, Z. Mitochondrial dysfunction promotes breast cancer cell migration and invasion through HIF1α accumulation via increased production of reactive oxygen species. PLoS One, 2013, 8(7), e69485.
[http://dx.doi.org/10.1371/journal.pone.0069485] [PMID: 23922721]
[47]
Rao, A.V.; Agarwal, S. Role of antioxidant lycopene in cancer and heart disease. J. Am. Coll. Nutr., 2000, 19(5), 563-569.
[http://dx.doi.org/10.1080/07315724.2000.10718953] [PMID: 11022869]
[48]
Borrás, C.; Gómez-Cabrera, M.C.; Viña, J. The dual role of p53: DNA protection and antioxidant. Free Radic. Res., 2011, 45(6), 643-652.
[http://dx.doi.org/10.3109/10715762.2011.571685] [PMID: 21452930]
[49]
Prasad, K.N. Simultaneous activation of Nrf2 and elevation of dietary and endogenous antioxidant chemicals for cancer prevention in humans. J. Am. Coll. Nutr., 2016, 35(2), 175-184.
[http://dx.doi.org/10.1080/07315724.2014.1003419] [PMID: 26151600]
[50]
Dastmalchi, N.; Baradaran, B.; Latifi-Navid, S.; Safaralizadeh, R.; Khojasteh, S.M.B.; Amini, M.; Roshani, E.; Lotfinejad, P. Antioxidants with two faces toward cancer. Life Sci., 2020, 258, 118186.
[http://dx.doi.org/10.1016/j.lfs.2020.118186] [PMID: 32768586]
[51]
Erdogan, M.K.; Gecibesler, I.H.; Behcet, L. Chemical constituents, antioxidant, antiproliferative and apoptotic effects of a new endemic Boraginaceae species: Paracaryum bingoelianum. Results Chem., 2020, 2, 100032.
[http://dx.doi.org/10.1016/j.rechem.2020.100032]
[52]
Fu, L.; Wei, J.; Gao, Y.; Chen, R. Antioxidant and antitumoral activities of isolated macamide and macaene fractions from Lepidium meyenii (Maca). Talanta, 2020, 221, 121635.
[http://dx.doi.org/10.1016/j.talanta.2020.121635] [PMID: 33076155]
[53]
Meng, D-F.; Guo, L-L.; Peng, L-X.; Zheng, L-S.; Xie, P.; Mei, Y.; Li, C-Z.; Peng, X-S.; Lang, Y-H.; Liu, Z-J.; Wang, M-D.; Xie, D-H.; Shu, D-T.; Hu, H.; Lin, S.T.; Li, H.F.; Luo, F.F.; Sun, R.; Huang, B.J.; Qian, C.N. Antioxidants suppress radiation-induced apoptosis via inhibiting MAPK pathway in nasopharyngeal carcinoma cells. Biochem. Biophys. Res. Commun., 2020, 527(3), 770-777.
[http://dx.doi.org/10.1016/j.bbrc.2020.04.093] [PMID: 32446561]
[54]
Shirinzadeh, H.; Neuhaus, E.; Ince Erguc, E.; Tascioglu Aliyev, A.; Gurer-Orhan, H.; Suzen, S. New indole-7-aldehyde derivatives as melatonin analogues; synthesis and screening their antioxidant and anticancer potential. Bioorg. Chem., 2020, 104, 104219.
[http://dx.doi.org/10.1016/j.bioorg.2020.104219] [PMID: 32916391]
[55]
Anderson, J.W.; Gowri, M.S.; Turner, J.; Nichols, L.; Diwadkar, V.A.; Chow, C.K.; Oeltgen, P.R. Antioxidant supplementation effects on low-density lipoprotein oxidation for individuals with type 2 diabetes mellitus. J. Am. Coll. Nutr., 1999, 18(5), 451-461.
[http://dx.doi.org/10.1080/07315724.1999.10718883] [PMID: 10511327]
[56]
Shankar, P.; Kumar, V.; Rao, N. Evaluation of antidiabetic activity of Ginkgo biloba in streptozotocin induced diabetic rats. Iran J. Pharmacol. Ther., 2005, 4(1), 16-19.
[57]
Khajehdehi, P. Turmeric: Reemerging of a neglected Asian traditional remedy. J. Nephropathol., 2012, 1(1), 17-22.
[http://dx.doi.org/10.5812/jnp.5] [PMID: 24475382]
[58]
Nasri, H.; Rafieian-Kopaei, M. Metformin and diabetic kidney disease: A mini-review on recent findings. Iran. J. Pediatr., 2014, 24(5), 565-568.
[PMID: 25793062]
[59]
Rahimi-Madiseh, M.; Bahmani, M.; Karimian, P.; Rafieian-kopaei, M. Herbalism in Iran: A systematic review. Der Pharma. Chem., 2016, 8(2), 36-42.
[60]
Parthasarathy, L.; Khadilkar, V.; Chiplonkar, S.; Khadilkar, A. Effect of antioxidant supplementation on total antioxidant status in Indian children with type 1 diabetes. J. Diet. Suppl., 2019, 16(4), 390-400.
[http://dx.doi.org/10.1080/19390211.2018.1470123] [PMID: 29958027]
[61]
Franco, R.R.; Mota Alves, V.H.; Ribeiro Zabisky, L.F.; Justino, A.B.; Martins, M.M.; Saraiva, A.L.; Goulart, L.R.; Espindola, F.S. Antidiabetic potential of Bauhinia forficata Link leaves: A non-cytotoxic source of lipase and glycoside hydrolases inhibitors and molecules with antioxidant and antiglycation properties. Biomed. Pharmacother., 2020, 123, 109798.
[http://dx.doi.org/10.1016/j.biopha.2019.109798] [PMID: 31877553]
[62]
Sun, C.; Liu, Y.; Zhan, L.; Rayat, G.R.; Xiao, J.; Jiang, H.; Li, X.; Chen, K. Anti-diabetic effects of natural antioxidants from fruits. Trends Food Sci. Technol., 2020.
[http://dx.doi.org/10.1016/j.tifs.2020.07.024]
[63]
Stanner, S.A.; Hughes, J.; Kelly, C.N.; Buttriss, J. A review of the epidemiological evidence for the ‘antioxidant hypothesis’. Public Health Nutr., 2004, 7(3), 407-422.
[http://dx.doi.org/10.1079/PHN2003543] [PMID: 15153272]
[64]
Xia, Z.; Liu, M.; Wu, Y.; Sharma, V.; Luo, T.; Ouyang, J.; McNeill, J.H. N-acetylcysteine attenuates TNF-alpha-induced human vascular endothelial cell apoptosis and restores eNOS expression. Eur. J. Pharmacol., 2006, 550(1-3), 134-142.
[http://dx.doi.org/10.1016/j.ejphar.2006.08.044] [PMID: 17026986]
[65]
Bonello, S.; Zähringer, C. BelAiba, R.S.; Djordjevic, T.; Hess, J.; Michiels, C.; Kietzmann, T.; Görlach, A. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler. Thromb. Vasc. Biol., 2007, 27(4), 755-761.
[http://dx.doi.org/10.1161/01.ATV.0000258979.92828.bc] [PMID: 17272744]
[66]
Ozkanlar, S.; Akcay, F. Antioxidant vitamins in atherosclerosis--animal experiments and clinical studies. Adv. Clin. Exp. Med., 2012, 21(1), 115-123.
[PMID: 23214308]
[67]
Maiolino, G.; Rossitto, G.; Caielli, P.; Bisogni, V.; Rossi, G.P.; Calò, L.A. The role of oxidized low-density lipoproteins in atherosclerosis: The myths and the facts. Mediators Inflamm., 2013, 2013(3), 714653.
[http://dx.doi.org/10.1155/2013/714653] [PMID: 24222937]
[68]
Bagherifard, A.; Amini Kadijani, A.; Yahyazadeh, H.; Rezazadeh, J.; Azizi, M.; Akbari, A.; Mirzaei, A. The value of serum total oxidant to the antioxidant ratio as a biomarker of knee osteoarthritis. Clin. Nutr. ESPEN, 2020, 38, 118-123.
[http://dx.doi.org/10.1016/j.clnesp.2020.05.019] [PMID: 32690145]
[69]
Huges, M.C.B.; Williams, G.M.; Pageon, H.; Foutanier, A.; Green, A.C. Dietary antioxidant capacity and skin photoaging: A 15-year longitudinal study. J. Invest. Dermatol., 2020.
[http://dx.doi.org/10.106/j.jid.2020.06.026] [PMID: 32682911]
[70]
Murugan, M.; Rajendran, K.; Velmurugan, T.; Muthu, S.; Gundappa, M.; Thangavel, S. Antagonistic and antioxidant potencies of Centrosema pubescens benth extracts against nosocomial infection pathogens. Biocatal. Agric. Biotechnol., 2020.
[http://dx.doi.org/10.1016/j.bcab.2020.101776]
[71]
Avila-Nava, A.; Medina-Vera, I.; Rodriguez-Hernandez, P.; Guevara-Cruz, M.; Canton, P.K.H-G.; Tovar, A.R.; Torres, N. Oxalate content and antioxidant activity of different ethnic foods. J. Ren. Nutr., 2020.
[http://dx.doi.org/10.1053/j.jrn.2020.04.006] [PMID: 32709427]
[72]
Balaji, S.; Saravanan, R.; Kapilan, N. Influence of propyl gallate antioxidant on performance and emissions of a compression ignition engine fueled with Madhuca Indica B20 ester blends. Energt Source Part A: Recov; Util Environ Effects, 2019.
[http://dx.doi.org/10.1080/15567036.2019.1644396]
[73]
Jeyakumar, N.; Narayanasamy, B.; Balasubramanian, D.; Viswanathan, K. Characterization and effect of Moringa Oleifera Lam. antioxidant additive on the storage stability of Jatropha biodiesel. Fuel, 2020, 281, 118614.
[http://dx.doi.org/10.1016/j.fuel.2020.118614]
[74]
Kerkel, F.; Brock, D.; Touraud, D.; Kunz, W. Stabilisation of biofuels with hydrophilic, natural antioxidants solubilised by glycerol derivatives. Fuel, 2021, 284, 119055.
[http://dx.doi.org/10.1016/j.fuel.2020.119055]
[75]
Mirshafiey, A.; Mohsenzadegan, M. Antioxidant therapy in multiple sclerosis. Immunopharmacol. Immunotoxicol., 2009, 31(1), 13-29.
[http://dx.doi.org/10.1080/08923970802331943] [PMID: 18763202]
[76]
Gohari, A.R.; Hajimehdipoor, H.; Saeidnia, S.; Ajani, Y.; Hadjiakhoondi, A. Antioxidant activity of some medicinal species using FRAP assay. Faslnamah-i Giyahan-i Daruyi, 2011, 10(37), 54-60.
[77]
Pan, X.; Liu, X.; Zhao, H.; Wu, B.; Liu, G. Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson,s disease model of rats and SH-S5Y5 cells by preveting loss of tyrosine hydroxylase. J. Funct. Foods, 2020, 74, 104140.
[http://dx.doi.org/10.1016/j.jff.2020.104140]
[78]
Silva, C.; Pinto, M.; Fernandes, C.; Benfeito, S.; Borges, F. Antioxidant therapy and neurodegenerative disorders: Lessons from clinical trials. Syst. Med. (New Rochelle), 2021, 2, 97-110.
[79]
Canakçi, C.F.; Ciçek, Y.; Canakçi, V. Reactive oxygen species and human inflammatory periodontal diseases. Biochemistry (Mosc.), 2005, 70(6), 619-628. [Mosc
[http://dx.doi.org/10.1007/s10541-005-0161-9] [PMID: 16038603]
[80]
Carnelio, S.; Khan, S.A.; Rodrigues, G. Definite, probable or dubious: Antioxidants trilogy in clinical dentistry. Br. Dent. J., 2008, 204(1), 29-32.
[http://dx.doi.org/10.1038/bdj.2007.1186] [PMID: 18192996]
[81]
Miricescu, D.; Greabu, M.; Totan, A.; Didilescu, A.; Radulescu, R. The antioxidant potential of saliva: Clinical significance in oral diseases. Ther. Pharmacol. Clin. Toxicol., 2011, 15(2), 139-143.
[82]
Kumar, G.; Jalaluddin, M.; Rout, P.; Mohanty, R.; Dileep, C.L. Emerging trends of herbal care in dentistry. J. Clin. Diagn. Res., 2013, 7(8), 1827-1829.
[PMID: 24086929]
[83]
Parthiban, S.; Arnold, J.; Shankarram, V.; Kumar, T.; Kadhiresan, R. Antioxidants in vitro is it a need for oral precancerous lesion. J. Int. Oral Health, 2016, 8, 220-223.
[84]
Xu, D-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J-J.; Li, H-B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci., 2017, 18(1), 96.
[http://dx.doi.org/10.3390/ijms18010096] [PMID: 28067795]
[85]
Ara, N.; Nur, H. In vitro antioxidant activity of methanolic leaves and flowers of Lippia alba. Res. J. Med. Med. Sci., 2009, 4(1), 107-110.
[86]
Sharma, P.; Bhat, T. DPPH antioxidant assay revisited. Food Chem., 2009, 113(4), 1202-1205.
[http://dx.doi.org/10.1016/j.foodchem.2008.08.008]
[87]
Piatti, E. Raw millefiori honey is packed full of antioxidants. Food Chem., 2006, 97(2), 217-222.
[http://dx.doi.org/10.1016/j.foodchem.2005.03.039]
[88]
Vichitphan, S.; Vichitphanl, K. Flavonoid content Lavonoid content and antioxidant activity of Kaempferia parviflora wine. Kmttl Sci. Tech. J., 2007, 7, 97-105.
[89]
Jayasri, M.A.; Mathew, L.; Radha, A.A. A report on the antioxidant activity of leaves and rhizomes of Costus pictms. Int. J. Integr. Biol., 2009, 5(1), 1-7.
[90]
Rach, P.R.; Patel, S.R. In vitro evaluation of antioxidant in vitro evaluation of antioxidant activity of Gymnema sylvestre leaf extract. Rom J Biol.-. Plant Biol., 2009, 54(2), 141-148.
[91]
Shukla, S.; Mehta, A.; John, J.; Singh, S.; Mehta, P.; Vyas, S.P. Antioxidant activity and total phenolic content of ethanolic extract of Caesalpinia bonducella seeds. Food Chem. Toxicol., 2009, 47(8), 1848-1851.
[http://dx.doi.org/10.1016/j.fct.2009.04.040] [PMID: 19422871]
[92]
Agrawal Surendra, S.; Talele Gokul, S. Free radical scavenging activity of Capparis zeylanica, Medicinal Plants. Int. J. Phytomed. Related Ind., 2009, 1(2), 405-425.
[93]
Balakrishnam, N.; Panda, A.B.; Raj, N.R.; Shrivastava, A.; Prathani, R. The evaluation of nitric oxide scavenging activity of Acalypha Indica Liin root. Asian J. Res. Chem, 2009, 2(2), 148-150.
[94]
Payet, B.; Shum Cheong Sing, A.; Smadja, J. Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: Determination of their polyphenolic and volatile constituents. J. Agric. Food Chem., 2005, 53(26), 10074-10079.
[http://dx.doi.org/10.1021/jf0517703] [PMID: 16366697]
[95]
Teow, C.; Truong, V. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colors. Food Chem., 2007, 103, 829-838.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.033]
[96]
Asghar, M.N.; Ullah Khan, I. Evaluation of antioxidant activity using an improved DMBD radical action decolorization assay. Acta Chim. Slov., 2007, 54(2), 295-300.
[97]
Ehlenfeldt, M.K.; Prior, R.L. Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. J. Agric. Food Chem., 2001, 49(5), 2222-2227.
[http://dx.doi.org/10.1021/jf0013656] [PMID: 11368580]
[98]
Xu, B.J.; Yuan, S.H.; Chang, S.K. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J. Food Sci., 2007, 72(2), S167-S177.
[http://dx.doi.org/10.1111/j.1750-3841.2006.00261.x] [PMID: 17995859]
[99]
Kadifkova Panovska, T.; Kulevanova, S.; Stefova, M. In vitro antioxidant activity of some Teucrium species (Lamiaceae). Acta Pharm., 2005, 55(2), 207-214.
[PMID: 16179134]
[100]
Zahin, M.; Aqil, A. The in vitro antioxidant activity and total phenolic content of four Indian medicinal plants. Int. J. Pharm. Pharm. Sci., 2009, 1(1), 88-95.
[101]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Traditional herbal medicine for the prevention and treatment of cold and flu in the autumn of 2020, overlapped with COVID-19. Nat. Prod. Commun., 2020, 15(8), 1-10.
[http://dx.doi.org/10.1177/1934578X20951431]
[102]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Product of natural evolution (SARS, MERS and SARS-CoV-2); deadly diseases, from SARS to SARS-CoV-2; Hum Vaccines Immunother, 2020.
[http://dx.doi.org/10.1080/21645515.2020.1797369]
[103]
Shahrajabian, M.H.; Sun, W.; Shen, H.; Cheng, Q. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak. Acta Agric. Scand. B Soil Plant Sci., 2020.
[http://dx.doi.org/10.1080/09064710.2020.1763448]
[104]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chinese star anise (Illicium verum) and pyrethrum (Chrysanthemum cinerariifolium) as natural alternatives for organic farming and health care- A review. Aust. J. Crop Sci., 2020, 14(03), 517-523.
[http://dx.doi.org/10.21475/ajcs.20.14.03.p2209]
[105]
Ao, C.; Zhou, W.; Gao, L.; Dong, B.; Yu, L. Prediction of antioxidant proteins using hybrid feature representation method and random forest. Genomics, 2020, 112(6), 4666-4674.
[http://dx.doi.org/10.1016/j.ygeno.2020.08.016] [PMID: 32818637]
[106]
Leite, K.C.D.S.; Garcia, L.F.; Lobon, G.S.; Thomaz, D.V.; Moreno, E.K.G.; Carvalho, M.F.D.; Rocha, M.L.; Santos, W.T.P.D.; Gil, E.D.S. Antioxidant activity evaluation of dried extracts: An electroanalytical approach. Rev. Bras. Farmacogn., 2018, 28, 325-332.
[http://dx.doi.org/10.1016/j.bjp.2018.04.004]
[107]
Abouseadaa, H.H.; Atia, M.A.M.; Younis, I.Y.; Issa, M.Y.; Ashour, H.A.; Saleh, I.; Osman, G.H.; Arif, I.A.; Mohsen, E. Gene-targeted molecular phylogeny, phytochemical profiling, and antioxidant activity of nine species belonging to family Cactaceae. Saudi J. Biol. Sci., 2020, 27(6), 1649-1658.
[http://dx.doi.org/10.1016/j.sjbs.2020.03.007] [PMID: 32489307]
[108]
Sharma, K.; Guleria, S.; Razdan, V.K.; Babu, V. Synergistic antioxidant and antimicrobial activities of essential oils of some selected medicinal plants in combination and with synthetic compounds. Ind. Crops Prod., 2020, 154, 112569.
[http://dx.doi.org/10.1016/j.indcrop.2020.112569]
[109]
Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrovial and antioxidant applications. Grain Oil Sci Technol., 2019, 2, 49-55.
[http://dx.doi.org/10.1016/j.gaost.2019.03.001]
[110]
Caldefie-Chézet, F.; Fusillier, C.; Jarde, T.; Laroye, H.; Damez, M.; Vasson, M.P.; Guillot, J. Potential anti-inflammatory effects of Melaleuca alternifolia essential oil on human peripheral blood leukocytes. Phytother. Res., 2006, 20(5), 364-370.
[http://dx.doi.org/10.1002/ptr.1862] [PMID: 16619364]
[111]
Aruoma, O.I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc., 1998, 75(2), 199-212.
[http://dx.doi.org/10.1007/s11746-998-0032-9] [PMID: 32287334]
[112]
Modzelewska, A.; Sur, S.; Kumar, S.K.; Khan, S.R. Sesquiterpenes: Natural products that decrease cancer growth. Curr. Med. Chem. Anticancer Agents, 2005, 5(5), 477-499.
[http://dx.doi.org/10.2174/1568011054866973] [PMID: 16178774]
[113]
Noon, J.; Mills, T.B.; Norton, I.T. The use of natural antioxidants to combat lipid oxidation in O/W emulsions. J. Food Eng., 2020, 281, 110006.
[http://dx.doi.org/10.1016/j.jfoodeng.2020.110006]
[114]
Aoussar, N.; Rhallabi, N.; Ait Mhand, R.; Manzali, R.; Bouksaim, M.; Douira, A.; Mellouki, F. Seasonal variation of antioxidant activity and phenolic content of Pseudevernia furfuracea, Evernia prunastri and Ramalina farinaceae from Morocco. J. Saudi Soc. Agric. Sci., 2020, 19, 1-6.
[http://dx.doi.org/10.1016/j.jssas.2018.03.004]
[115]
Crespo, Y.A.; Bravo Sánchez, L.R.; Quintana, Y.G.; Cabrera, A.S.T.; Bermúdez Del Sol, A.; Mayancha, D.M.G. Evaluation of the synergistic effects of antioxidant activity on mixtures of the essential oil from Apium graveolens L., Thymus vulgaris L. and Coriandrum sativum L. using simplex-lattice design. Heliyon, 2019, 5(6), e01942.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01942] [PMID: 31245650]
[116]
Kruzselyi, D.; Moricz, A.M.; Vetter, J. Comparison of different morphological mushroom parts based on the antioxidant activity. Lebensm. Wiss. Technol., 2020, 127, 109436.
[http://dx.doi.org/10.1016/j.lwt.2020.109436]
[117]
Ngoua-Meye-Misso, R-L.; Sima-Obiang, C.; Ndong, J.D.L.C.; Ondo, J.P.; Ovono, A.F.; Obame-Engonga, L-C. Phytochemical screening, antioxidant, anti-inflammatory and antiangiogenic activities of Lophira procera A. Chev. (Ochnaceae) medicinal plant from Gabon. Egyp. J. Basic Appl. Sci., 2018, 5, 80-86.
[http://dx.doi.org/10.1016/j.ejbas.2017.11.003]
[118]
Bakasatae, N.; Kunworarath, N.; Yupanqui, C.T.; Voravuthikunchai, S.P.; Joycharat, N. Bioactive components, antioxidant, and anti-inflammatory activities of the wood of Albizia myriophylla. Rev. Bras. Farmacogn., 2018, 28, 444-450.
[http://dx.doi.org/10.1016/j.bjp.2018.05.010]
[119]
Kolawole, A.O.; Olaleye, M.T.; Ajele, J.O. Antioxidant properties and glutathione S-transferases inhibitory activity of Alchornea cordifolia leaf extract in acetaminophen-induced liver injury. Iran J. Pharmacol. Ther., 2007, 6(1), 63-66.
[120]
Zhang, J.; Li, Z.; Zhou, L.; Bao, J.; Xu, J. The modifications of a fructan from Anemarrhena asphodeloides Bunge and their antioxidant activities. Int. J. Biol. Macromol., 2020, 164, 4435-4443.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.024] [PMID: 32910965]
[121]
Song, R.; Liang, T.; Shen, Q.; Liu, J.; Lu, Y.; Tang, C.; Chen, X.; Hou, T.; Chen, Y. The optimization of production and characterization of antioxidant peptides from protein hydrolysates of Agrocybe aegerita. Lebensm. Wiss. Technol., 2020, 134, 109987.
[http://dx.doi.org/10.1016/j.lwt.2020.109987]
[122]
Bandli, J.K.; Heidari, R. The evaluation of antioxidant activities and phenolic compounds in leaves and inflorescence of Artemisia dracunculus L. by HPLC. J. Med. Plant, 2014, 13(51), 41-50.
[123]
Gupta, M.; Mazumder, U.K.; Kumar, T.S.; Gomathi, P.; Kumar, R.S. Antioxidant and hepatoprotective effects of Bauhinia racemosa against paracetamol and carbon tetrachloride induced liver damage in rats. Iran J. Pharmacol. Ther., 2004, 3(1), 12-20.
[124]
Fernández, N.J.; Damiani, N.; Podaza, E.A.; Martucci, J.F.; Fasce, D.; Quiroz, F.; Meretta, P.E.; Quintana, S.; Eguaras, M.J.; Gende, L.B. Laurus nobilis L. Extracts against Paenibacillus larvae: Antimicrobial activity, antioxidant capacity, hygienic behavior and colony strength. Saudi J. Biol. Sci., 2019, 26(5), 906-912.
[http://dx.doi.org/10.1016/j.sjbs.2018.04.008] [PMID: 31303818]
[125]
Jitvaropas, R.; Saenthaweesuk, S.; Somparn, N.; Thuppia, A.; Sireeratawong, S.; Phoolcharoen, W. Antioxidant, antimicrobial and wound healing activities of Boesenbergia rotunda. Nat. Prod. Commun., 2012, 7(7), 909-912.
[http://dx.doi.org/10.1177/1934578X1200700727] [PMID: 22908579]
[126]
Fidelis, M.; de Oliveira, S.M.; Sousa Santos, J.; Bragueto Escher, G.; Silva Rocha, R.; Gomes Cruz, A.; Araújo Vieira do Carmo, M.; Azevedo, L.; Kaneshima, T.; Oh, W.Y.; Shahidi, F.; Granato, D. From byproduct to a functional ingredient: Camu-camu (Myrciaria dubia) seed extract as an antioxidant agent in a yogurt model. J. Dairy Sci., 2020, 103(2), 1131-1140.
[http://dx.doi.org/10.3168/jds.2019-17173] [PMID: 31759605]
[127]
Fırtın, B.; Yenipazar, H.; Saygün, A.; Şahin-Yeşilçubuk, N. Encapsulation of chia seed oil with curcumin and investigation of release behaivour & antioxidant properties of microcapsules during in vitro digestion studies. Lebensm. Wiss. Technol., 2020, 134, 109947.
[http://dx.doi.org/10.1016/j.lwt.2020.109947] [PMID: 32834119]
[128]
de Oliveira, S.Q.; Kappel, V.D.; Pires, V.S.; Lencina, C.L.; Sonnet, P.; Moreira, J.C.F.; Gosmann, G. Antioxidant properties of phenolic compounds from Baccharis articulata and B. usterii. Nat. Prod. Commun., 2014, 9(7), 941-942.
[http://dx.doi.org/10.1177/1934578X1400900714] [PMID: 25230498]
[129]
Vidal-Gutierrez, M.; Robles-Zepeda, R.E.; Vilegas, W.; Gonzalez-Aguilar, G.A.; Torres-Moreno, H.; Lopez-Romero, J.C. Phenolic composition and antioxidant activity of Bursera microphylla A. Gray. Ind. Crops Prod., 2020, 152, 112412.
[http://dx.doi.org/10.1016/j.indcrop.2020.112412]
[130]
Murugesu, S.; Perumal, V.; Balan, T.; Fatinanthan, S.; Khatib, A.; Arifin, N.J.; Shukri, N.S.S.M.; Saleh, M.S.M.; Hin, L.W. The investigation of antioxidant and antidiabetic activities of Christia vespertilionis leaves extracts. S. Afr. J. Bot., 2020, 133, 227-235.
[http://dx.doi.org/10.1016/j.sajb.2020.07.015]
[131]
Miranda Pedroso, T.F.D.; Bonamigo, T.R.; da Silva, J.; Vasconcelos, P.; Félix, J.M.; Cardoso, C.A.L.; Souza, R.I.C.; Dos Santos, A.C.; Volobuff, C.R.F.; Formagio, A.S.N.; Trichez, V.D.K. Chemical constituents of Cochlospermum regium (Schrank) Pilg. root and its antioxidant, antidiabetic, antiglycation, and anticholinesterase effects in Wistar rats. Biomed. Pharmacother., 2019, 111, 1383-1392.
[http://dx.doi.org/10.1016/j.biopha.2019.01.005] [PMID: 30841453]
[132]
Zhu, Y.; Yu, X.; Ge, Q.; Li, J.; Wang, D.; Wei, Y.; Ouyang, Z. Antioxidant and anti-aging activities of polysaccharides from Cordyceps cicadae. Int. J. Biol. Macromol., 2020, 157, 394-400.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.163] [PMID: 32339570]
[133]
Atere, T.G.; Akinloye, O.A.; Ugbaja, R.N.; Oko, D.A.; Dealtry, G. In vitro antioxidant capacity and free radical scavenging evaluation of standardized extract of Costus afer leaf. Food Sci. Hum. Wellness, 2018, 7, 266-272.
[http://dx.doi.org/10.1016/j.fshw.2018.09.004]
[134]
Paudel, M.R.; Joshi, P.R.; Chand, K.; Sah, A.K.; Acharya, S.; Pant, B.; Pant, B. Antioxidant, anticancer and antimicrobial effects of In vitro developed protocorms of Dendrobium longicornu. Biotechnol. Rep. (Amst.), 2020, 28, e00527.
[http://dx.doi.org/10.1016/j.btre.2020.e00527] [PMID: 32983924]
[135]
Kiyekbayeva, L.; Mohamed, N.M.; Yerkebulan, O.; Mohamed, E.I.; Ubaidilla, D.; Nursulu, A.; Assem, M.; Srivedavyasasri, R.; Ross, S.A. Phytochemical constituents and antioxidant activity of Echinops albicaulis. Nat. Prod. Res., 2018, 32(10), 1203-1207.
[http://dx.doi.org/10.1080/14786419.2017.1323213] [PMID: 28475371]
[136]
Badaoui, M.I.; Magid, A.A.; Voutquenne-Nazabadioko, L.; Benkhaled, M.; Harakat, D.; Robert, A.; Haba, H. Antioxidant activity-guided isolation of constituents from Euphorbia gaditana Coss. And their antioxidant and tyrosinase inhibitory activities. Phytochem. Lett., 2020, 39, 99-104.
[http://dx.doi.org/10.1016/j.phytol.2020.07.012]
[137]
Lan, W.; Zhaojun, Z.; Zesheng, Z. Characterization of antioxidant activity of extracts from Flos Lonicerae. Drug Dev. Ind. Pharm., 2007, 33(8), 841-847.
[http://dx.doi.org/10.1080/03639040701378019] [PMID: 17729101]
[138]
Muhammad, H.; Qasim, M.; Ikram, A.; Versiani, M.A.; Tahiri, I.A.; Yasmeen, K.; Abbasi, M.W.; Azeem, M.; Ali, S.T.; Gul, B. Antioxidant and antimicrobial activities of Ixora coccinea root and quantification of phenolic compounds using HPLC. S. Afr. J. Bot., 2020, 135, 71-79.
[http://dx.doi.org/10.1016/j.sajb.2020.08.012]
[139]
Vidya, R.; Masilla, B.R.P.; Saranya, J.; Eganathan, P.; Jithin, M.M.; Kumar, N.P.A. Antioxidant activities of wood and leaf extracts of Hopea erosa. J. Biol. Active Prod. Nature, 2013, 3(2), 14-160.
[140]
Sarikurkcu, C.; Zengin, G.; Oskay, M.; Uysal, S.; Ceylan, R.; Aktumsek, A. Composition, antioxidant, antimicrobial and enzyme inhibition activities of two Origanum vulgare subspecies (subsp. vulgar and subsp. hirtum) essential oils. Ind. Crops Prod., 2015, 70, 178-184.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.030]
[141]
Sargowo, D.; Ovianti, N.; Susilowati, E.; Ubaidillah, N.; Widya Nugraha, A. Vitriyaturrida; Siwi Proboretno, K.; Failasufi, M.; Ramadhan, F.; Wulandari, H.; Waranugraha, Y.; Hayuning Putri, D. The role of polysaccharide peptide of Ganoderma lucidum as a potent antioxidant against atherosclerosis in high risk and stable angina patients. Indian Heart J., 2018, 70(5), 608-614.
[http://dx.doi.org/10.1016/j.ihj.2017.12.007] [PMID: 30392496]
[142]
Thummajitsakul, S.; Samaikam, S.; Tacha, S.; Silprasit, K. Study on FTIR spectroscopy, total phenolic content, antioxidant activity and anti-amylase activity of extracts and different tea forms of Garcinia schomburgkiana leaves. Lebensm. Wiss. Technol., 2020, 134, 110005.
[http://dx.doi.org/10.1016/j.lwt.2020.110005]
[143]
Dutta, S.; Ray, S. Evaluation of in vitro free radical scavenging activity of leaf extract fractions of Manilkara hexandra (Roxb) Dubard in relation to total phenolic contents. Int. J. Pharm. Pharm. Sci., 2015, 7(10), 296-301.
[144]
Dutta, S.; Ray, S. Comparative assessment of total phenolic content and in vitro antioxidant activities of bark and leaf methanolic extracts of Manilkara hexandra (Roxb.). Dubard. J. King Saud Univ. Sci., 2020, 32, 643-647.
[http://dx.doi.org/10.1016/j.jksus.2018.09.015]
[145]
Chick, C.N.; Misawa-Suzuki, T.; Suzuki, Y.; Usuki, T. Preparation and antioxidant study of silver nanoparticles of Microsorum pteropus methanol extract. Bioorg. Med. Chem. Lett., 2020, 30(22), 127526.
[http://dx.doi.org/10.1016/j.bmcl.2020.127526] [PMID: 32882415]
[146]
Liu, Y.; Li, Y.; Ke, Y.; Li, C.; Zhang, Z.; Liu, A.; Luo, Q.; Lin, B.; He, J.; Wu, W. Processing of four different cooking methods of Oudemansiella radicata: Effects on in vitro bioaccessibility of nutrients and antioxidant activity. Food Chem., 2021, 337, 128007.
[http://dx.doi.org/10.1016/j.foodchem.2020.128007] [PMID: 32919278]
[147]
Lee, Y.H.; Choo, C.; Waisundara, V.Y. Antioxidant and starch hydrolase inhibitory properties of extracts of the antidiabetic herb Pterocarpus marsupium. Isr. J. Plant Sci., 2016, 63(2), 124-133.
[http://dx.doi.org/10.1080/07929978.2015.1105477]
[148]
Dkhil, M.A.; Thagfan, F.A.; Hassan, A.S.; Al-Shaebi, E.M.; Abdel-Gaber, R.; Al-Quraishy, S. Anthelmintic, anticoccidial and antioxidant activity of Salvadora persica root extracts. Saudi J. Biol. Sci., 2019, 26(6), 1223-1226.
[http://dx.doi.org/10.1016/j.sjbs.2019.02.006] [PMID: 31516352]
[149]
Rutkowska, M.; Balcerczak, E.; Swiechowski, R.; Dubicka, M.; Olszewska, M.A. Seasonal variation in phenylpropanoid biosynthesis and in vitro antioxidant activity of Sorbus domestica leaves: Harvesting time optimization for medical application. Ind. Crops Prod., 2020, 156, 112858.
[http://dx.doi.org/10.1016/j.indcrop.2020.112858]
[150]
Bursal, E.; Taslimi, P.; Goren, A.C.; Gulcin, I. Assessment of anticholinergic, antidiabetic, antioxidant activities and phenolic content of Stachys annua. Biocatal. Agric. Biotechnol., 2020, 28, 101711.
[http://dx.doi.org/10.1016/j.bcab.2020.101711]
[151]
Leporini, L.; Menghini, L.; Foddai, M.; Petretto, G.L.; Chessa, M.; Tirillini, B.; Pintore, G. Antioxidant and antiproliferative activity of Stachys glutinosa L. ethanol extract. Nat. Prod. Res., 2015, 29(10), 899-907.
[http://dx.doi.org/10.1080/14786419.2014.955490] [PMID: 25205114]
[152]
Mahboubi, M. Antimicrobial and antioxidant activity of Varthemia persica DC extracts. Journal of Biologically Active Products from Nature, 2016, 6(1), 78-83.
[http://dx.doi.org/10.1080/22311866.2016.1156022]
[153]
Voravuthikunchai, S.P.; Kanchanapoom, T.; Sawangjaroen, N.; Hutadilok-Towatana, N. Antioxidant, antibacterial and antigiardial activities of Walsura robusta Roxb. Nat. Prod. Res., 2010, 24(9), 813-824.
[http://dx.doi.org/10.1080/14786410902819152] [PMID: 20461627]
[154]
Vitalini, S.; Beretta, G.; Iriti, M.; Orsenigo, S.; Basilico, N.; Dall’Acqua, S.; Iorizzi, M.; Fico, G. Phenolic compounds from Achillea millefolium L. and their bioactivity. Acta Biochim. Pol., 2011, 58(2), 203-209.
[http://dx.doi.org/10.18388/abp.2011_2266] [PMID: 21503279]
[155]
Farhadi, N.; Babaei, K.; Farsaraei, S.; Moghaddam, M.; Pirbalouti, A.G. Changes in essential oil compositions, total phenol, flavonoids and antioxidant capacity of Achillea millefolium at different growth stages. Ind. Crops Prod., 2020, 152, 112570.
[http://dx.doi.org/10.1016/j.indcrop.2020.112570]
[156]
Dehghan, H.; Sarrafi, Y.; Salehi, P. Antioxidant and antidiabetic activities of 11 herbal plants from Hyrcania region, Iran. J. Food Drug Anal., 2016, 24(1), 179-188.
[http://dx.doi.org/10.1016/j.jfda.2015.06.010] [PMID: 28911402]
[157]
Norfaizatul, S.O.; Zetty Akmal, C.Z.; Noralisa, A.K.; Then, S.M.; Wan Zurinah, W.N.; Musalmah, M. Dual effects of plant antioxidants on neuron cell viability. J. Med. Plant, 2010, 9(6), 113-123.
[158]
Gharibi, S.; Tabatabaei, B.E.S.; Saeidi, G.; Goli, S.A.H.; Talebi, M. Total phenolic content and antioxidant activity of three Iranian endemic Achillea species. Ind. Crops Prod., 2013, 50, 154-158.
[http://dx.doi.org/10.1016/j.indcrop.2013.07.038]
[159]
Firuzi, O.; Javidnia, K.; Gholami, M.; Soltani, M.; Miri, R. Antioxidant activity and total phenolic content of 24 Lamiaceae species growing in Iran. Nat. Prod. Commun., 2010, 5(2), 261-264.
[http://dx.doi.org/10.1177/1934578X1000500219] [PMID: 20334140]
[160]
Khalighi-Sigaroodi, F.; Ahvazi, M.; Yazdani, D.; Kashefi, M. Cytotoxicity and antioxidant activity of five plant species of Solanaceae family from Iran. J. Med. Plant, 2012, 11(43), 41-53.
[161]
Hosseinzadeh, M.; Moayedi, A.; Chodar Moghadas, H.; Rezaei, K. Nutritional, anti-nutritional, and antioxidant properties of several wild almond species from Iran. J. Agric. Sci. Technol., 2019, 21(2), 369-380.
[162]
Tabaraki, R.; Nateghi, A.; Ahmady-Asbchin, S. In vitro assessment of antioxidant and antibacterial activities of six edible plants from Iran. J. Acupunct. Meridian Stud., 2013, 6(3), 159-162.
[http://dx.doi.org/10.1016/j.jams.2013.01.016] [PMID: 23787285]
[163]
Safari, M.R.; Azizi, O.; Heidary, S.S.; Kheiripour, M.; Ravan, A.P. Antiglycation and antioxidant activity of four Iranian medical plant extracts J. Pharmcopunc, 2018, 21(2), 082-089.
[164]
Falahi, E.; Delshadian, Z.; Ahmadvand, H.; Shokri Jokar, S. Head space volatile constituents and antioxidant properties of five traditional Iranian wild edible plants grown in west of Iran. AIMS Agric Food, 2019, 4(4), 1034-1053.
[http://dx.doi.org/10.3934/agrfood.2019.4.1034]
[165]
Rezaeian, S.; Pourianfar, H.R.; Janpoor, J. Antioxidant properties of several medicinal plants growing wild in northeastern Irna. Asian J. Plant Sci. Res., 2015, 5(2), 63-68.
[166]
Boroomand, N.; Sadat-Hosseini, M.; Moghbeli, M.; Farajpour, M. Phytochemical components, total phenol and mineral contents and antioxidant activity of six major medicinal plants from Rayen, Iran. Nat. Prod. Res., 2018, 32(5), 564-567.
[http://dx.doi.org/10.1080/14786419.2017.1315579] [PMID: 28403651]
[167]
Gharib, A.; Godarzee, M. Determination of secondary metabolites and antioxidant activity of some boraginaceae species growing in Iran. Trop. J. Pharm. Res., 2016, 15(11), 2459-2465.
[http://dx.doi.org/10.4314/tjpr.v15i11.22]
[168]
Valizadeh, H.; Sonboli, A.; Mahmoodi Kordi, F.; Dehghan, H.; Bahadori, M.B. Cytotoxicity, antioxidant activity and phenolic content of eight fern species from North of Iran. Pharm. Sci., 2015, 21, 18-24.
[http://dx.doi.org/10.15171/PS.2015.12]
[169]
Cao, J.; Zheng, Y.; Xia, X.; Wang, Q.; Xiao, J. Total flavonoid contents, antioxidant potential and acetylcholinesterase inhibition activity of the extracts from 15 ferns in China. Ind. Crop Prod., 2015, 785((Part B)), 135-140.
[170]
Kaskoos, R.A.; Amin, S. Chemical composition of fixed oil of Olea europaea Drupes. Res. J. Med. Plant, 2009, 3(4), 146-150.
[http://dx.doi.org/10.3923/rjmp.2009.146.150]
[171]
Hosseinzadeh, H.; Karimi, G.R.; Ameri, M. Effects of Anethum graveolens L. seed extracts on experimental gastric irritation models in mice. BMC Pharmacol., 2002, 2(1), 21-28.
[http://dx.doi.org/10.1186/1471-2210-2-21] [PMID: 12493079]
[172]
Kaur, G.J.; Arora, D.S. Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complement. Altern. Med., 2009, 9(1), 30-39.
[http://dx.doi.org/10.1186/1472-6882-9-30] [PMID: 19656417]
[173]
Monsefi, M.; Ghasemi, M.; Bahaoddini, A. The effects of Anethum graveolens L. on female reproductive system. Phytother. Res., 2006, 20(10), 865-868.
[http://dx.doi.org/10.1002/ptr.1959] [PMID: 16835877]
[174]
Khanahmadi, M.; Rezazadeh, Sh. Review on Iranian medicinal plants with antioxidant properties. J. Med. Plant, 2010, 9(35), 19-32.
[175]
Bayani, M.; Ahmadi-hamedani, M.; Javan, J. Phytochemical and antioxidant activities of Berberis integerrima and Berberis vulgaris and pharmacological effects of the more active species on alloxan-induced diabetic rats. J. Med. Plant, 2016, 15(59), 111-121.
[176]
Naghdi Badi, H.; Sorooshzadeh, A.; Sharifi, M.; Ghalavand, A.; Saadat, S.; Rezazadeh, Sh. Biochemical and antioxidant responses of borage seedlings in saline environments. J Med Plant, 2009, 8(5), 13-23.
[177]
Baskaran, K. Pharmacological activities of Calendula officinalis. Int. J. Sci. Res., 2017, 6(5), 43-47.
[178]
Zaferanchi, S.; Salmasi, S.Z.; Salehi Lisar, S.Y.; Sarikhani, R. Influence of organics and bio fertilizers on biochemical properties of Calendula officinalis L. Int. J. Hortic. Sci. Technol., 2019, 6(1), 125-136.
[179]
McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother. Res., 2006, 20(7), 519-530.
[http://dx.doi.org/10.1002/ptr.1900] [PMID: 16628544]
[180]
Khaki, M.; Sahari, M.A.; Barzegar, M. Evaluation of antioxidant and antimicrobial effects of chamomile (Matricaria chamomilla L.) essential oil on cake shelf life. J. Med. Plant, 2012, 11(43), 9-18.
[181]
Pereira, S.V.; Reis, R.A.S.P.; Garbuio, D.C.; Freitas, L.A.P.D. Dynamic maceration of Matricaria chamomilla inflorescences: Optimal conditions for flavonoids and antioxidant activity. Rev. Bras. Farmacogn., 2018, 28, 111-117.
[http://dx.doi.org/10.1016/j.bjp.2017.11.006]
[182]
Nørbaek, R.; Nielsen, K.; Kondo, T. Anthocyanins from flowers of Cichorium intybus. Phytochemistry, 2002, 60(4), 357-359.
[http://dx.doi.org/10.1016/S0031-9422(02)00055-9] [PMID: 12031425]
[183]
Heibatollah, S.; Reza, N.M.; Izadpanah, G. Hepatoprotective effect of Cichorium intybus on CCl4-induced liver damage in rats. Afr. J. Biochem. Res., 2008, 2(6), 141-144.
[184]
Norani, M.; Ebadi, M-T.; Ayyari, M. Volatile constituents and antioxidant capacity of seven Tussilago farfara L. populations in Iran. Sci. Hortic. (Amsterdam), 2019, 257, 108635.
[http://dx.doi.org/10.1016/j.scienta.2019.108635]
[185]
Wangensteen, H.; Samuelsen, A.B.; Malterud, K.E. Antioxidant activity in extracts from coriander. Food Chem., 2004, 88(2), 293-297.
[http://dx.doi.org/10.1016/j.foodchem.2004.01.047]
[186]
Emamghoreishi, M.; Khasaki, M.; Aazam, M.F. Coriandrum sativum: Evaluation of its anxiolytic effect in the elevated plus-maze. J. Ethnopharmacol., 2005, 96(3), 365-370.
[http://dx.doi.org/10.1016/j.jep.2004.06.022] [PMID: 15619553]
[187]
Sreelatha, S.; Padma, P.R.; Umadevi, M. Protective effects of Coriandrum sativum extracts on carbon tetrachloride-induced hepatotoxicity in rats. Food Chem. Toxicol., 2009, 47(4), 702-708.
[http://dx.doi.org/10.1016/j.fct.2008.12.022] [PMID: 19146910]
[188]
Zoubiri, S.; Baaliouamer, A. Essential oil composition of Coriandrum sativum seed cultivated in Algeria as food grains protectant. Food Chem., 2010, 122(4), 1226-1228.
[http://dx.doi.org/10.1016/j.foodchem.2010.03.119]
[189]
Dhandapani, S.; Subramanian, V.R.; Rajagopal, S.; Namasivayam, N. Hypolipidemic effect of Cuminum cyminum L. on alloxan-induced diabetic rats. Pharmacol. Res., 2002, 46(3), 251-255.
[http://dx.doi.org/10.1016/S1043-6618(02)00131-7] [PMID: 12220968]
[190]
Derakhshan, S.; Sattari, M.; Bigdeli, M. Effect of subinhibitory concentrations of cumin (Cuminum cyminum L.) seed essential oil and alcoholic extract on the morphology, capsule expression and urease activity of Klebsiella pneumoniae. Int. J. Antimicrob. Agents, 2008, 32(5), 432-436.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.05.009] [PMID: 18715764]
[191]
Oroojalian, F.; Kasra-Kermanshahi, R.; Azizi, M.; Bassami, M. Phytochemical composition of the essential oils from three Apiaceae species and their antibacterial effects on food-borne pathogens. Food Chem., 2010, 120, 765-770.
[http://dx.doi.org/10.1016/j.foodchem.2009.11.008]
[192]
Ranjbar, A.; Khorami, S.; Safarabadi, M.; Shahmoradi, A.; Malekirad, A.A.; Vakilian, K.; Mandegary, A.; Abdollahi, M. Antioxidant activity of Iranian Echium amoenum fisch & C. A. mey flower decoction in humans. A cross- sectional before/after clinical trial. Evid. Based Complement. Alternat. Med., 2006, 3(4), 469-473.
[http://dx.doi.org/10.1093/ecam/nel031] [PMID: 17173110]
[193]
Samadi, S.; Raouf Fard, F. Phytochemical properties, antioxidant activity and mineral content (Fe, Zn and Cu) in Iranian produced black tea, green tea, and roselle calyces. Biocatal. Agric. Biotechnol., 2020, 23, 101472.
[http://dx.doi.org/10.1016/j.bcab.2019.101472]
[194]
Salmanian, S.; Sadeghi Mahoonak, A.R.; Alami, M.; Ghorbani, M. Phenolic content, antiradical, antioxidant, and antibacterial properties of hawthorn (Crataegus elbursensis) seed and pulp extract. J. Agric. Sci. Technol., 2014, 16, 343-354.
[195]
Ahmadi, F.; Sadeghi, S.; Modarresi, M.; Abiri, R.; Mikaeli, A. Chemical composition, in vitro anti-microbial, antifungal and antioxidant activities of the essential oil and methanolic extract of Hymenocrater longiflorus Benth., of Iran. Food Chem. Toxicol., 2010, 48(5), 1137-1144.
[http://dx.doi.org/10.1016/j.fct.2010.01.028] [PMID: 20132856]
[196]
Shafaghat, A. Antioxidant, antimicrobial activities and fatty acid components of flower, leaf, stem and seed of Hypericum scabrum. Nat. Prod. Commun., 2011, 6(11), 1739-1742.
[http://dx.doi.org/10.1177/1934578X1100601142] [PMID: 22224301]
[197]
Soleimani, H.; Barzegar, M.; Sahari, M.A.; Naghdi Badi, H. An investigation on the antioxidant activities of Hyssopus officinalis L. and Echinaceae purpurea L. plant extractions in oil model system. J. Med. Plant, 2011, 10(37), 61-72.
[198]
Azizi, A.; Pirbodaghi, M. Regional variations of antioxidant capacity and phenolic properties in the Iranian jujube collection. J. Herb. Drugs, 2016, 6(4), 199-209.
[199]
Bozorgi, M.; Vazirian, M. Antioxidant activity of Lallemantia royleana (Benth.) seed extract. Tradit. Integr. Med., 2016, 1(4), 147-150.
[200]
Bursal, E.; Aras, A.; Kilic, O. Evaluation of antioxidant capacity of endemic plant Marrubium astracanicum subsp. macrodon: Identification of its phenolic contents by using HPLC-MS/MS. Nat. Prod. Res., 2018, 1-5.
[PMID: 29842794]
[201]
Mohammadi, S.; Piri, K.; Dinarvand, M. Antioxidant and antibacterial effects of some medicinal plants of Iran. Int. J. Second Metabol., 2019, 6(1), 62-78.
[http://dx.doi.org/10.21448/ijsm.514968]
[202]
Farhoudi, R.; Lee, D-J. 2021-chemical constituents and antioxidant properties of Matricaria recutita and Chamaemelum nobile essential oil growing in south west of Iran. Free Radic. Biol. Med., 2017, 108, S24.
[203]
Khalili, M.; Hasanloo, T.; Kazemi Tabar, S.K.; Sepehrifar, R. Effect of salicylic acid on antioxidant activity in milk thistle hairy root cultures. J. Med. Plant, 2010, 9(35), 51-60.
[204]
Fallah Huseini, H.; Zaree Mahmodabady, A.; Heshmat, R.; Raza, M. The effect of Silybum marianum (L.) Gaertn. seed extract (Silymarin) on galactose induced cataract formation in rats. J Med Plant, 2009, 8(5), 7-12.
[205]
Sadraei, H.; Ghannadi, A.; Malekshahi, K. Relaxant effect of essential oil of Melissa officinalis and citral on rat ileum contractions. Fitoterapia, 2003, 74(5), 445-452.
[http://dx.doi.org/10.1016/S0367-326X(03)00109-6] [PMID: 12837359]
[206]
Lara, M.S.; Gutierrez, J.I.; Timón, M.; Andrés, A.I. Evaluation of two natural extracts (Rosmarinus officinalis L. and Melissa officinalis L.) as antioxidants in cooked pork patties packed in MAP. Meat Sci., 2011, 88(3), 481-488.
[http://dx.doi.org/10.1016/j.meatsci.2011.01.030] [PMID: 21345605]
[207]
Saeb, K.; Gholamrezaee, S. Variation of essential oil composition of Melissa officianlis L. leaves during different stages of plant growth. Asian Pac. J. Trop. Biomed., 2012, 2(2), S547-S559.
[http://dx.doi.org/10.1016/S2221-1691(12)60271-8]
[208]
Farag, R.S.; Badei, A.Z.M.A.; El-Baroty, G.S.A. Influence of thyme and clove essential oils on cottonseed oil oxidation. J. Am. Oil Chem. Soc., 1989, 66, 800-804.
[http://dx.doi.org/10.1007/BF02653671]
[209]
Fadila, K.S.; Hui, C.A.; Sook Mei, K.; Cheng Hock, C. Chemical constituents and antioxidant capacity of Ocimum basilicum and Ocimum sanctum. Iran. J. Chem. Eng., 2019, 38(2), 139-152.
[210]
Javanmardi, J.; Stushnoff, C.; Locke, E.; Vivanco, J.M. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem., 2003, 83(4), 547-550.
[http://dx.doi.org/10.1016/S0308-8146(03)00151-1]
[211]
Zarghami Moghaddam, P.; Mazandarani, M.; Zolfaghari, M.R.; Badeleh, M.T.; Ghaemi, E.A. Antibacterial and antioxidant activities of root extract of Onosma dichroanthum Boiss. in north of Iran. Afr. J. Microbiol. Res., 2012, 6(8), 1776-1781.
[http://dx.doi.org/10.5897/AJMR11.1225]
[212]
Biglari, F.; Alkarkhi, A.F.M.; Easa, A.M. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem., 2008, 107(4), 1636-1641.
[http://dx.doi.org/10.1016/j.foodchem.2007.10.033]
[213]
Kamkar, A.; Javan, A.J.; Asadi, F.; Kamalinejad, M. The antioxidative effect of Iranian Mentha pulegium extracts and essential oil in sunflower oil. Food Chem. Toxicol., 2010, 48(7), 1796-1800.
[http://dx.doi.org/10.1016/j.fct.2010.04.003] [PMID: 20385193]
[214]
Mahboubi, M.; Ghazian Bidgoli, F. In vitro synergistic efficacy of combination of amphotericin B with Myrtus communis essential oil against clinical isolates of Candida albicans. Phytomedicine, 2010, 17(10), 771-774.
[http://dx.doi.org/10.1016/j.phymed.2010.01.016] [PMID: 20189786]
[215]
Fazel, H.; Moslemi, H.R. Antioxidant properties of Pistacia khinjuk accelerate healing of the experimental Achilles tendon injury in rabbits. J. Med. Plant, 2017, 16(63), 33-42.
[216]
Fakour, Sh.; Heydari, S.; Akradi, L.; Rahymi Bane, R. Effect of Pistacia atlantica mastic extract on experimental wound healing and various biochemical parameters of blood serum in rabbit models. J. Med. Plant, 2017, 16(63), 78-91.
[217]
Mousavinejad, G.; Emam-Djomeh, Z.; Rezaei, K.; Khodaparast, M.H.H. Identification and quantification of phenolic compounds and their effects on antioxidant activity in pomegranate juices of eight Iranian cultivars. Food Chem., 2009, 115(4), 1274-1278.
[http://dx.doi.org/10.1016/j.foodchem.2009.01.044]
[218]
Sadeghi, N.; Jannat, B.; Oveisi, M.R.; Hajimahmoodi, M.; Photovat, M. Antioxidant activity of Iranian pomegranate (Punica granatum L.) seed extracts. J. Agric. Sci. Technol., 2009, 11, 633-638.
[219]
Tehranifar, A.; Zarei, M.; Nemati, Z.; Esfandiyari, B.; Vazifeshenas, M.R. Investigation of physic-chemical properties and antioxidant activity of twenty Iranian pomegranate (Punica granatum L.) cultivars. Sci. Hortic. (Amsterdam), 2010, 126(2), 180-185.
[http://dx.doi.org/10.1016/j.scienta.2010.07.001]
[220]
Kashani, D.; Rasooli, I.; Sharafi, S.M.; Rezaee, M.B.; Jalali Nadoushan, M.R.; Owlia, P. Phytobiological characteristics of Rosa hemisphaerica Herrm. extract. J Med Plant, 2010, 9(6), 97-106.
[221]
Bajalan, I.; Rouzbahani, R.; Pirbalouti, A.G.; Maggi, F. Antioxidant and antibacterial activities of the essential oils obtained from seven Iranian populations of Rosmarinus officinalis. Ind. Crops Prod., 2017, 107, 305-311.
[http://dx.doi.org/10.1016/j.indcrop.2017.05.063]
[222]
Mazidi, S.; Rezaei, K.; Golmakani, M.T.; Sharifan, A.; Rezazadeh, Sh. Antioxidant activity of essential oil from black zira (Bunium persicum Boiss.) obtained by microwave-assisted hydrodistillation. J. Agric. Sci. Technol., 2012, 14, 1013-1022.
[223]
Jafari, E.; Andalib, S.; Abed, A.; Rafieian-Kopaei, M.; Vaseghi, G.; Eshraghi, A. Neuroprotective, antimicrobial, antioxidant, chemotherapeutic, and antidiabetic properties of Salvia Reuterana: A mini review. Avicenna J. Phytomed., 2015, 5(1), 10-16.
[PMID: 25767752]
[224]
Salehi-Arjmand, H.; Mazaheri, D.; Hadian, J.; Hosseini, M.; Ghorbanpour, M. Essential oils composition, antioxidant activities and phenolics content of wild and cultivated Satureja bachtiarica Bunge plants of Yazd origin. J. Med. Plant, 2014, 13(51), 6-14.
[225]
Safarnavadeh, T.; Rastegarpanah, M. Antioxidants and infertility treatment, the role of Satureja Khuzestanica: A mini-systematic review. Iran. J. Reprod. Med., 2011, 9(2), 61-70.
[PMID: 25587249]
[226]
Azadi Gonbad, R.; Afzan, A.; Karimi, E.; Sinniah, U.R.; Swamy, M.K. Phytoconstituents an antioxidant properties among commercial tea (Camellia sinensis L.) clones of Iran. Electron. J. Biotechnol., 2015, 18, 433-438.
[http://dx.doi.org/10.1016/j.ejbt.2015.08.007]
[227]
Gourama, H.; Bullerman, L.B. Antimycotic and antiaflatoxigenic effect of lactic acid bacteria. J. Food Prot., 1995, 58(11), 1275-1280.
[http://dx.doi.org/10.4315/0362-028X-58.11.1275] [PMID: 31137306]
[228]
Thompson, J.D.; Manicacci, D.; Tarayre, M. Thirty-five years of thyme: A tale of two polymorphisms. Why do many female? Why do many chemotypes? Biomed. Sci., 1998, 48, 805-815.
[229]
Alavi, L.; Barzegar, M.; Jabbari, A.; Naghdi Badi, H. Effect of heat treatment on chemical composition and antioxidant property of Thymus daenensis essential oil. J. Med. Plant, 2010, 9(35), 129-138.
[230]
Asbaghian, S.; Shafaghat, A.; Zarea, K.; Kasimov, F.; Salimi, F. Comparison of volatile constituents, and antioxidant and antibacterial activities of the essential oils of Thymus caucasicus, T. kotschyanus and T. vulgaris. Nat. Prod. Commun., 2011, 6(1), 137-140.
[http://dx.doi.org/10.1177/1934578X1100600133] [PMID: 21366065]
[231]
Tohidi, B.; Rahimmalek, M.; Arzani, A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem., 2017, 220, 153-161.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.203] [PMID: 27855883]
[232]
Moein, S.; Moein, R. Relationship between antioxidant properties and phenolics in Zhumeria majdae. J. Med. Plants Res., 2010, 4(7), 517-521.
[233]
Chen, Y.P.; Chung, H.Y. Antioxidant and flavor in spices used in the preparation of Chinese dishes. Encycl. Food Chem., 2019, 2019, 1-9.
[http://dx.doi.org/10.1016/B978-0-08-100596-5.21633-8]
[234]
Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci., 2004, 74(17), 2157-2184.
[http://dx.doi.org/10.1016/j.lfs.2003.09.047] [PMID: 14969719]
[235]
Lin, H-H.; Charles, A.L.; Hsieh, C.W.; Lee, Y-C.; Ciou, J-Y. Antioxidant effects of 14 Chinese traditional medicinal herbs against human low-density lipoprotein oxidation. J. Tradit. Complement. Med., 2014, 5(1), 51-55.
[http://dx.doi.org/10.1016/j.jtcme.2014.10.001] [PMID: 26151009]
[236]
Chan, S.; Li, S.; Kwok, C.; Benzie, I.; Szeto, Y.; Guo, D.J.; He, X.; Yu, P. Antioxidant activity of Chinese medicinal herbs. Pharm. Biol., 2008, 46(9), 587-595.
[http://dx.doi.org/10.1080/13880200802179667]
[237]
Chen, G-L.; Zhang, X.; Chen, S-G.; Han, M-D.; Gao, Y-Q. Antioxidant activities and contents of free, esterified and insoluble-bound phenolics in 14 subtropical fruit leaves collected from the south of China. J. Funct. Foods, 2017, 30, 290-302.
[http://dx.doi.org/10.1016/j.jff.2017.01.011]
[238]
Zhu, F.; Sakulnak, R.; Wang, S. Effect of black tea on antioxidant, textural, and sensory properties of Chinese steamed bread. Food Chem., 2016, 194, 1217-1223.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.110] [PMID: 26471674]
[239]
Jang, H-D.; Chang, K-S.; Huang, Y-S.; Hsu, C-L.; Lee, S-H.; Su, M-S. Principal phenolic phytochemicals and antioxidant activities of three Chinese medicinal plants. Food Chem., 2007, 103(3), 749-756.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.026]
[240]
Wong, C-C.; Li, H-B.; Cheng, K-W.; Chen, F. A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem., 2006, 97(4), 705-711.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.049]
[241]
Song, F-L.; Gan, R-Y.; Zhang, Y.; Xiao, Q.; Kuang, L.; Li, H-B. Total phenolic contents and antioxidant capacities of selected chinese medicinal plants. Int. J. Mol. Sci., 2010, 11(6), 2362-2372.
[http://dx.doi.org/10.3390/ijms11062362] [PMID: 20640157]
[242]
Liao, H.; Banbury, L.K.; Leach, D.N. Antioxidant activity of 45 Chinese herbs and the relationship with their TCM characteristics.eCAM 2008, 5(4), 429-434.
[243]
Wang, C.; Hua, D.; Yan, C. Structural characterization and antioxidant activities of a novel fructan from Achyranthes bidentata Blume, a famous medicinal plant in China. Ind. Crops Prod., 2015, 70, 427-434.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.051]
[244]
Meng, L.; Zhu, J.; Ma, Y.; Sun, X.; Li, D.; Li, L.; Bai, H.; Xin, G.; Meng, X. Composition and antioxidant activity of anthocyanins from Aronia melanocarpa cultivated in Haicheng, Liaoning, China. Food Biosci., 2019, 30, 100413.
[http://dx.doi.org/10.1016/j.fbio.2019.100413]
[245]
Zhang, H.; Birch, J.; Xie, C.; Yang, H.; Dias, G.; Kong, L.; Bekhit, A.E-D. Optimization of extraction parameters of antioxidant activity of extracts fron New Zealand and Chinese Asparagus officinalis L. root cultivars. Ind. Crops Prod., 2018, 119, 191-200.
[http://dx.doi.org/10.1016/j.indcrop.2018.03.066]
[246]
Zhang, H.; Birch, J.; Xie, C.; Yang, H.; El-Din Bekhit, A. Optimization of ultrasound assisted extraction method for phytochemical compounds and in-vitro antioxidant activity of New Zealand and China Asparagus cultivars (officinalis L.) roots extracts. Food Chem., 2019, 294, 276-284.
[http://dx.doi.org/10.1016/j.foodchem.2019.03.012] [PMID: 31126464]
[247]
Karuna, D.S.; Dey, P.; Das, S.; Kundu, A.; Bhakta, T. In vitro antioxidant activities of root extract of Asparagus racemosus Linn. J. Tradit. Complement. Med., 2017, 8(1), 60-65.
[http://dx.doi.org/10.1016/j.jtcme.2017.02.004] [PMID: 29321990]
[248]
Hammoda, H.M.; Ghazy, N.M.; Harraz, F.M.; Radwan, M.M.; ElSohly, M.A.; Abdallah, I.I. Chemical constituents from Tribulus terrestris and screening of their antioxidant activity. Phytochemistry, 2013, 92, 153-159.
[http://dx.doi.org/10.1016/j.phytochem.2013.04.005] [PMID: 23642392]
[249]
Tian, C.; Chang, Y.; Zhang, Z.; Wang, H.; Xiao, S.; Cui, C.; Liu, M. Extraction technology, component analysis, antioxidant, antibacterial, analgesic and anti-inflammatory activities of flavonoids fraction from Tribulus terrestris L. leaves. Heliyon, 2019, 5(8), e02234.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02234] [PMID: 31485505]
[250]
Wu, H.; Chai, Z.; Hutabarat, R.P.; Zeng, Q.; Niu, L.; Li, D.; Yu, H.; Huang, W. Blueberry leaves from 73 different cultivars in southeastern China as nutraceutical supplements rich in antioxidants. Food Res. Int., 2019, 122, 548-560.
[http://dx.doi.org/10.1016/j.foodres.2019.05.015] [PMID: 31229110]
[251]
Feás, X.; Estevinho, L.M.; Salinero, C.; Vela, P.; Sainz, M.J.; Vázquez-Tato, M.P.; Seijas, J.A. Triacylglyceride, antioxidant and antimicrobial features of virgin Camellia oleifera, C. reticulata and C. sasanqua Oils. Molecules, 2013, 18(4), 4573-4587.
[http://dx.doi.org/10.3390/molecules18044573] [PMID: 23599015]
[252]
Feng, S.; Cheng, H.; Fu, L.; Ding, C.; Zhang, L.; Yang, R.; Zhou, Y. Ultrasonic-assisted extraction and antioxidant activities of polysaccharides from Camellia oleifera leaves. Int. J. Biol. Macromol., 2014, 68, 7-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.04.026] [PMID: 24769363]
[253]
Li, T.; Zhang, H.; Wu, C-E. Screening of antioxidant and antitumor activities of major ingredients fro defatted Camellia oleifera seeds. Food Sci. Biotechnol., 2014, 23, 873-880.
[http://dx.doi.org/10.1007/s10068-014-0117-1]
[254]
Li, T.; Wu, C-E.; Meng, X.; Fan, G.; Cao, Y.; Ying, R.; Tang, Y. Structural characterization and antioxidant activity of a glycoprotein isolated from Camellia oleirfera Abel seeds against D-galactose-induce oxidative stress in mice. J. Funct. Foods, 2020, 64, 103594.
[http://dx.doi.org/10.1016/j.jff.2019.103594]
[255]
Huang, H.; Sun, Y.; Lou, S.; Li, H.; Ye, X. In vitro digestion combined with cellular assay to determine the antioxidant activity in Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruits: A comparison with traditional methods. Food Chem., 2014, 146, 363-370.
[http://dx.doi.org/10.1016/j.foodchem.2013.09.071] [PMID: 24176355]
[256]
Chen, W.; Zhao, J.; Bao, T.; Xie, J.; Liang, W.; Gowd, V. Comparative study on phenolics and antioxidant property of some new and common bayberry cultivars in China. J. Funct. Foods, 2016, 27, 472-482.
[http://dx.doi.org/10.1016/j.jff.2016.10.002]
[257]
Zhang, Y.; Zhou, X.; Tao, W.; Li, L.; Wei, C.; Duan, J.; Chen, S.; Ye, X. Antioxidant and antiproliferative activities of proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. Et Zucc.) leaves. J. Funct. Foods, 2016, 27, 645-654.
[http://dx.doi.org/10.1016/j.jff.2016.10.004]
[258]
Wang, L.; Clardy, A.; Hui, D.; Gao, A.; Wu, Y. Antioxidant and antidiabetic properties of Chinese and Indian bitter melons (Momordica charantia L.). Food Biosci., 2019, 29, 73-80.
[http://dx.doi.org/10.1016/j.fbio.2019.03.010]
[259]
Samec, D.; Piljac-Zegarac, J.; Bogovic, M.; Habjanic, K.; Gruz, J. Antioxidant potency of white (Brassica oleraceae L. var. capitata) and Chinese (Brassica rapa L. var. pekinensis (Lour.)) cabbage: The influence of development stage, cultivar choice and seed selection. Sci. Hortic. (Amsterdam), 2011, 128(2), 78-83.
[http://dx.doi.org/10.1016/j.scienta.2011.01.009]
[260]
Seong, G-U.; Hwang, I-W.; Chung, S-K. Antioxidant capacities and polyphenolics of Chinese cabbage (Brassica rapa L. ssp. Pekinensis) leaves. Food Chem., 2016, 199, 612-618.
[http://dx.doi.org/10.1016/j.foodchem.2015.12.066] [PMID: 26776015]
[261]
Abbey, L.; Udenigwe, C.; Mohan, A.; Anom, E. Microwave irradiation effects on vermicasts potency, and plant growth and antioxidant activity in seedlings of Chinese cabbage (Brassica rapa subsp. pekinensis). J. Radiat. Res. Appl. Sci., 2017, 10(2), 110-116.
[http://dx.doi.org/10.1016/j.jrras.2017.01.002]
[262]
Wu, Z.; Xu, S.; Shi, H.; Zhao, P.; Liu, X.; Li, F.; Deng, T.; Du, R.; Wang, X.; Wang, F. Comparison of foliar silicon and selenium on cadmium absorption, compartmentation, translocation and the antioxidant system in Chinese flowering cabbage. Ecotoxicol. Environ. Saf., 2018, 166, 157-164.
[http://dx.doi.org/10.1016/j.ecoenv.2018.09.085] [PMID: 30267988]
[263]
Dai, H.; Wei, S.; Skuza, L.; Jia, G. Selenium spiked in soil promoted zinc accumulation of Chinese cabbage and improved its antioxidant system and lipid peroxidation. Ecotoxicol. Environ. Saf., 2019, 180, 179-184.
[http://dx.doi.org/10.1016/j.ecoenv.2019.05.017] [PMID: 31082582]
[264]
Shawon, R.A.; Kang, B.S.; Lee, S.G.; Kim, S.K.; Ju Lee, H.; Katrich, E.; Gorinstein, S.; Ku, Y.G. Influence of drought stress on bioactive compounds, antioxidant enzymes and glucosinolate contents of Chinese cabbage (Brassica rapa). Food Chem., 2020, 308, 125657.
[http://dx.doi.org/10.1016/j.foodchem.2019.125657] [PMID: 31669950]
[265]
Guo, P.; Qi, Y.; Zhu, X.; Wang, Q. Purification and identification of antioxidant peptides from Chinese cherry (Prunus pseudocerasus Lindl. seeds. J. Funct. Food, 2015, 19((Part A)), 394-403.
[266]
Feng, Y-X.; Ruan, G-R.; Jin, F.; Xu, J.; Wang, F-J. Purification, identification, and synthesis of five novel antioxidant peptides from Chinese chestnut (Castanea mollissima Blume) protein hydrolysates. Lebensm. Wiss. Technol., 2018, 92, 40-46.
[http://dx.doi.org/10.1016/j.lwt.2018.01.006]
[267]
Jia, L-E.; Liu, S.; Duan, X-M.; Zhang, C.; Wu, Z-H.; Liu, M-C.; Guo, S-G.; Zuo, J-H.; Wang, L-B. 6-Benzylaminopurine treatment maintains the quality of Chinese chive (Allium tuberosum Rottler ex Spreng.) by enhancing antioxidant enzyme activity. J. Integr. Agric., 2017, 16(9), 1968-1977.
[http://dx.doi.org/10.1016/S2095-3119(17)61663-0]
[268]
Wen, L.; Guo, X.; Liu, R.H.; You, L.; Abbasi, A.M.; Fu, X. Phenolic contents and cellular antioxidant activity of Chinese hawthorn “Crataegus pinnatifida”. Food Chem., 2015, 186, 54-62.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.017] [PMID: 25976791]
[269]
Zheng, G.; Deng, J.; Wen, L.; You, L.; Zhao, Z.; Zhou, L. Release of phenolic compounds and antioxidant capacity of Chinese hawthorn Crataegus pinnatifida during in vitro digestion. J. Funct. Foods, 2018, 40, 76-85.
[http://dx.doi.org/10.1016/j.jff.2017.10.039]
[270]
Xiang, L.; Wang, Y.; Yi, X.; Wang, X.; He, X. Chemical constituent and antioxidant activity of the husk of Chinese hickory. J. Funct. Foods, 2016, 23, 378-388.
[http://dx.doi.org/10.1016/j.jff.2016.03.001]
[271]
Hong, J.; Chen, T-T.; Hu, P.; Yang, J.; Wang, S-Y. Purification and characterization of an antioxidant peptide (GSQ) from Chinese leek (Allium tuberosum Rottler) seeds. J. Funct. Foods, 2014, 10, 144-153.
[http://dx.doi.org/10.1016/j.jff.2014.05.014]
[272]
Xi, W.; Fang, B.; Zhao, Q.; Jiao, B.; Zhou, Z. Flavonoid composition and antioxidant activities of Chinese local pummelo (Citrus grandis Osbeck.) varieties. Food Chem., 2014, 161, 230-238.
[http://dx.doi.org/10.1016/j.foodchem.2014.04.001] [PMID: 24837945]
[273]
Zefang, L.; Zhao, Z.; Hongmei, W.; Zhiqin, Z.; Jie, Y. Phenolic composition and antioxidant capacities of Chinese local pummel cultivars, peel. Hortic. Plant J., 2016, 2(3), 133-140.
[http://dx.doi.org/10.1016/j.hpj.2016.05.001]
[274]
Li, J-W.; Ding, S-D.; Ding, X-L. Comparison of antioxidant capacities of extracts from five cultivars of Chinese jujube. Process Biochem., 2005, 40(11), 3607-3613.
[http://dx.doi.org/10.1016/j.procbio.2005.03.005]
[275]
Gao, Q-H.; Wu, P-T.; Liu, J-R.; Wu, C-S.; Parry, J-W.; Wang, M. Physico-chemical properties and antioxidant capacity of different jujube (Ziziphus jujube Mill.) cultivars grown in loess plateau of China. Sci. Hortic. (Amsterdam), 2011, 130(1), 67-72.
[http://dx.doi.org/10.1016/j.scienta.2011.06.005]
[276]
Zhang, H.; Jiang, L.; Ye, S.; Ye, Y.; Ren, F. Systematic evaluation of antioxidant capacities of the ethanolic extract of different tissues of jujube (Ziziphus jujuba Mill.) from China. Food Chem. Toxicol., 2010, 48(6), 1461-1465.
[http://dx.doi.org/10.1016/j.fct.2010.03.011] [PMID: 20230870]
[277]
Zhao, H-X.; Zhang, H-S.; Yang, S-F. Phenolic compounds and its antioxidant activities in ethanolic extracts from seven cultivars of Chinese jujube. Food Sci. Hum. Wellness, 2014, 3(3-4), 183-190.
[http://dx.doi.org/10.1016/j.fshw.2014.12.005]
[278]
Kuo, C-T.; Liu, T-H.; Hsu, T-H.; Lin, F-Y.; Chen, H-Y. Antioxidant and antiglycation properties of different solvent extracts from Chinese olive (Canarium album L.) fruit. Asian Pac. J. Trop. Med., 2015, 8(12), 1013-1021.
[http://dx.doi.org/10.1016/j.apjtm.2015.11.013] [PMID: 26706672]
[279]
Zhang, S.; Huang, Y.; Li, Y.; Wang, Y.; He, X. Anti-neuroinflammatory and antioxidant phenylpropanoids from Chinese olive. Food Chem., 2019, 286, 421-427.
[http://dx.doi.org/10.1016/j.foodchem.2019.02.031] [PMID: 30827627]
[280]
Jing, P.; Ye, T.; Shi, H.; Sheng, Y.; Slavin, M.; Gao, B.; Liu, L.; Yu, L.L. Antioxidant properties and phytochemical composition of China-grown pomegranate seeds. Food Chem., 2012, 132(3), 1457-1464.
[http://dx.doi.org/10.1016/j.foodchem.2011.12.002] [PMID: 29243636]
[281]
Li, X.; Wasila, H.; Liu, L.; Yuan, T.; Gao, Z.; Zhao, B.; Ahmad, I. Physicochemical characteristics, polyphenol compositions and antioxidant potential of pomegranate juices from 10 Chinese cultivars and the environmental factors analysis. Food Chem., 2015, 175, 575-584.
[http://dx.doi.org/10.1016/j.foodchem.2014.12.003] [PMID: 25577122]
[282]
Jin, L.; Li, X-B.; Tian, D-Q.; Fang, X-P.; Yu, Y-M.; Zhu, H-Q.; Ge, Y-Y.; Ma, G-Y.; Wang, W-Y.; Xiao, W-F.; Li, M. Antioxidant properties and color parameters of herbal teas in China. Ind. Crops Prod., 2016, 87, 198-209.
[http://dx.doi.org/10.1016/j.indcrop.2016.04.044]
[283]
Cheng, K-W.; Yang, R-Y.; Tsou, S.C.S.; Lo, C.S.C.; Ho, C-T.; Lee, T-C.; Wang, M. Analysis of antioxidant activity and antioxidant constituents of Chinese toon. J. Funct. Foods, 2009, 1(3), 253-259.
[http://dx.doi.org/10.1016/j.jff.2009.01.013]
[284]
Jiang, X.; Zhang, B.; Lei, M.; Zhang, J.; Zhang, J. Analysis of nutrient composition and antioxidant characteristics in the tender shoots of Chinese toon picked under different conditions. Lebensm. Wiss. Technol., 2019, 109, 137-144.
[http://dx.doi.org/10.1016/j.lwt.2019.03.055]
[285]
Xu, R.; Bu, Y-G.; Zhao, M-L.; Tao, R.; Luo, J.; Li, Y. Studies on antioxidant and α-glucosidase inhibitory constituents of Chinese toon bud (Toona sinensis). J. Funct. Foods, 2020, 73, 104108.
[http://dx.doi.org/10.1016/j.jff.2020.104108]
[286]
Liu, Y.; Huang, G.; Hu, J. Extraction, characterisation and antioxidant activity of polysaccharides from Chinese watermelon. Int. J. Biol. Macromol., 2018, 111, 1304-1307.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.088] [PMID: 29355635]
[287]
Zhang, L.; Santos, J.S.; Cruz, T.M.; Marques, M.B.; do Carmo, M.A.V.; Azevedo, L.; Wang, Y.; Granato, D. Multivariate effects of Chinese keemun black tea grades (Camellia sinensis var. sinensis) on the phenolic composition, antioxidant, antihemolytic and cytotoxic/cytoprotection activities. Food Res. Int., 2019, 125, 108516.
[http://dx.doi.org/10.1016/j.foodres.2019.108516] [PMID: 31554085]
[288]
Wu, Y.; Zhang, Z.; Chen, T.; Cheng, C.; Zhang, Z.; Zhou, H.; Luo, P. Comparison of two Polygonum chinense varieties used in Chinese cool tea in terms of chemical profiles and antioxidant/anti-inflammatory activities. Food Chem., 2020, 310, 125840.
[http://dx.doi.org/10.1016/j.foodchem.2019.125840] [PMID: 31806390]
[289]
Wang, L.; Liu, H-M.; Qin, G-Y. Structure characterization and antioxidant activity of polysaccharides from Chinese quince seed meal. Food Chem., 2017, 234, 314-322.
[http://dx.doi.org/10.1016/j.foodchem.2017.05.002] [PMID: 28551241]
[290]
Qin, Z.; Liu, H-M.; Lv, T-T.; Wang, X-D. Structure, rheological, thermal and antioxidant properties of cell wall polysaccharides from Chinese quince fruits. Int. J. Biol. Macromol., 2020, 147, 1146-1155.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.083] [PMID: 31726165]
[291]
Cheng, X-C.; Guo, X-R.; Qin, Z.; Wang, X-D.; Liu, H-M.; Liu, Y-L. Structural features and antioxidant activities of Chinese quince (Chaenomeles sinensis) fruits lignin during auto-catalyzed ethanol organosolv pretreatment. Int. J. Biol. Macromol., 2020, 164, 4348-4358.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.249] [PMID: 32931830]
[292]
Li, Q.; Tu, Y.; Zhu, C.; Luo, W.; Huang, W.; Liu, W.; Li, Y. Cholinesterase, β-amyloid aggregation inhibitory and antioxidant capacities of Chinese medicinal plants. Ind. Crops Prod., 2017, 108, 512-519.
[http://dx.doi.org/10.1016/j.indcrop.2017.07.001]
[293]
Kossah, R.; Zhang, H.; Chen, W. Antimicrobial and antioxidant activities of Chinese sumac (Rhus typhina L.) fruit extract. Food Control, 2011, 22, 128-132.
[http://dx.doi.org/10.1016/j.foodcont.2010.06.002]
[294]
He, N.; Yang, X.; Jiao, Y.; Tian, L.; Zhao, Y. Characterisation of antioxidant and atiproliferative acidic polysaccharides from Chinese wolfberry fruits. Food Chem., 2012, 133(3), 978-989.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.018]
[295]
Zhou, W.; Zhao, Y.; Yan, Y.; Mi, J.; Lu, L.; Luo, Q.; Li, X.; Zeng, X.; Cao, Y. Antioxidant and immunomodulatory activities in vitro of polysaccharides from bee collected pollen of Chinese wolfberry. Int. J. Biol. Macromol., 2020, 163, 190-199.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.244] [PMID: 32615222]
[296]
Kim, S.; Jo, K.; Byun, B.S.; Han, S.H.; Yu, K-W.; Suh, H.J.; Hong, K-B. Chemical and biological properties of puffed Dendrobium officinale extracts: Evaluation of antioxidant and anti-fatigue activities. J. Funct. Foods, 2020, 73, 104144.
[http://dx.doi.org/10.1016/j.jff.2020.104144]
[297]
Liang, L-L.; Cai, S-Y.; Gao, M.; Chu, X-M.; Pan, X-Y.; Gong, K-K.; Xiao, C-W.; Chen, Y.; Zhao, Y-Q.; Wang, B.; Sun, K-L. Purification of antioxidant peptides of Moringa oleifera seeds and their protective effects on H2O2 oxidative damaged Chang liver cells. J. Funct. Foods, 2020, 64, 103698.
[http://dx.doi.org/10.1016/j.jff.2019.103698]
[298]
Liu, X.; Zhao, M.; Wang, J.; Yang, B.; Jiang, Y. Antioxidant activity of methanolic extract of emblica fruit (Phyllanthus emblica L.) from six regions in China. J. Food Compos. Anal., 2008, 21(3), 219-228.
[http://dx.doi.org/10.1016/j.jfca.2007.10.001]
[299]
Shi, Y-X.; Xu, Y-K.; Hu, H-B.; Na, Z.; Wang, W-H. Preliminary assessment of antioxidant activity of young edible leaves of seven Ficus species in the ethnic diet in Xishuangbanna, Southwest China. Food Chem., 2011, 128(4), 889-894.
[http://dx.doi.org/10.1016/j.foodchem.2011.03.113]
[300]
An, S.; Liu, G.; Guo, X.; An, Y.; Wang, R. Ginger extract enhances antioxidant ability and immunity of layers. Anim. Nutr., 2019, 5(4), 407-409.
[http://dx.doi.org/10.1016/j.aninu.2019.05.003] [PMID: 31890918]
[301]
Ibtisham, F.; Nawab, A.; Niu, Y.; Wang, Z.; Wu, J.; Xiao, M.; An, L. The effect of ginger powder and Chinese herbal medicine on production performance, serum metabolites and antioxidant status of laying hens under heat-stress condition. J. Therm. Biol., 2019, 81, 20-24.
[http://dx.doi.org/10.1016/j.jtherbio.2019.02.002] [PMID: 30975419]
[302]
Ellnain-Wojtaszek, M. Phenolic acids from Ginkgo biloba L. Part II. Quantitative analysis of free and liberated by hydrolysis phenolic acids. Acta Pol. Pharm., 1997, 54(3), 229-232.
[PMID: 9511450]
[303]
Ellnain-Wojtaszek, M. Kruczyński, Z.; Kasprzak, J. Investigation of the free radical scavenging activity of Ginkgo biloba L. leaves. Fitoterapia, 2003, 74(1-2), 1-6.
[http://dx.doi.org/10.1016/S0367-326X(02)00306-4] [PMID: 12628386]
[304]
Lena, M.G.; Philip, J.B.; Chee, S.Y. Examination of antioxidant activity of Ginkgo biloba leaf infusions. Food Chem., 2003, 82, 275-282.
[http://dx.doi.org/10.1016/S0308-8146(02)00548-4]
[305]
Rababah, T.M.; Hettiarachchy, N.S.; Horax, R. Total phenolics and antioxidant activities of fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotu kola, and ginkgo extracts, vitamin E, and tert-butylhydroquinone. J. Agric. Food Chem., 2004, 52(16), 5183-5186.
[http://dx.doi.org/10.1021/jf049645z] [PMID: 15291494]
[306]
Kaur, P.; Chaudhary, A.; Singh, B. Gopichand, An efficient microwave assisted extraction of phenolic compounds and antioxidant potential of Ginkgo biloba. Nat. Prod. Commun., 2012, 7(2), 203-206.
[http://dx.doi.org/10.1177/1934578X1200700222] [PMID: 22474958]
[307]
Zhang, Q.; Chen, W.; Zhao, J.; Xi, W. Functional constituents and antioxidant activities of eight Chinese native goji genotypes. Food Chem., 2016, 200, 230-236.
[http://dx.doi.org/10.1016/j.foodchem.2016.01.046] [PMID: 26830583]
[308]
Li, F-X.; Li, F-H.; Yang, Y-X.; Ran, Y.; Jian, M. Comparison of phenolic profiles and antioxidant activities in skins and pulps of eleven grape cultivars. (Vitis vinifera L.). J. Integr. Agric., 2019, 18(5), 1148-1158.
[http://dx.doi.org/10.1016/S2095-3119(18)62138-0]
[309]
Tian, L.; Zhao, Y.; Guo, C.; Yang, X. A comparative study on the antioxidant activities of an acidic polysaccharide and various solvent extracts derived from herbal Houttuynia cordata. Carbohydr. Polym., 2011, 83, 537-544.
[http://dx.doi.org/10.1016/j.carbpol.2010.08.023]
[310]
Deng, G.B.; Zhang, X.L.; Wang, Y.Y.; Lin, Y.; Chen, X.L. Chemical composition and antimicrobial activity of the essential oil of Iris pallisa Lam. Linchan Huaxue Yu Gongye, 2008, 28(3), 39-44.
[311]
Deng, G.B.; Zhang, H.B.; Xue, H.F.; Chen, S.N.; Chen, X.L. Chemical composition and biological activities of essential oil from the rhizomes of Iris bulleyana. Agric. Sci. China, 2009, 8(6), 691-696.
[http://dx.doi.org/10.1016/S1671-2927(08)60266-7]
[312]
Luan, Z-J.; Li, P-P.; Li, D.; Meng, X-P.; Sun, J. Optimization of supercritical-CO2 extraction of Iris lacteal seed oil: Component analysis and antioxidant activity of the oil. Ind. Crops Prod., 2020, 152, 112553.
[http://dx.doi.org/10.1016/j.indcrop.2020.112553]
[313]
Abdelaziz, S.; Al Yousef, H.M.; Al-Qahtani, A.S.; Hassan, W.H.B.; Fantoukh, O.I.; El-Sayed, M.A. Phytochemical profile, antioxidant and cytotoxic potential of Parkinsonia aculeata L. growing in Saudi Arabia. Saudi Pharm. J., 2020, 28(9), 1129-1137.
[http://dx.doi.org/10.1016/j.jsps.2020.08.001] [PMID: 32922145]
[314]
Sharma, K.; Sharma, A.; Sharma, M.; Tanwar, K. Isolation of orientin and vitexin from stem bark of Parkinsonia aculeate (Caesalpiniaceae) and their successive belonging on sheep wool fiber. Int. J. Pharmacogn. Phytochem. Res., 2014, 6(3), 557-561.
[315]
Deng, J.; Liu, Q.; Zhang, Q.; Zhang, C.; Liu, D.; Fan, D.; Yang, H. Comparative study on composition, physicochemical and antioxidant characteristics of different varieties of kiwifruit seed oil in China. Food Chem., 2018, 264, 411-418.
[http://dx.doi.org/10.1016/j.foodchem.2018.05.063] [PMID: 29853395]
[316]
Li, X.; Chen, W.; Chen, D. Protective effect against hydroxyl-indcued DNA damage and antioxidant activity of Radix Glycyrrhizae (Liquorice root). Adv. Pharm. Bull., 2013, 3(1), 167-173.
[PMID: 24312831]
[317]
Han, J.; Weng, X.; Bi, K. Antioxidants from a Chinese medicinal herb- Lithospermum erythrorhizon. Food Chem., 2008, 106(1), 2-10.
[http://dx.doi.org/10.1016/j.foodchem.2007.01.031]
[318]
Tian, W.; Zhi, H.; Yang, C.; Wang, L.; Long, J.; Xiao, L.; Liang, J.; Huang, Y.; Zheng, X.; Zhao, S.; Zhang, K.; Zheng, J. Chemical composition of alkaloids of Plumula nelumbinis and their antioxidant activity from different habitats in China. Ind. Crops Prod., 2018, 125, 537-548.
[http://dx.doi.org/10.1016/j.indcrop.2018.09.045]
[319]
Chen, H.; Chen, J.; Yang, H.; Chen, W.; Gao, H.; Lu, W. Variation in total anthocyanin, phenolic contents, antioxidant enzyme and antioxidant capacity among different mulberry (Morus sp.) cultivars in China. Sci. Hortic. (Amsterdam), 2016, 213, 186-192.
[http://dx.doi.org/10.1016/j.scienta.2016.10.036]
[320]
Zhang, D-Y.; Wan, Y.; Hao, J-Y.; Hu, R-Z.; Chen, C.; Yao, X-H.; Zhao, W-G.; Liu, Z-Y.; Li, L. Evaluation of the alkaloid, polyphenols and antioxidant contents of various mulberry cultivars from different planting areas in eastern China. Ind. Crops Prod., 2018, 122, 298-307.
[http://dx.doi.org/10.1016/j.indcrop.2018.05.065]
[321]
Xu, X.; Huag, Y.; Xu, J.; He, X.; Wang, Y. Anti-neuroinflammatory and antioxidant phenols from mulberry fruit (Morus alba L.). J. Funct. Foods, 2020, 68, 103914.
[http://dx.doi.org/10.1016/j.jff.2020.103914]
[322]
Zhang, X-X.; Shi, Q-Q.; Ji, D.; Niu, L-X.; Zhang, Y-L. Determination of the phenolic content, profile, and antioxidant activity of seeds from nine tree peony (Paeonia section Moutan DC.) species native to China. Food Res. Int., 2017, 97, 141-148.
[http://dx.doi.org/10.1016/j.foodres.2017.03.018] [PMID: 28578034]
[323]
Tian, J.; Zing, X.; Zhang, S.; Wang, Y.; Zhang, P.; Lu, A.; Peng, X. Regional variation in components and antioxidant and antifungal activities of Perilla frutescens essential oils in China. Ind. Crops Prod., 2014, 59, 69-79.
[http://dx.doi.org/10.1016/j.indcrop.2014.04.048]
[324]
Lu, Y-H.; Tian, C-R.; Gao, C-Y.; Wang, X-Y.; Yang, X.; Chen, Y-X.; Liu, Z-Z. Phenolic profile, antioxidant and enzyme inhibitory activities of Ottelia acuminata, an endemic plant from southwestern china. Ind. Crops Prod., 2019, 138, 111423.
[http://dx.doi.org/10.1016/j.indcrop.2019.05.072]
[325]
Shi, J.; Gong, J.; Liu, J.; Wu, X.; Zhang, Y. Antioxidant capacity of extract from edible flowers of Prunus mume in China and its active components. Lebensm. Wiss. Technol., 2009, 42(2), 477-482.
[http://dx.doi.org/10.1016/j.lwt.2008.09.008]
[326]
Zhang, D-Y.; Luo, M.; Wang, W.; Zhao, C-J.; Gu, C-B.; Zu, Y-G.; Fu, Y-J.; Yao, X-H.; Duan, M-H. Variation of active constituents and antioxidant activity in pyrola [P. incarnata Fisch. from different sites in Northeast China. Food Chem., 2013, 141(3), 2213-2219.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.045] [PMID: 23870950]
[327]
Kalisz, S.; Oszmianski, J.; Kolniak-Ostek, J.; Grobelna, A.; Kieliszek, M.; Cendrowski, A. Effect of a variety of polyphenols compounds and antioxidant properties of rhubarb (Rheum rhabarbarum). Lebensm. Wiss. Technol., 2020, 118, 108775.
[http://dx.doi.org/10.1016/j.lwt.2019.108775]
[328]
Wu, G.; Shen, Y.; Qi, Y.; Zhang, H.; Wang, L.; Qian, H.; Qi, X.; Li, Y.; Johnson, S.K. Improvement of in vitro and cellular antioxidant properties of Chinese steamed bread through sorghum addition. Lebensm. Wiss. Technol., 2018, 91, 77-83.
[http://dx.doi.org/10.1016/j.lwt.2017.12.074]
[329]
Xia, J.; Yang, C.; Wang, Y.; Yang, Y.; Yu, J. Antioxidant and antiproliferative activities of the leaf extracts from Trapa bispinosa and active components. S. Afr. J. Bot., 2017, 113, 377-381.
[http://dx.doi.org/10.1016/j.sajb.2017.09.016]
[330]
Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[331]
Barlow, J.; França, F.; Gardner, T.A.; Hicks, C.C.; Lennox, G.D.; Berenguer, E.; Castello, L.; Economo, E.P.; Ferreira, J.; Guénard, B.; Gontijo Leal, C.; Isaac, V.; Lees, A.C.; Parr, C.L.; Wilson, S.K.; Young, P.J.; Graham, N.A.J. The future of hyperdiverse tropical ecosystems. Nature, 2018, 559(7715), 517-526.
[http://dx.doi.org/10.1038/s41586-018-0301-1] [PMID: 30046075]
[332]
Marmitt, D.J.; Bitencourt, S.; Silva, A.D.C.E.; Rempel, C.; Goettert, M.I. The healing properties of medicinal plants used in the Brazilian public health system: A systematic review J. Wound Care,, 2018, 27((Sup6)), s4-s13.
[http://dx.doi.org/10.12968/jowc.2018.27.Sup6.S4] [PMID: 29883290]
[333]
Marmitt, D.J.; Bitencourt, S.; da Silva, G.R.; Crempel, C.; Goettert, M.I. RENISUS plants and their potential antitumor effects in clinical trials and registered patents. Nutr. Cancer, 2020, 72, 1-28.
[PMID: 32835511]
[334]
Brasil; Ministério da Saúde. Portal da Saúde: Relação Nacional de Medicamentos Essenciais (RENAME) 2013 Available from: http://bvsms.saude.gov.br/bvs/saudelegis/gm/2012/prt0533_28_03_2012.html
[335]
Brasil. Ministério da Saúde. Memento Fitoterápico. 2016. Available from: http://portal.anvisa.gov.br/documents/33832/2909630/Memento+Fitoterapico/a80ec477-bb36-4ae0-b1d2-e2461217e06b
[336]
Lopes, M.M.A. Alcantara de Miranda MR, Moura CFH, Filho JE. Bioactive compounds and total antioxidant capacity of cashew applies (Anacardium occidentale L.). Cienc. Agrotec., 2012, 36(3), 325-332.
[http://dx.doi.org/10.1590/S1413-70542012000300008]
[337]
Ferreira, E.A.; Siqueira, H.E.; Vilas Boas, E.V.; Hermes, V.S.; Rios, A.O. Bioactive compounds and antioxidant activity of pineapple fruit of different cultivars. Rev. Bras. Frutic., 2016, 38(3), e-146.
[http://dx.doi.org/10.1590/0100-29452016146]
[338]
Jorge, M.P.; Madjarof, C.; Gois Ruiz, A.L.; Fernandes, A.T.; Ferreira Rodrigues, R.A.; de Oliveira Sousa, I.M.; Foglio, M.A.; de Carvalho, J.E. Evaluation of wound healing properties of Arrabidaea chica Verlot extract. J. Ethnopharmacol., 2008, 118(3), 361-366.
[http://dx.doi.org/10.1016/j.jep.2008.04.024] [PMID: 18573628]
[339]
Siraichi, J.T.G.; Felipe, D.F.; Brambilla, L.Z.S.; Gatto, M.J.; Terra, V.A.; Cecchini, A.L.; Cortez, L.E.; Rodrigues-Filho, E.; Cortez, D.A. Antioxidant capacity of the leaf extract obtained from Arrabidaea chica cultivated in Southern Brazil. PLoS One, 2013, 8(8), e72733.
[http://dx.doi.org/10.1371/journal.pone.0072733] [PMID: 24009700]
[340]
Toledo Dias, L.F.; de Melo, E.S.; Hernandes, L.S.; Bacchi, E.M. Atividades antiúlcera e antioxidante Baccharis trimera (Less) DC (Asteraceae). Rev. Bras. Farmacogn., 2009, 19(1b), 309-314.
[http://dx.doi.org/10.1590/S0102-695X2009000200022]
[341]
Araujo-Lima, C.F.; Fernandes, A.S.; Gomes, E.M.; Oliveira, L.L.; Macedo, A.F.; Antoniassi, R.; Wilhelm, A.E.; Aiub, C.A.F.; Felzenszwalb, I. Antioxidant Activity and Genotoxic Assessment of Crabwood (Andiroba, Carapa guianensis Aublet). Seed Oils. Oxid. Med. Cell. Longev., 2018, 2018, 3246719.
[http://dx.doi.org/10.1155/2018/3246719] [PMID: 29854079]
[342]
Albano, M.N.; da Silveira, M.R.; Danielski, L.G.; Florentino, D.; Petronilho, F.; Piovezan, A.P. Anti-inflammatory and antioxidant properties of hydroalcoholic crude extract from Casearia sylvestris Sw. (Salicaceae). J. Ethnopharmacol., 2013, 147(3), 612-617.
[http://dx.doi.org/10.1016/j.jep.2013.03.049] [PMID: 23542040]
[343]
Espinosa, J.; Medeiros, L.F.; Souza, A.; Guntzel, A.R.C.; Rucker, B.; Cassali, E.A. Ethanolic extract of Casearia sylvestris Sw exhibits in vitro antioxidant and antimicrobial activities and in vivo hypolipidemic effect in rats. Rev. Bras. Plantas Med., 2015, 17(2), 305-315.
[http://dx.doi.org/10.1590/1983-084X/13_074]
[344]
Michielin, E.M.Z.; de Lemos Wiese, L.P.; Wiese, E.A.; Ferreira, R.C.; Pedrosa, S.R.S. Radical-scavenging activity of extracts from Cordia verbenacea DC obtained by different methods. J. Supercrit. Fluids, 2011, 56(1), 89-96.
[http://dx.doi.org/10.1016/j.supflu.2010.11.006]
[345]
De Marino, S.; Gala, F.; Zollo, F.; Vitalini, S.; Fico, G.; Visioli, F.; Iorizzi, M. Identification of minor secondary metabolites from the latex of Croton lechleri (Muell-Arg) and evaluation of their antioxidant activity. Molecules, 2008, 13(6), 1219-1229.
[http://dx.doi.org/10.3390/molecules13061219] [PMID: 18596648]
[346]
Bagetti, M.; Pesamosca Facco, E.M.; Piccolo, J.; Hirsch, G.E.; Rodriguez-Amaya, D.; Kobori, C.N. Physicochemical characterization and antioxidant capacity of pitanga fruits (Eugenia uniflora L.). Food Sci. Technol. (Campinas), 2011, 31(1), 147-154.
[http://dx.doi.org/10.1590/S0101-20612011000100021]
[347]
Félix-Silva, J.; Souza, T.; Camara, R.B.B.G.; Cabral, B.; Silva-Júnior, A.A.; Rebecchi, I.M.M.; Zucolotto, S.M.; Rocha, H.A. Fernandes-Pedrosa, Mde.F. In vitro anticoagulant and antioxidant activities of Jatropha gossypiifolia L. (Euphorbiaceae) leaves aiming therapeutical applications. BMC Complement. Altern. Med., 2014, 14, 405.
[http://dx.doi.org/10.1186/1472-6882-14-405] [PMID: 25328027]
[348]
Nascimento, P.; Silva, T.; Gomes, J.; Silva, M.; Souza, S.; Falcao, R.; Silva, T.; Moreira, K. Antioxidant and antimicrobial properties of ethanolic extract of Libidibia ferea pods. Rev. Fitos, 2015, 9(3), 207-216.
[http://dx.doi.org/10.5935/2446-4775.20150017]
[349]
Lim, B.S.; Ramos, C.S.; Santos, J.P.A.; Rabelo, T.K.; Serafini, M.R.; Souza, C.A.S. Development of standardized extractive solution from Lippia sidoides by factorial design and their edox active profile. Rev. Bras. Farmacogn., 2015, 25(3), 301-306.
[http://dx.doi.org/10.1016/j.bjp.2014.12.004]
[350]
Negri, M.L.S.; Negri, J.C.; Possamai, J.C.; Nakashima, T. Atividade antioxidante das folhas de espinheira-santa-Maytenus ilicifolia Mart. Ex Reiss., secas em diferentes temperatures. Rev. Bras. Farmacogn., 2009, 19(2), 553-556.
[http://dx.doi.org/10.1590/S0102-695X2009000400007]
[351]
Santana, L.C.L.R.; Brito, M.R.M.; Oliveira, G.L.S.; Citó, A.M.G.L.; Alves, C.Q.; David, J.P.; David, J.M.; de Freitas, R.M. Mikania glomerata: Phytochemical, pharmacological and neurochemical study. Evid. Based Complement. Alternat. Med., 2014, 2014, 710410.
[http://dx.doi.org/10.1155/2014/710410] [PMID: 25202336]
[352]
Peres, M.T.L.P.; Lopes, J.R.R.; Bezerra da Silva, C.; Candido, A.C.S.; Simionatto, E.; Pereira Cabral, M.R.; Oliveira, R.M. Phytotoxic and antioxidant activity of seven native fruits of Brazil. Acta Bot. Bras., 2013, 27(4), 836-846.
[http://dx.doi.org/10.1590/S0102-33062013000400024]
[353]
Colpo, E.; Vilanova, C.D.; Pereira, R.P.; Reetz, L.G.; Oliveira, L.; Farias, I.L.; Boligon, A.A.; Athayde, M.L.; Rocha, J.B. Antioxidant effects of Phyllanthus niruri tea on healthy subjects. Asian Pac. J. Trop. Med., 2014, 7(2), 113-118.
[http://dx.doi.org/10.1016/S1995-7645(14)60005-5] [PMID: 24461523]
[354]
Decha, P.; Kanokwan, K.; Jiraporn, T.; Pichaya, J.; Pisittawoot, A. Phonopheresis associated with nanoparticle gel from Phyllanthus amarus relieves pain by reducing oxidative stress and proinflammatory markers in adults with knew osteoarthritis. Chin. J. Integr. Med., 2019, 25(9), 691-695.
[http://dx.doi.org/10.1007/s11655-019-3202-8] [PMID: 31650487]
[355]
Iha, S.M.; Migliato, K.F.; Vellosa, J.C.R.; Sacramento, L.V.S.; Pietro, R.C.L.R.; Isaac, V.L.B. Estudo fitoquimico de goiaba (Psidium guajava L.) com potential antioxidante para o desenvolvimento de formulacao fitocosmetica. Rev. Bras. Farmacogn., 2008, 18(3), 387-393.
[http://dx.doi.org/10.1590/S0102-695X2008000300013]
[356]
Da Silva, M.M.; Iriguchi, E.K.K.; Kassuya, C.A.L.; Vieira, M.C.; Foglio, M.A.; de Carvalho, J.E. Schinus terebinthifolius: Phenolic consitutents and in vitro antioxidant, antiproliferative and in vivo anti-inflammatory activities. Rev. Bras. Farmacogn., 2017, 27(4), 445-452.
[http://dx.doi.org/10.1016/j.bjp.2016.12.007]
[357]
Sabir, S.M.; Ahmad, S.D.; Hamid, A.; Khan, M.Q.; Athayde, M.L.; Santos, D.B. Antioxidant and hepatoprotective activity of ethanolic extract of leaves of Solidago microglossa containing polyphenolic compounds. Food Chem., 2012, 131(3), 741-747.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.026]
[358]
Dreifuss, A.A.; Bastos-Pereira, A.L.; Fabossi, I.A.; Lívero, F.A.R.; Stolf, A.M.; Alves de Souza, C.E. Gomes, Lde.O.; Constantin, R.P.; Furman, A.E.; Strapasson, R.L.; Teixeira, S.; Zampronio, A.R.; Muscará, M.N.; Stefanello, M.E.; Acco, A. Uncaria tomentosa exerts extensive anti-neoplastic effects against the Walker-256 tumour by modulating oxidative stress and not by alkaloid activity. PLoS One, 2013, 8(2), e54618.
[http://dx.doi.org/10.1371/journal.pone.0054618] [PMID: 23408945]
[359]
Azevedo, B.C.; Roxo, M.; Borges, M.C.; Peixoto, H.; Crevelin, E.J.; Bertoni, B.W. Antioxidant activit of an aqueous leaf extract from Uncarica tomentosa and its major alkaloids mitraphylline and isomitraphylline in Caenorhabditis elegans. Molecules,, 2019, 24(18), 3299.
[http://dx.doi.org/10.3390/molecules24183299]
[360]
Minateli, M.M.; Del-Vechio, Vieira; G., Yamamoto; C.H, Araujo; A.L.S.M, Rodarte; M.P., Alves M.S. Phytochemical contents and biological properties of Vernonia polyanthes Less. Int. J. Pharm.Sci. Res.,, 2016, 60, 1427-1436.

© 2025 Bentham Science Publishers | Privacy Policy