Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Prophylactic and Therapeutic Potential Zinc Metallodrugs Drug Discovery: Identification of SARS-CoV-2 Replication and Spike/ACE2 Inhibitors

Author(s): Mpho P. Ngoepe, Kgaugelo C. Tapala and Hadley S. Clayton*

Volume 18, Issue 7, 2022

Published on: 23 November, 2022

Page: [519 - 534] Pages: 16

DOI: 10.2174/1573409918999220921100030

Price: $65

Abstract

Background: The emergence of severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2) variants with novel spike protein mutations has been shown to be influencing the epidemiological and clinical aspects of the COVID-19 pandemic.

Objective: Due to studies showing various dietary benefits of zinc as a viral replication inhibitor as well as an immunity enhancer, organometallic complexes incorporating zinc ions can be ideal antiviral candidates due to their structural variation and diverse stereochemistry.

Methods: In silico studies were conducted for the virtual screening of zinc complexes with SARSCoV- 2 and host proteins to explore their effect on viral entry and replication activity. Molegro Virtual Docker along with AutoDock was used for the identification of potential SARS-CoV-2 inhibitor complexes from the Cambridge Structural Database (CSD). Molecular dynamics (MD), density functional theory (DFT), chemical absorption, distribution, metabolism, excretion, and toxicity properties (ADMET) were used to support the findings from virtual screening.

Results: In correlation with SARS-CoV-2 RNA-dependent RNA polymerase and spike receptorbinding domain bound with ACE2 docking results, the compound (bis(3,5-dimethyl-1H-pyrazole)- bis(2-furoato)-zinc(ii)) (CSD code ECOZAA) occurs to be a potential metal complex SARS-CoV-2 receptor inhibitor. The compound ECOZAA was observed (in silico binding affinity = - 179.29kcal/mol) to behave better than the clinically approved drug Remdesivir (in silico binding affinity = -62.69kcal/mol) against SARS-CoV-2 RNA-dependent RNA polymerase. The large HOMO- LUMO gap for the ECOZAA compound is an indication of the low chemical reactivity as well as the great kinetic stability of the compound.

Conclusion: Thus, this study highlights the potential use of zinc metal complexes as SARS-CoV-2 viral entry and replication inhibitors.

Keywords: Inhibitor, SARS-CoV-2, ACE2, RdRp, zinc complex, molecular docking

Graphical Abstract

[1]
W.H.O. WHO Coronavirus (COVID-19) Dashboard.. WHO Health Emergency Dashboard, 2022. 17 March. 2022. Available from: https://covid19.who.int/ [Accessed on: 2022 25 March].
[2]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[3]
Lam, T.T.Y.; Jia, N.; Zhang, Y.W.; Shum, M.H.H.; Jiang, J.F.; Zhu, H.C.; Tong, Y.G.; Shi, Y.X.; Ni, X.B.; Liao, Y.S.; Li, W.J.; Jiang, B.G.; Wei, W.; Yuan, T.T.; Zheng, K.; Cui, X.M.; Li, J.; Pei, G.Q.; Qiang, X.; Cheung, W.Y.M.; Li, L.F.; Sun, F.F.; Qin, S.; Huang, J.C.; Leung, G.M.; Holmes, E.C.; Hu, Y.L.; Guan, Y.; Cao, W.C. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature, 2020, 583(7815), 282-285.
[http://dx.doi.org/10.1038/s41586-020-2169-0] [PMID: 32218527]
[4]
Chuong, C.; DuChane, C.M.; Webb, E.M.; Rai, P.; Marano, J.M.; Bernier, C.M.; Merola, J.S.; Weger-Lucarelli, J. Noble metal organometallic complexes display antiviral activity against SARS-CoV-2. Viruses, 2021, 13(6), 980.
[http://dx.doi.org/10.3390/v13060980] [PMID: 34070524]
[5]
Ni, Y.Q.; Zeng, H.H.; Song, X.W.; Zheng, J.; Wu, H.Q.; Liu, C.T.; Zhang, Y. Potential metal-related strategies for prevention and treatment of COVID-19. Rare Met., 2022, 41(4), 1129-1141.
[http://dx.doi.org/10.1007/s12598-021-01894-y] [PMID: 35068851]
[6]
Imran, M.; Fatima, W.; Alzahrani, A.K.; Suhail, N.; Alshammari, M.K.; Alghitran, A.A.; Alshammari, F.N.; Ghoneim, M.M.; Alshehri, S.; Shakeel, F. Development of therapeutic and prophylactic zinc compositions for use against COVID-19: A glimpse of the trends, inventions, and patents. Nutrients, 2022, 14(6), 1227.
[http://dx.doi.org/10.3390/nu14061227] [PMID: 35334884]
[7]
Yousuf, I.; Bashir, M. Metallodrugs in medicine. In: Advances in Metallodrugs: Preparation and Applications in Medicinal Chemistry; Shahid-ul-Islam, ; Athar, A.H.; Salman, A.K., Eds.; Scrivener Publishing LLC, 2020.
[http://dx.doi.org/10.1002/9781119640868.ch1]
[8]
Noh, J.Y.; Jeong, H.W.; Shin, E.C. SARS-CoV-2 mutations, vaccines, and immunity: implication of variants of concern. Signal Transduct. Target. Ther., 2021, 6(1), 203.
[http://dx.doi.org/10.1038/s41392-021-00623-2] [PMID: 34023862]
[9]
Greaney, A.J.; Loes, A.N.; Crawford, K.H.D.; Starr, T.N.; Malone, K.D.; Chu, H.Y.; Bloom, J.D. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe, 2021, 29(3), 463-476.e6.
[http://dx.doi.org/10.1016/j.chom.2021.02.003] [PMID: 33592168]
[10]
Wang, P.; Nair, M.S.; Liu, L.; Iketani, S.; Luo, Y.; Guo, Y.; Wang, M.; Yu, J.; Zhang, B.; Kwong, P.D.; Graham, B.S.; Mascola, J.R.; Chang, J.Y.; Yin, M.T.; Sobieszczyk, M.; Kyratsous, C.A.; Shapiro, L.; Sheng, Z.; Huang, Y.; Ho, D.D. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature, 2021, 593(7857), 130-135.
[http://dx.doi.org/10.1038/s41586-021-03398-2] [PMID: 33684923]
[11]
Ascoli, C.A. Could mutations of SARS-CoV-2 suppress diagnostic detection? Nat. Biotechnol., 2021, 39(3), 274-275.
[http://dx.doi.org/10.1038/s41587-021-00845-3] [PMID: 33603204]
[12]
Negru, P.A.; Radu, A.F.; Vesa, C.M.; Behl, T.; Abdel-Daim, M.M.; Nechifor, A.C.; Endres, L.; Stoicescu, M.; Pasca, B.; Tit, D.M.; Bungau, S.G. Therapeutic dilemmas in addressing SARS-CoV-2 infection: Favipiravir versus Remdesivir. Biomed. Pharmacother., 2022, 147, 112700.
[http://dx.doi.org/10.1016/j.biopha.2022.112700] [PMID: 35131656]
[13]
Zhao, L.; Li, S.; Zhong, W. Mechanism of action of small-molecule agents in ongoing clinical trials for SARS-CoV-2: A review. Front. Pharmacol., 2022, 13, 840639.
[http://dx.doi.org/10.3389/fphar.2022.840639] [PMID: 35281901]
[14]
Khateeb, J.; Li, Y.; Zhang, H. Emerging SARS-CoV-2 variants of concern and potential intervention approaches. Crit. Care, 2021, 25(1), 244.
[http://dx.doi.org/10.1186/s13054-021-03662-x] [PMID: 34253247]
[15]
Cirri, D.; Pratesi, A.; Marzo, T.; Messori, L. Metallo therapeutics for COVID-19. Exploiting metal-based compounds for the discovery of new antiviral drugs. Expert Opin. Drug Discov., 2021, 16(1), 39-46.
[http://dx.doi.org/10.1080/17460441.2020.1819236] [PMID: 32915656]
[16]
de Paiva, R.E.F.; Marçal Neto, A.; Santos, I.A.; Jardim, A.C.G.; Corbi, P.P.; Bergamini, F.R.G. What is holding back the development of antiviral metallodrugs? A literature overview and implications for SARS-CoV-2 therapeutics and future viral outbreaks. Dalton Trans., 2020, 49(45), 16004-16033.
[http://dx.doi.org/10.1039/D0DT02478C] [PMID: 33030464]
[17]
Anthony, E.J.; Bolitho, E.M.; Bridgewater, H.E.; Carter, O.W.L.; Donnelly, J.M.; Imberti, C.; Lant, E.C.; Lermyte, F.; Needham, R.J.; Palau, M.; Sadler, P.J.; Shi, H.; Wang, F.X.; Zhang, W.Y.; Zhang, Z. Metallodrugs are unique: Opportunities and challenges of discovery and development. Chem. Sci. (Camb.), 2020, 11(48), 12888-12917.
[http://dx.doi.org/10.1039/D0SC04082G] [PMID: 34123239]
[18]
Rothan, H.A.; Stone, S.; Natekar, J.; Kumari, P.; Arora, K.; Kumar, M. The FDA-approved gold drug auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells. Virology, 2020, 547, 7-11.
[http://dx.doi.org/10.1016/j.virol.2020.05.002] [PMID: 32442105]
[19]
Gil-Moles, M.; Basu, U.; Büssing, R.; Hoffmeister, H.; Türck, S.; Varchmin, A.; Ott, I. Gold metallodrugs to target coronavirus proteins: Inhibitory effects on the Spike‐ACE2 interaction and on PLpro protease activity by auranofin and gold organometallics. Chemistry, 2020, 26(66), 15140-15144.
[http://dx.doi.org/10.1002/chem.202004112] [PMID: 32915473]
[20]
te Velthuis, A.J.W.; van den Worm, S.H.E.; Sims, A.C.; Baric, R.S.; Snijder, E.J.; van Hemert, M.J. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog., 2010, 6(11), e1001176.
[http://dx.doi.org/10.1371/journal.ppat.1001176] [PMID: 21079686]
[21]
Kaushik, N.; Anang, S.; Ganti, K.P.; Surjit, M. Zinc: A potential antiviral against hepatitis E virus infection? DNA Cell Biol., 2018, 37(7), 593-599.
[http://dx.doi.org/10.1089/dna.2018.4175] [PMID: 29897788]
[22]
Carlucci, P.M.; Ahuja, T.; Petrilli, C.; Rajagopalan, H.; Jones, S.; Rahimian, J. Hydroxychloroquine and azithromycin plus zinc vs. hydroxychloroquine and azithromycin alone: outcomes in hospitalized COVID-19 patients. medRxiv, 2020, 2020.05.02.20080036.
[http://dx.doi.org/10.1101/2020.05.02.20080036]
[23]
Jothimani, D.; Kailasam, E.; Danielraj, S.; Nallathambi, B.; Ramachandran, H.; Sekar, P.; Manoharan, S.; Ramani, V.; Narasimhan, G.; Kaliamoorthy, I.; Rela, M. COVID-19: Poor outcomes in patients with zinc deficiency. Int. J. Infect. Dis., 2020, 100, 343-349.
[http://dx.doi.org/10.1016/j.ijid.2020.09.014] [PMID: 32920234]
[24]
Finzi, E.; Harrington, A. Zinc treatment of outpatient COVID‐19: A retrospective review of 28 consecutive patients. J. Med. Virol., 2021, 93(5), 2588-2590.
[http://dx.doi.org/10.1002/jmv.26812] [PMID: 33475170]
[25]
Adcock, S.A.; McCammon, J.A. Molecular dynamics: survey of methods for simulating the activity of proteins. Chem. Rev., 2006, 106(5), 1589-1615.
[http://dx.doi.org/10.1021/cr040426m] [PMID: 16683746]
[26]
Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2(1), 73-78.
[http://dx.doi.org/10.1002/wcms.81]
[27]
Becke, A.D. A new mixing of Hartree–Fock and local density‐functional theories. J. Chem. Phys., 1993, 98(2), 1372-1377.
[http://dx.doi.org/10.1063/1.464304]
[28]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[29]
Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys., 2005, 7(18), 3297-3305.
[http://dx.doi.org/10.1039/b508541a] [PMID: 16240044]
[30]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132(15), 154104.
[http://dx.doi.org/10.1063/1.3382344] [PMID: 20423165]
[31]
Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 2011, 32(7), 1456-1465.
[http://dx.doi.org/10.1002/jcc.21759] [PMID: 21370243]
[32]
da Silva, C.S.B. Suramin inhibits SARS-CoV-2 infection in cell culture by interfering with early steps of the replication cycle. bioRxiv, 2020, 2020.05.06.081968.
[http://dx.doi.org/10.1101/2020.05.06.081968]
[33]
Nichols, B.E.; Jamieson, L.; Zhang, S.R.C.; Rao, G.A.; Silal, S.; Pulliam, J.R.C.; Sanne, I.; Meyer-Rath, G. The role of remdesivir in South Africa: Preventing COVID-19 deaths through increasing intensive care unit capacity. Clin. Infect. Dis., 2021, 72(9), 1642-1644.
[http://dx.doi.org/10.1093/cid/ciaa937] [PMID: 32628744]
[34]
Ozalp, L.; Sağ Erdem, S.; Yüce-Dursun, B.; Mutlu, Ö.; Özbil, M. Computational insight into the phthalocyanine-DNA binding via docking and molecular dynamics simulations. Comput. Biol. Chem., 2018, 77, 87-96.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.09.009] [PMID: 30245350]
[35]
Hu, K.; Jin, S.; Xie, Z.; Guo, M.; Lin, Z.; Wang, D. Construction of nine non-covalently-bonded zinc(II) and cadmium(II) supramolecules containing the mixed-ligands of 3,5-dimethylpyrazole and carboxylates: Their synthesis and characterization. Polyhedron, 2018, 139, 17-32.
[http://dx.doi.org/10.1016/j.poly.2017.09.051]
[36]
Senge, M.O.; Flanagan, K.J.; Ryan, A.A.; Ryppa, C.; Donath, M.; Twamley, B. Conformational and structural studies of meso monosubstituted metalloporphyrins-Edge-on molecular interactions of porphyrins in crystals. Tetrahedron, 2016, 72(1), 105-115.
[http://dx.doi.org/10.1016/j.tet.2015.11.008]
[37]
Zevaco, T.A.; Gorls, H.; Dinjus, E. Self assembly in transition metal complexes: structural characterisation of the zinc carboxylate {bis(2-pyrrolecarbo xylato)bis(1-methylimidazole)}zinc(II). Polyhedron, 1998, 17(13-14), 2199-2206.
[38]
Wang, Q-W. Crystal structure of bis(2,2′-biimidazole)zinc(II) benzene-1,2-dicarboxylate monohydrate, Zn(C6H6N4)2(C8H4O4)·H2O. Z. Kristallogr. N. Cryst. Struct., 2009, 224, 157-158.
[39]
Deng, Z-P.; Gao, S.; Ng, S.W. Bis(4-formylbenzoato-kO)bis(1H-imidazole-kN3)zinc(II). Acta Crystallogr., 2007, E63, m3113.
[40]
Bieller, S.; Haghiri, A.; Bolte, M.; Bats, J.W.; Wagner, M.; Lerner, H-W. Transition metal complexes with pyrazole derivatives as ligands. Inorg. Chim. Acta, 2006, 359(5), 1559-1572.
[http://dx.doi.org/10.1016/j.ica.2005.10.034]
[41]
Feng, X. Aqua-bis(2-propyl-1H-imidazole-4-carboxy-5-carboxylato-N,O)zinc(ii). Koord. Khim. (Russ.) (Coord.Chem.), 2011, 37.
[42]
Singh, A.K.; Yadav, M.; Singh, S.K.; Sunkari, S.; Pandey, D.S. Extended molecular networks based on Zn and Cd imparting N-substituted imidazole. Inorg. Chim. Acta, 2010, 363(5), 995-1000.
[http://dx.doi.org/10.1016/j.ica.2009.12.025]
[43]
Bharty, M.K.; Dani, R.K.; Kushawaha, S.K.; Singh, N.K.; Kharwar, R.N.; Butcher, R.J. Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and Co(II) complexes of 1-phenyl-1H-tetrazole-5-thiol: Synthesis, spectral, structural characterization and thermal studies. Polyhedron, 2015, 88, 208-221.
[http://dx.doi.org/10.1016/j.poly.2014.12.013]
[44]
Hsiao, C.S.; Wang, T-Y.; Datta, A.; Liao, F-X.; Hu, C-H.; Lin, C-H.; Huang, J-H.; Lee, T-Y. Zinc complexes incorporating with symmetrical and asymmetrical polydentate nitrogen-donor pyrrolyl ligands: Synthesis, characterization, and ring-opening polymerization. J. Organomet. Chem., 2012, 718, 82-88.
[http://dx.doi.org/10.1016/j.jorganchem.2012.08.016]
[45]
Parsons, S. CCDC 247888: Experimental crystal structure determination. CSD Communication(Private Communication), 2004.
[46]
Nadzhafov, G.N. bis(p-Hydroxybenzoato)-bis(pyridine)-zinc(ii)pyridine solvate. Koord.Khim. (Russ.)(Coord.Chem.), 1981, 7.
[47]
Stieler, R.; Gil, M.P.; Caovilla, A. bis(N-[(2-methoxyphenyl methyl]-1-(1H-pyrrol-2-yl methaniminato)-zinc(ii). CSD Communication(Private Communication), 2017.
[48]
Wang, W. Dichloro-(N-(2-furylmethylene)-N'-(2-((2-furylmethylene)amino)ethyl)ethane-1,2-diamine)-zinc(ii). Koord. Khim.(Russ.)(Coord.Chem.), 2010, 36.
[49]
Derry Holaday, M.G.; Tarafdar, G.; Kumar, A.; Reddy, M.L.P.; Srinivasan, A. Exploring anagostic interactions in 5,15-porphodimethene metal complexes. Dalton Trans., 2014, 43(21), 7699-7703.
[http://dx.doi.org/10.1039/C3DT53307G] [PMID: 24722231]
[50]
Ballmann, G.; Martin, J.; Langer, J.; Färber, C.; Harder, S. Low‐coordinate monomeric zinc hydride complexes with encapsulating dipyrromethene ligands and reactivity with B(C 6 F 5) 3. Z. Anorg. Allg. Chem., 2020, 646(13), 593-602.
[http://dx.doi.org/10.1002/zaac.201900179]
[51]
Zevaco, T.A.; Trotzki, R.; Görls, H.; Dinjus, E. A metal-assisted conversion of CO2 and imidazole to carboxylate: synthesis and structural characterisation of the zinc carboxylate bis(1-methyl-2-imidazolecarboxylato)(1-methylimidazole)zinc(II), [Zn(1-Me-2-Imc)2(1-MeIm)]. Inorg. Chem. Commun., 1998, 1(1), 30-33.
[http://dx.doi.org/10.1016/S1387-7003(98)00003-3]
[52]
Galardon, E.; Giorgi, M.; Artaud, I. Modeling the inhibition of peptide deformylase by hydroxamic acids: Influence of the sulfur donor. Dalton Trans., 2007, (10), 1047-1052.
[http://dx.doi.org/10.1039/b616212f] [PMID: 17325780]
[53]
Harvey, M.A.; Baggio, S.; Suárez, S.A.; Doctorovich, F. A recurrent motive in the supramolecular assembly of coordination compounds with 2,6-bis(Benzimidazol-2-yl)piridine (Bzimpy) and two identical h-bond acceptor co-ligands: [Cd(Ac)2(Bzimpy)], [Zn(Ac)2(Bzimpy)]·H2O (Ac:acetato) and related compounds. J. Chem. Crystallogr., 2013, 43(5), 275-281.
[http://dx.doi.org/10.1007/s10870-013-0415-0]
[54]
Samus’, N.M.; Gulya, A.P.; Tsapkov, V.I.; Chumakov, Y.M.; Roshu, T. Coordination compounds of cobalt, nickel, copper and zinc with thiosemicarbazone and 3-phenylpropenal semicarbazone. Russ. J. Gen. Chem., 2006, 76(7), 1100-1105.
[http://dx.doi.org/10.1134/S1070363206070164]
[55]
Bell, N.A. bis(2-Dimethylaminoethyl-methyl-amino-zinc-hydride). J. Chem. Soc. Chem. Comm., 1980, 359.
[56]
Bell, N.A.; Moseley, P.T.; Shearer, H.M.M.; Spencer, C.B. Terminal zinc–hydrogen bonding. X-ray and neutron diffraction studies of the (2-dimethylamino- N -methylethylamido)hydridozinc dimer. Acta Crystallogr. B, 1980, 36(12), 2950-2954.
[http://dx.doi.org/10.1107/S056774088001059X]
[57]
Protti, Í.F.; Rodrigues, D.R.; Fonseca, S.K.; Alves, R.J.; Oliveira, R.B.; Maltarollo, V.G. Do drug-likeness rules apply to oral prodrugs? ChemMedChem, 2021, 16(9), 1446-1456.
[http://dx.doi.org/10.1002/cmdc.202000805] [PMID: 33471444]
[58]
Srivastava, R. Theoretical studies on the molecular properties, toxicity, and biological efficacy of 21 new chemical entities. ACS Omega, 2021, 6(38), 24891-24901.
[http://dx.doi.org/10.1021/acsomega.1c03736] [PMID: 34604670]
[59]
Umar, H.I.; Siraj, B.; Ajayi, A.; Jimoh, T.O.; Chukwuemeka, P.O. Molecular docking studies of some selected gallic acid derivatives against five non-structural proteins of novel coronavirus. J. Genet. Eng. Biotechnol., 2021, 19(1), 16.
[http://dx.doi.org/10.1186/s43141-021-00120-7] [PMID: 33492492]
[60]
Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; Von Bargen, C.D.; Abel, R.; Friesner, R.A.; Harder, E.D. OPLS4: Improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput., 2021, 17(7), 4291-4300.
[http://dx.doi.org/10.1021/acs.jctc.1c00302] [PMID: 34096718]
[61]
Macchiagodena, M.; Pagliai, M.; Andreini, C.; Rosato, A.; Procacci, P. Upgraded AMBER force field for zinc-binding residues and ligands for predicting structural properties and binding affinities in zinc-proteins. ACS Omega, 2020, 5(25), 15301-15310.
[http://dx.doi.org/10.1021/acsomega.0c01337] [PMID: 32637803]
[62]
Pearson, R.G. Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl. Acad. Sci. USA, 1986, 83(22), 8440-8441.
[http://dx.doi.org/10.1073/pnas.83.22.8440] [PMID: 16578791]
[63]
Sureshkumar, B.; Sheena Mary, Y.; Suma, S.; Armaković, S.; Armaković, S.J.; Alsenoy, C.V.; Narayana, B.; Sasidharan, B.P. Spectroscopic characterization of 8-hydroxy-5-nitroquinoline and 5-chloro-8-hydroxy quinoline and investigation of its reactive properties by DFT calculations and molecular dynamics simulations. J. Mol. Struct., 2018, 1164, 525-538.
[http://dx.doi.org/10.1016/j.molstruc.2018.03.088]
[64]
da Silva, R.R.; Ramalho, T.C.; Santos, J.M.; Figueroa-Villar, J.D. On the limits of highest-occupied molecular orbital driven reactions: the frontier effective-for-reaction molecular orbital concept. J. Phys. Chem. A, 2006, 110(3), 1031-1040.
[http://dx.doi.org/10.1021/jp054434y] [PMID: 16420004]
[65]
Silva, R.R.; Santos, J.M.; Ramalho, T.C.; Figueroa-Villar, J.D. Concerning the FERMO concept and Pearson’s Hard and Soft acid-base principle. J. Braz. Chem. Soc., 2006, 17(2), 223-226.
[http://dx.doi.org/10.1590/S0103-50532006000200002]
[66]
La Porta, F. Computational insights into the role of the frontiers orbital in the chemistry of tridentate ligands. Am. J. Chem., 2012, 2, 255-262.
[http://dx.doi.org/10.5923/j.chemistry.20120205.03]
[67]
da Costa, E.B.; Trsic, M. A quantum chemical study on a set of non-imidazole H3 antihistamine molecules. J. Mol. Graph. Model., 2010, 28(7), 657-663.
[http://dx.doi.org/10.1016/j.jmgm.2010.01.003] [PMID: 20138791]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy