Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Optical Properties of Novel Materials for Optoelectronic Applications

Author(s): Shivani Kataria, Harish Mudila*, Anil Kumar and Parteek Prasher

Volume 12, Issue 6, 2022

Published on: 21 December, 2022

Article ID: e311022210474 Pages: 10

DOI: 10.2174/2210681213666221031103157

Price: $65

Abstract

Energy generation and utilization have always been a prerequisite for human society, however, in the 21st century and after the pandemic of COVID-19 situations, the importance and demand for energy storage devices have been stretched to the next level. Smart energy storage devices are required to cover this indispensable demand so that the desired energy can judiciously be delivered whenever required. For this immense effort, a variety of materials, viz. carbonaceous materials, transition metal composites, conducting polymers, etc., are being employed by the scientific community, which are equipped with advanced performance, flexibility, tunability, portability, and cost-effectiveness. Apart from these specific features, these energy harvesting materials are associated with inherent properties such as high electrical and optical conductivity, which place them as a potential contender to be used in energy harvest and storage devices. These energy storage devices can be based on the electrochemical, electrical, and optical properties of these conductive materials. To be particular, in this review, the study is targeted at optically conductive materials. The optical conductivity of a material depends upon the band gap present in the conductive material under investigation, the lower the band gap, the higher the chance of optical conductivity. This band gap of the material depends upon factors such as the material used, dopant, solvent applied, etc. This review brings the detail of optically conductive materials, understanding the factors affecting the optical conductivity and the methods to enhancing it so that the variety of applications such as solar cells, optoelectronics, photoelectronic, etc., can be improved.

Graphical Abstract

[1]
Animalu, A.O.E. Optical Conductivity of simple metals. Phys. Rev., 1967, 163(3), 557-562.
[http://dx.doi.org/10.1103/PhysRev.163.557]
[2]
Srilalitha, S.; Jayaveera, K.N.; Madhvendhra, S.S. The effect of dopant, temperature and band gap on conductivity of conducting polymers. Int. J. Innov. Res. Sci. Eng. Technol., 2013, 2(7), 2694-2696.
[3]
Mudila, H.; Prasher, P.; Kumar, A.; Zaidi, M.G.H.; Verma, A. Effect of temperature on the polymerization and optical conductivityof thin flexible polypyrrole/starch composites. J. Phys. Conf. Ser., 2020, 1531(1), 012105.
[http://dx.doi.org/10.1088/1742-6596/1531/1/012105]
[4]
Khokhar, D.; Jadoun, S.; Arif, R.; Jabin, S. Functionalization of conducting polymers and their applications in optoelectronics. Polymer-Plastics Technol. Mater., 2021, 60(5), 465-487.
[http://dx.doi.org/10.1080/25740881.2020.1819312]
[5]
Pramodini, S.; Poornesh, P. Continuous wave laser induced third-order nonlinear optical properties of conducting polymers. Polym. Eng. Sci., 2015, 55(10), 2396-2402.
[http://dx.doi.org/10.1002/pen.24128]
[6]
Lei, J.; Cai, Z.; Martin, C.R. Effect of reagent concentrations used to synthesize polypyrrole on the chemical characteristics and optical and electronic properties of the resulting polymer. Synth. Met., 1992, 46(1), 53-69.
[http://dx.doi.org/10.1016/0379-6779(92)90318-D]
[7]
Pathak, T.K.; Kumar, V.; Swart, H.C.; Purohit, L.P. Effect of doping concentration on the conductivity and optical properties of p-type ZnO thin films. Physica B, 2016, 480, 31-35.
[http://dx.doi.org/10.1016/j.physb.2015.09.033]
[8]
Al-Hada, N.M.; Md. Kasmani, R.; Kasim, H.; Al-Ghaili, A. M.; Saleh, M. A.; Banoqitah, E.M.; Alhawsawi, A.M.; Baqer, A.A.; Liu, J.; Xu, S.; Li, Q.; Noorazlan, A.M.; Ahmed, A.A.A.; Flaifel, M. H.; Paiman, S.; Nazrin, N.; Al-Asbahi, B. A.; Wang, J. The effect of precursor concentration on the particle size, crystal size, and optical energy gap of CexSn1−xO2 nanofabrication. Nanomaterials, 2021, 11(8), 2143.https://www.mdpi.com/2079-4991/11/8/2143
[9]
Verma, N.; Jagota, V.; Alimuddin, A.C.; Alguno, M.; Rakhra, C.K.; Dugbakie, B.N. Morphological, structural, and optical properties of doped/codoped ZnO nanocrystals film prepared by spin coating technique and their gas sensing application. Journal of Nanomaterials, 2022, 6250706, 1-10.
[http://dx.doi.org/10.1155/2022/6250706]
[10]
Das, A.S.; Dipankar, B.; Roy, M.; Roy, D.; Bhattacharya, S. Effect of V2O5 concentration on the structural and optical properties and DC electrical conductivity of ternary semiconducting glassy nanocomposites. J. Phys. Chem. Solids, 2018, 124, 44-53.
[http://dx.doi.org/10.1016/j.jpcs.2018.08.026]
[11]
Suresh, R.; Ponnuswamy, V.; Mariappan, R. Influence of mole concentration on the optical properties of nebulized spray coated CeO2 thin films. J. Opt., 2015, 44(3), 203-209.
[http://dx.doi.org/10.1007/s12596-015-0265-6]
[12]
Femi, M.D.; Ohwofosirai, A.; Sunday, A.; Sunday, O.; Ezekoye, B.A.; Ezema, F.I.; Osuji, R.U. Variation of the optical conductivity, dielectric function and the energy bandgap of CdO using cadmium acetate dehydrate. Int. J. Adv. Electric. Electro. Engin., 2013, 2(2), 331-337.
[13]
Youg, C.; Paul, S. Effect of solvent and co-solvents on the processibility of polyaniline. Synth. Met., 1995, 69(3), 191-192.
[14]
Papaioannou, N.; Marinovic, A.; Yoshizawa, N.; Goode, A.E.; Fay, M.; Khlobystov, A.; Titirici, M.M.; Sapelkin, A. Structure and solvents effects on the optical properties of sugar-derived carbon nanodots. Sci. Rep., 2018, 8(1), 6559.
[http://dx.doi.org/10.1038/s41598-018-25012-8]
[15]
Zahid, F.S.B.; Saad, P.S.B.M.; Rusop, M. Solvent effects on the electrical and optical properties of nanocomposited MEH-PPV: TiO2 films for organic solar cells application. Adv. Mat. Res., 2011, 364, 86-89.
[16]
Gündüz, B. Effects of molarity and solvents on the optical properties of the solutions of tris[4-(5-dicyanomethylidenemethyl-2-thienyl)phenyl]amine (TDCV-TPA) and structural properties of its film. Opt. Mater., 2013, 36(2), 425-436.
[http://dx.doi.org/10.1016/j.optmat.2013.10.005]
[17]
Qaid, S.M.H.; Ghaithan, H.M.; Al-Asbahi, B.A.; Aldwayyan, A.S. Solvent effects on the structural and optical properties of MAPbI3 perovskite thin film for photovoltaic active layer. Coatings, 2022, 12(5), 54.https://www.mdpi.com/2079-6412/12/5/549
[18]
Al Mohaimeed, R.M.; Ansari, A.A.; Aldwayyan, A. The role of solvent environment on the optical behavior of chemically synthesized silicon nanoparticle. J. Spectroscopy, 2018, 6870645, 1-9.
[http://dx.doi.org/10.1155/2018/6870645]
[19]
Ain, Q.T.; Al-Modlej, A.; Alshammari, A.; Anjum, M.N. Effect of solvents on optical band gap of silicon-doped graphene oxide. Mater. Res. Express, 2018, 5(3), 035017.
[http://dx.doi.org/10.1088/2053-1591/aab239]
[20]
Tian, H.Y.; Luo, W.G.; Pu, X.H.; He, X.Y.; Qiu, P.S.; Ding, A.L.; Yang, S.H.; Mo, D. Determination of the optical properties of solgel-derived Bax Sr 1- x TiO3 thin film by spectroscopic ellipsometry. J. Phys. Condens. Matter, 2001, 13(18), 4065-4074.
[http://dx.doi.org/10.1088/0953-8984/13/18/314]
[21]
Omri, K.; Najeh, I.; Dhahri, R.; El Ghoul, J.; El Mir, L. Effects of temperature on the optical and electrical properties of ZnO nanoparticles synthesized by sol-gel method. Microelectron. Eng., 2014, 128, 53-58.
[http://dx.doi.org/10.1016/j.mee.2014.05.029]
[22]
Ekpunobi, U.E.; Akumuo, C.A.; Ogbuagu, A.S.; Duru, C.B.; Ajiwe, V.I.E. Effect of temperature on the optical properties of Ag3O4/AgO thin films. Leonardo. J. Sci., 2016, 29, 1-12.
[23]
Mrigal, A.; El Gana, L.; Addou, M.; Bahedi, K.; Temsamani, R.; Cherrad, H.; El Jouad, Z.; Zimou, J. Temperature effect on structural and optical properties of V2O3 thin films prepared by spray pyrolysis technique. MATEC Web Conf., 2020, 307, p. 01033.
[24]
Agbo, P.E.; Nwofe, P.A.; Ede, M.N. Optical properties of PdS: Al thin films prepared by solution growth technique. J. Non-Oxide Glasses, 2016, 8(4), 85-91.
[25]
Y.K., Tatsuhara; S.H., Kajii; S., Lee; A.F.M., Oz; A.A., Zakhidov; Z.V., Vardeny; M., Ishikawa Optical properties of conducting polymers in nano-scale periodic structure, microcavities and photonic crystals. Microelectron. Eng., 1999, 49-53.
[26]
Nayak, P.K.; Yeh, C.H.; Chen, Y.C.; Chiu, P.W. Layer-dependent optical conductivity in atomic thin WS₂ by reflection contrast spectroscopy. ACS Appl. Mater. Interfaces, 2014, 6(18), 16020-16026.
[http://dx.doi.org/10.1021/am5039483]
[27]
Chen, S.; Ling, X.; Shu, W.; Luo, H.; and Wen, S. Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin hall effect. Phys. Rev. Appl., 2020, 13(1), 014057.
[http://dx.doi.org/10.1103/PhysRevApplied.13.014057]
[28]
Ngidi, N.P.D.; Ollengo, M.A.; and Nyamori, V.O. Effect of doping temperatures and nitrogen precursors on the physicochemical, optical, and electrical conductivity properties of nitrogen-doped reduced graphene oxide. Materials, 2019, 12(20), 3376.https://www.mdpi.com/1996-1944/12/20/3376
[29]
Soganci, T.; Ak, M. An eco-friendly method to enhance optical and electrical properties of conducting polymers by means of carboxymethyl cellulose. Cellulose, 2019, 26(4), 2541-2555.
[http://dx.doi.org/10.1007/s10570-019-02248-9]
[30]
Rania, B.; Hend, A.E.; Khodary, S.E.; Mohamed, M.; Hanan, E.; Nadra, N.; Ibrahim, M. Spectroscopic and thermal analyses for the effect of acetic acid on the plasticized sodium carboxymethyl cellulose. J. Mol. Struct., 2021, 1224, 129013.
[31]
Suriani, I.; Roslina, A.; Mohd Rafie, J. Conductivity and optical studies of plasticized solid polymer electrolytes doped with carbon nanotube. J. Lumin., 2012, 147-152.
[32]
Hawzhin, T.A.; Viyan, J.J.; Dana, A.T.; Azhin, H.M.; Omed, Gh. A. Effect of PEG as a plasticizer on the electrical and optical properties of polymer blend electrolyte MC-CH-LIBF4 based films. Results Phys., 2019, 102735.
[33]
Håkansson, E.; Lin, T.; Wang, H.; Kaynak, A. The effects of dye dopants on the conductivity and optical absorption properties of polypyrrole. Synth. Met., 2006, 156(18-20), 1194-1202.
[http://dx.doi.org/10.1016/j.synthmet.2006.08.006]
[34]
Fahmi Fariq, M.; Shujahadeen, B.A.; Sarkawt, A.H. Effect of the dopant salt on the optical parameters of PVA: Nano3 solid polymer electrolyte. J. Mater. Sci. Mater. Electron., 2014, 26, 521-529.
[35]
Kim, M.S.; Yim, K.G.; Son, J.S.; Leem, J.Y. Effects of al concentration on structural and optical properties of al-doped Zno thin films. Bull. Korean Chem. Soc., 2012, 33(4), 1235-1241.
[http://dx.doi.org/10.5012/bkcs.2012.33.4.1235]
[36]
Ghanipour, M.; Dorranian, D. Effect of ag-nanoparticles doped in polyvinyl alcohol on the structural and optical properties of PVA films. J. Nanomater., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/897043]
[37]
Riaz, U.; Ashraf, S.M.; Kashyap, J. Enhancement of photocatalytic properties of transitional metal oxides using conducting polymers: A mini review. Mater. Res. Bull., 2015, 71, 75-90.
[http://dx.doi.org/10.1016/j.materresbull.2015.06.035]
[38]
Hao, J.; Sun, N.X.; Qiu, J.; Wang, D. Structural, electronic, and optical properties of functional metal oxides. Adv. Condens. Matter Phys., 2014, 2014, 1-2.
[http://dx.doi.org/10.1155/2014/134951]
[39]
Tokura, Y. Current opinion in solid state and material science. Science direct, 1998, 3(2), 170-180.
[40]
Abdel-Baki, M.; El-Diasty, F. Optical properties of oxide glasses containing transition metals: Case of titanium- and chromium containing glasses. Curr. Opin. Solid State Mater. Sci., 2006, 10(5-6), 217-229.
[http://dx.doi.org/10.1016/j.cossms.2007.08.001]
[41]
Said, Z.; Saidur, R.; Rahim, N.A. Optical properties of metal oxides based nanofluids. Int. Commun. Heat Mass Transf., 2014, 59, 46-54.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2014.10.010]
[42]
Aizat, M.A.; Abdah, M.; Azman, N.H.N.; Kulandaivalu, S.; Sulaiman, Y. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater. Des., 2020, 108199.
[43]
Jellicoe, TC; Richter, JM; Glass, HFJ; Tabachnyk, M; Brady, R; Dutton, SE; Rao, A; Friend, RA; Credgington, D; Greenham, NC; Böhm, LB Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc., 2016, 138, 2941-2944.
[44]
Thomas, J.; Jezequel, G.; Pollini, I. Optical properties of layered transition-metal halides. J. Phys. Condens. Matter, 1990, 2(24), 5439-5453.
[http://dx.doi.org/10.1088/0953-8984/2/24/015]
[45]
Moradi-Haji Jafan, M.; Zamani-Meymian, M.R.; Rahimi, R.; Rabbani, M. The effect of solvents and the thickness on structural, optical, and electrical properties of ITO thin films prepared by a sol-gel spin-coating process. J. Nanostructure Chem., 2014, 4(1), 89.
[http://dx.doi.org/10.1007/s40097-014-0089]
[46]
Seok, J.L.; Choi, S.C. Solvent effect on synthesis of indium tin oxide powders by a solvothermal process. J. Eur. Ceram. Soc., 2004, 25, 3307-3314.
[47]
Hossain, M.M.; Naqib, S.H. Structural, elastic, electronic, and optical properties of layered tin x (x = F, Cl, Br, I) compounds: A density functional theory study. Mol. Phys., 2020, 118(3), e1609706.
[http://dx.doi.org/10.1080/00268976.2019.1609706]
[48]
Khatri, N.M.; Pablico-Lansigan, M.H.; Boncher, W.L.; Mertzman, J.E.; Labatete, A.C.; Grande, L.M.; Wunder, D.; Prushan, M.J.; Zhang, W.; Halasyamani, P.S.; Monteiro, J.H.S.K.; Bettencourt-Dias, A.; Stoll, S.L. Luminescence and nonlinear optical properties in copper(I) halide extended networks. Inorg. Chem., 2016, 55(21), 11408-11417.
[http://dx.doi.org/10.1021/acs.inorgchem.6b01879] [PMID: 27735188]
[49]
Bajpai, M.; Srivastava, R.; Dhar, R.; Tiwari, R. S. Review on optical and electrical properties of conducting polymers. In: Indian Journal of Materials Science; , 2016; pp. 1-8.
[50]
Gürbüz, O.; Şenkal, B.F.; İçelli, O Structural, optical and electrical properties of polypyrrole in an ionic liquid. Polym. Bull., 2017, 74(7), 2625-2639.
[http://dx.doi.org/10.1007/s00289-016-1856-3]
[51]
Abdulla, H.S.; Abbo, A.I. Optical and electrical properties of thin films of polyaniline and polypyrrole. Int. J. Electrochem. Sci., 2012, 7, 10666-10678.
[52]
Mahnaz, M.; Abdia, M.M.; Mahmud, H.N.M.E.; Abdullah, L.C.; Kassim, A.; Rahman, M.Z.A.; Chyi, J.L. Y Optical band gap and conductivity measurements of polypyrrole-chitosan composite thin films. Chin. J. Polym. Sci., 2012, 30(1), 93-100.
[http://dx.doi.org/10.1007/s10118-012-1093-7]
[53]
Bhavsar, V.; Tripathi, D. Study of refractive index dispersion and optical conductivity of ppy doped PVC films. Indian J. Pure Appl. Phy., 2016, 54, 105-110.
[54]
Lanuza, C.R.J.; Manzano, M.C.; Manzano, E.; Alcantara, N.; Llanes, A.M.; Ong, H. Optical band gap and electrical conductivity of doped conducting polypyrrole. IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Laoag, Philippines2019.
[55]
Asma, B.; Gueddim, A.; Ouarissa, N.; Djellali, S. Band structure and optical properties of polyaniline polymer material. Polym. Bull., 2018, 75, 3023-3033.
[56]
Gupta, K.; Jana, P.C.; Meikap, A.K. Optical and electrical transport properties of polyaniline-silver nanocomposite. Synth. Mater., 2010, 160(13-14), 1566-1573.
[57]
Ibrahim, A.; Abdel-Aziz, M.H.; Zoromba, M.S.; Al-Hossainy, A.F. Structural, optical, and electrical properties of multi-walled carbon nanotubes/polyaniline/Fe3O4 ternary nanocomposites thin film. Synth. Met., 2018, 238, 1-13.
[http://dx.doi.org/10.1016/j.synthmet.2018.02.006]
[58]
Wadatkar, N.S.; Waghuley, S.A. Complex optical and thermal studies on as-synthesized conducting polythiophene. J. Electron. Mater., 2019, 48(4), 2219-2225.
[http://dx.doi.org/10.1007/s11664-019-06991-4]
[59]
Peymanfar, R.; Mohammadi, A.; Javanshir, S. Preparation of graphite-like carbon nitride/polythiophene nanocomposite and investigation of its optical and microwave absorbing characteristics; Composites Communications, 2020, p. 100421.
[60]
Wadatkar, N.S.; Waghuley, S.A. Complex optical studies on conducting polyindole as-synthesized through chemical route. Egyptian J. Basic Appl. Sci., 2015, 2(1), 19-24.
[http://dx.doi.org/10.1016/j.ejbas.2014.12.006]
[61]
Malhotra, B. D Biopolymeric nanostructures: Biosensors and bioimaging. In: Materials Science; Biology, 2018; pp. 127-144.
[62]
Tian, L.; Luan, J.; Liu, K.K.; Jiang, Q.; Tadepalli, S.; Gupta, M.K.; Naik, R.R.; Singamaneni, S. Plasmonic biofoam: A versatile optically active material. Nano Lett., 2016, 16(1), 609-616.
[http://dx.doi.org/10.1021/acs.nanolett.5b04320] [PMID: 26630376]
[63]
Xiao, M.; Shawkey, M.D.; Dhinojwala, A. Bioinspired melanin based optically active materials. Adv. Opt. Mater., 2020, 8(19), 2000932.
[http://dx.doi.org/10.1002/adom.202000932]
[64]
Wang, C.; Ohodnicki, P.R., Jr; Su, X.; Keller, M.; Brown, T.D.; Baltrus, J.P. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures. Nanoscale, 2015, 7(6), 2527-2535.
[http://dx.doi.org/10.1039/C4NR06232A] [PMID: 25572664]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy