Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Identification of Multi-kinase Allosteric Inhibitors of Oncogenic Targets EGFR1, PI3K, and BRAF Kinase

Author(s): Kavita Kumari Kakarala* and Kaiser Jamil

Volume 18, Issue 7, 2022

Published on: 23 November, 2022

Page: [506 - 518] Pages: 13

DOI: 10.2174/1573409919666221031110341

Price: $65

conference banner
Abstract

Aim: This study aimed to identify promising allosteric inhibitors with the potential to inhibit EGFR1, PI3K, and BRAF kinases as a single agent or in a combination of existing drugs, thus acting as a therapeutic option when traditional drugs fail to give a beneficial response in disease pathology.

Background: Upregulation of EGFR1 activates several downstream signaling pathways, resulting in pathophysiological alterations that contribute to cancer. The RAS/RAF/MEK/ERK (MAPK) and PI3K/Akt/mTOR (PI3K/Akt/mTOR) pathways are major downstream signalling partners induced by EGFR1 activation. Despite their vast importance, allosteric FDA-approved drugs targeting EGFR1 and these pathways are not available.

Objective: The objective of the study is to identify novel multi-kinase small molecules with the potential to inhibit major sites of amplification of cancer signalling pathways, i.e., EGFR1, PI3K/Akt/mTOR, and RAS/RAF/MEK/ERK (MAPK) signalling pathways targeting allosteric sites.

Methods: In silico methods were used to identify the potential inhibitors using EGFR1, PI3, and BRAF crystal structures complexed with allosteric inhibitors. The potential novel molecules were confirmed for their drug-likeness. Their stability of binding was also confirmed using molecular dynamics simulation studies. To eliminate false negatives, this study used a pharmacophore and structure-based targeting method.

Results: The current study was effective in identifying drug-like small molecules, such as ZINC38783966, ZINC01456629, ZINC01456628, and 124173751, 137352549, 137353176, 137352399, 132020316 from ZINC and PubChem database, respectively, with a potential to bind EGFR1 (6DUK), PI3 (4A55) and BRAF (6P3D) at allosteric sites. A 50 ns molecular dynamics investigation also revealed that these potential novel multitarget kinase allosteric inhibitors exhibited stable binding.

Conclusion: Alterations in EGFR1, PI3K/Akt/mTOR, and RAS/RAF/MEK/ERK (MAPK) signalling pathways are observed in cancers in high frequency and are also used by viral and environmental toxicants for pathologic purposes. These multi-kinase allosteric inhibitors will provide insight into allosteric drug discovery and deepen our understanding of targeting these pathways, either individually or in combination with orthosteric inhibitors.

Graphical Abstract

[1]
Cicenas, J.; Zalyte, E.; Bairoch, A.; Gaudet, P. Kinases and cancer. Cancers, 2018, 10(3), 63.
[http://dx.doi.org/10.3390/cancers10030063]
[2]
Nicholson, R.I.; Gee, J.M.W.; Harper, M.E. EGFR and cancer prognosis. Eur. J. Cancer, 2001, 37(Suppl. 4), 9-15.
[http://dx.doi.org/10.1016/S0959-8049(01)00231-3] [PMID: 11597399]
[3]
Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol., 2018, 12(1), 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[4]
Olsen, J.V.; Blagoev, B.; Gnad, F.; Macek, B.; Kumar, C.; Mortensen, P.; Mann, M. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 2006, 127(3), 635-648.
[http://dx.doi.org/10.1016/j.cell.2006.09.026] [PMID: 17081983]
[5]
Oda, K.; Matsuoka, Y.; Funahashi, A.; Kitano, H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol., 2005, 1, 0010.
[http://dx.doi.org/10.1038/msb4100014]
[6]
Chong, Z.Z.; Shang, Y.C.; Wang, S.; Maiese, K. A critical kinase cascade in neurological disorders: PI3K, Akt and mTOR. Future Neurol., 2012, 7(6), 733-748.
[http://dx.doi.org/10.2217/fnl.12.72] [PMID: 23144589]
[7]
Chappell, W.H.; Steelman, L.S.; Long, J.M.; Kempf, R.C.; Abrams, S.L.; Franklin, R.A.; Bäsecke, J.; Stivala, F.; Donia, M.; Fagone, P.; Malaponte, G.; Mazzarino, M.C.; Nicoletti, F.; Libra, M.; Maksimovic-Ivanic, D.; Mijatovic, S.; Montalto, G.; Cervello, M.; Laidler, P.; Milella, M.; Tafuri, A.; Bonati, A.; Evangelisti, C.; Cocco, L.; Martelli, A.M.; McCubrey, J.A. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget, 2011, 2(3), 135-164.
[http://dx.doi.org/10.18632/oncotarget.240] [PMID: 21411864]
[8]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[9]
Kittler, H.; Tschandl, P. Driver mutations in the mitogen‐activated protein kinase pathway: the seeds of good and evil. Br. J. Dermatol., 2018, 178(1), 26-27.
[http://dx.doi.org/10.1111/bjd.16119] [PMID: 29357585]
[10]
Bethune, G.; Bethune, D.; Ridgway, N.; Xu, Z. Epidermal growth factor receptor (EGFR) in lung cancer: An overview and update. J. Thorac. Dis., 2010, 2(1), 48-51.
[PMID: 22263017]
[11]
Zhang, M.; Jang, H.; Nussinov, R. PI3K inhibitors: Review and new strategies. Chem. Sci. (Camb.), 2020, 11(23), 5855-5865.
[http://dx.doi.org/10.1039/D0SC01676D] [PMID: 32953006]
[12]
Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B.A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G.J.; Bigner, D.D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J.W.C.; Leung, S.Y.; Yuen, S.T.; Weber, B.L.; Seigler, H.F.; Darrow, T.L.; Paterson, H.; Marais, R.; Marshall, C.J.; Wooster, R.; Stratton, M.R.; Futreal, P.A. Mutations of the BRAF gene in human cancer. Nature, 2002, 417(6892), 949-954.
[http://dx.doi.org/10.1038/nature00766] [PMID: 12068308]
[13]
Gabelli, S.B.; Echeverria, I.; Alexander, M.; Duong-Ly, K.C.; Chaves-Moreira, D.; Brower, E.T.; Vogelstein, B.; Amzel, L.M. Activation of PI3Kα by physiological effectors and by oncogenic mutations: Structural and dynamic effects. Biophys. Rev., 2014, 6(1), 89-95.
[http://dx.doi.org/10.1007/s12551-013-0131-1] [PMID: 25309634]
[14]
Notarangelo, T.; Sisinni, L.; Condelli, V.; Landriscina, M. Dual EGFR and BRAF blockade overcomes resistance to vemurafenib in BRAF mutated thyroid carcinoma cells. Cancer Cell Int., 2017, 17(1), 86.
[http://dx.doi.org/10.1186/s12935-017-0457-z] [PMID: 29033690]
[15]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[16]
Gagic, Z.; Ruzic, D.; Djokovic, N.; Djikic, T.; Nikolic, K. In silico methods for design of kinase inhibitors as Anticancer drugs. Front Chem., 2020, 7, 873.
[http://dx.doi.org/10.3389/fchem.2019.00873] [PMID: 31970149]
[17]
Garuti, L.; Roberti, M.; Bottegoni, G. Multi-kinase inhibitors. Curr. Med. Chem., 2015, 22(6), 695-712.
[http://dx.doi.org/10.2174/0929867321666141216125528] [PMID: 25511779]
[18]
Pottier, C.; Fresnais, M.; Gilon, M.; Jérusalem, G.; Longuespée, R.; Sounni, N.E. Tyrosine kinase inhibitors in cancer: Breakthrough and challenges of targeted therapy. Cancers (Basel), 2020, 12(3), 731.
[http://dx.doi.org/10.3390/cancers12030731] [PMID: 32244867]
[19]
Patel, H.; Dhangar, K.; Sonawane, Y.; Surana, S.; Karpoormath, R.; Thapliyal, N.; Shaikh, M.; Noolvi, M.; Jagtap, R. In search of selective 11β-HSD type 1 inhibitors without nephrotoxicity: An approach to resolve the metabolic syndrome by virtual based screening. Arab. J. Chem., 2018, 11(2), 221-232.
[http://dx.doi.org/10.1016/j.arabjc.2015.08.003]
[20]
Koes, D.R.; Camacho, C.J. ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Res., 2012, 40(W1), W409-W414.
[http://dx.doi.org/10.1093/nar/gks378] [PMID: 22553363]
[21]
Mehler, E.L. Self-consistent, free energy-based approximation to calculate pH dependent electrostatic effects in proteins. J. Phys. Chem., 1996, 100(39), 16006-16018.
[http://dx.doi.org/10.1021/jp9537926]
[22]
Mehler, E.L.; Guarnieri, F. A self-consistent, microenvironment modulated screened coulomb potential approximation to calculate pH-dependent electrostatic effects in proteins. Biophys. J., 1999, 77(1), 3-22.
[http://dx.doi.org/10.1016/S0006-3495(99)76868-2] [PMID: 10388736]
[23]
Stroganov, O.V.; Novikov, F.N.; Stroylov, V.S.; Kulkov, V.; Chilov, G.G. Lead finder: An approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening. J. Chem. Inf. Model., 2008, 48(12), 2371-2385.
[http://dx.doi.org/10.1021/ci800166p] [PMID: 19007114]
[24]
Hon, W-C.; Berndt, A.; Williams, R.L. Regulation of lipid binding underlies the activation mechanism of class IA PI3-kinases. Oncogene, 2012, 31(32), 3655-3666.
[http://dx.doi.org/10.1038/onc.2011.532] [PMID: 22120714]
[25]
To, C.; Jang, J.; Chen, T.; Park, E.; Mushajiang, M.; De Clercq, D.J.H.; Xu, M.; Wang, S.; Cameron, M.D.; Heppner, D.E.; Shin, B.H.; Gero, T.W.; Yang, A.; Dahlberg, S.E.; Wong, K.K.; Eck, M.J.; Gray, N.S.; Jänne, P.A. Single and dual targeting of mutant EGFR1 with an allosteric inhibitor. Cancer Discov., 2019, 9(7), 926-943.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0903] [PMID: 31092401]
[26]
Cotto-Rios, X.M.; Agianian, B.; Gitego, N.; Zacharioudakis, E.; Giricz, O.; Wu, Y.; Zou, Y.; Verma, A.; Poulikakos, P.I.; Gavathiotis, E. Inhibitors of BRAF dimers using an allosteric site. Nat. Commun., 2020, 11(1), 4370.
[http://dx.doi.org/10.1038/s41467-020-18123-2] [PMID: 32873792]
[27]
Cheeseright, T.; Mackey, M.; Rose, S.; Vinter, A. Molecular field extrema as descriptors of biological activity: Definition and validation. J. Chem. Inf. Model., 2006, 46(2), 665-676.
[http://dx.doi.org/10.1021/ci050357s] [PMID: 16562997]
[28]
Bauer, M.R.; Mackey, M.D. Electrostatic complementarity as a fast and effective tool to optimize binding and selectivity of protein-ligand complexes. J. Med. Chem., 2019, 62(6), 3036-3050.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01925] [PMID: 30807144]
[29]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[30]
Kuhn, M.; Firth-Clark, S.; Tosco, P.; Mey, A.S.J.S.; Mackey, M.; Michel, J. Automated assessment of binding affinity via alchemical free energy calculations. J. Chem. Inf. Model., 2020, 60(6), 3120-3130.
[http://dx.doi.org/10.1021/acs.jcim.0c00165] [PMID: 32437145]
[31]
Eastman, P.; Swails, J.; Chodera, J.D.; McGibbon, R.T.; Zhao, Y.; Beauchamp, K.A.; Wang, L.P.; Simmonett, A.C.; Harrigan, M.P.; Stern, C.D.; Wiewiora, R.P.; Brooks, B.R.; Pande, V.S. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Comput. Biol., 2017, 13(7), e1005659.
[http://dx.doi.org/10.1371/journal.pcbi.1005659] [PMID: 28746339]
[32]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174.
[http://dx.doi.org/10.1002/jcc.20035] [PMID: 15116359]
[33]
Price, D.J.; Brooks, C.L. III A modified TIP3P water potential for simulation with Ewald summation. J. Chem. Phys., 2004, 121(20), 10096-10103.
[http://dx.doi.org/10.1063/1.1808117] [PMID: 15549884]
[34]
Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740.
[http://dx.doi.org/10.1021/jm901137j] [PMID: 20131845]
[35]
Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem, 2008, 3(3), 435-444.
[http://dx.doi.org/10.1002/cmdc.200700139] [PMID: 18064617]
[36]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[37]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014]
[38]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[39]
Egan, W.J.; Merz, K.M., Jr; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem., 2000, 43(21), 3867-3877.
[http://dx.doi.org/10.1021/jm000292e] [PMID: 11052792]
[40]
Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem., 2001, 44(12), 1841-1846.
[http://dx.doi.org/10.1021/jm015507e] [PMID: 11384230]
[41]
Townsend, P.D.; Rodgers, T.L.; Glover, L.C.; Korhonen, H.J.; Richards, S.A.; Colwell, L.J.; Pohl, E.; Wilson, M.R.; Hodgson, D.R.W.; McLeish, T.C.B.; Cann, M.J. The role of protein-ligand contacts in allosteric regulation of the Escherichia coli catabolite activator protein. J. Biol. Chem., 2015, 290(36), 22225-22235.
[http://dx.doi.org/10.1074/jbc.M115.669267] [PMID: 26187469]
[42]
Beyett, T.S.; To, C.; Heppner, D.E.; Rana, J.K.; Schmoker, A.M.; Jang, J.; De Clercq, D.J.H.; Gomez, G.; Scott, D.A.; Gray, N.S.; Jänne, P.A.; Eck, M.J. Molecular basis for cooperative binding and synergy of ATP-site and allosteric EGFR inhibitors. Nat. Commun., 2022, 13(1), 2530.
[http://dx.doi.org/10.1038/s41467-022-30258-y] [PMID: 35534503]
[43]
Gkeka, P.; Papafotika, A.; Christoforidis, S.; Cournia, Z. Exploring a non-ATP pocket for potential allosteric modulation of PI3Kα. J. Phys. Chem. B, 2015, 119(3), 1002-1016.
[http://dx.doi.org/10.1021/jp506423e] [PMID: 25299356]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy