[1]
Lima, C.F.A.C.; Rodrigues, A.S.M.C.; Silva, V.L.M.; Silva, A.M. Santos. L.M.N.B.S. Role of the base and control of selectivity in the Suzuki-Miyaura cross-coupling reaction. ChemCatChem, 2014, 6, 1291-1302.
[http://dx.doi.org/10.1002/cctc.201301080]
[http://dx.doi.org/10.1002/cctc.201301080]
[2]
Basavaiah, D.; Rao, K.V.; Reddy, R.J. The Baylis-Hillman reaction: a novel source of attraction, opportunities, and challenges in synthetic chemistry. Chem. Soc. Rev., 2007, 36, 1581-1588.
[http://dx.doi.org/10.1039/B613741P]
[http://dx.doi.org/10.1039/B613741P]
[3]
Venkateswarlu, K. Ashes from organic waste as reagents in synthetic chemistry: a review. Environ. Chem. Lett., 2021, 19, 3887-3950.
[http://dx.doi.org/10.1007/s10311-021-01253-4]
[http://dx.doi.org/10.1007/s10311-021-01253-4]
[4]
Naidu, B.R.; Venkateswarlu, K. Dried water extract of pomegranate peel ash (DWEPA) as novel and biorenewable heterogeneous catalyst for biodiesel production and biopotent quinoxalines synthesis. Bioresour. Technol. Rep., 2022, 18, 101107.
[http://dx.doi.org/10.1016/j.biteb.2022.101107]
[http://dx.doi.org/10.1016/j.biteb.2022.101107]
[5]
Lakshmidevi, J.; Naidu, B.R.; Venkateswarlu, K. CuI in biorenewable basic medium: Three novel and low E-factor Suzuki-Miyaura cross-coupling reactions. Mol. Catal., 2022, 522, 112237.
[http://dx.doi.org/10.1016/j.mcat.2022.112237]
[http://dx.doi.org/10.1016/j.mcat.2022.112237]
[6]
Zhao, Y.B.; Tan, W.W.; Li, H.; Jia, X-H.; Wan, H-L. Oxidative dehydrogenation of ethane to ethane over a superbase supported LiCl system. Chin. Chem. Lett., 2010, 21, 1366-1369.
[http://dx.doi.org/10.1016/j.cclet.2010.06.025]
[http://dx.doi.org/10.1016/j.cclet.2010.06.025]
[7]
Naidu, B.R.; Venkateswarlu, K. WEPA: a reusable waste biomass-derived catalyst for external oxidant/metal-free quinoxaline synthesis via tandem condensation–cyclization–oxidation of α-hydroxy ketones. Green Chem., 2022, 24, 6215-6223.
[http://dx.doi.org/10.1039/D2GC02386E]
[http://dx.doi.org/10.1039/D2GC02386E]
[8]
Bhunia, M.; Hota, P.K.; Vijaykumar, G.; Adhikari, D.; Mandal, S.K. A highly efficient base-metal catalyst: chemoselective reduction of imines to amines using an abnormal-NHC–Fe(0) complex. Organometallics, 2016, 35, 2930-2937.
[http://dx.doi.org/10.1021/acs.organomet.6b00478]
[http://dx.doi.org/10.1021/acs.organomet.6b00478]
[9]
Eymur, S.; Göllü, M.; Tanyeli, C. Umpolung strategy: Advances in catalytic C-C bond formations. Turk. J. Chem., 2013, 37, 586-609.
[http://dx.doi.org/10.3906/kim-1303-85]
[http://dx.doi.org/10.3906/kim-1303-85]
[10]
Kieslich, D.; Christoffers, J. Cyanide anions as nucleophilic catalysts in organic synthesis. Synthesis, 2021, 53, 3485-3486.
[http://dx.doi.org/10.1055/a-1499-8943]
[http://dx.doi.org/10.1055/a-1499-8943]
[11]
Singh, S.; Pathak, N.; Fatima, E.; Negi, A.S. Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. Eur. J. Med. Chem., 2021, 226, 113839.
[http://dx.doi.org/10.1016/j.ejmech.2021.113839]
[http://dx.doi.org/10.1016/j.ejmech.2021.113839]
[12]
Bhambhani, S.; Kondhare, K.R.; Giri, A.P. Diversity in chemical structures and biological properties of plant alkaloids. Molecules, 2021, 26, 3374.
[http://dx.doi.org/10.3390/molecules26113374]
[http://dx.doi.org/10.3390/molecules26113374]
[13]
Tian, S-K.; Chen, Y.; Hang, J.; Tang, L.; McDaid, P.; Deng, L. Asymmetric organic catalysis with modified cinchona alkaloids. Acc. Chem. Res., 2004, 37, 621-631.
[http://dx.doi.org/10.1021/ar030048s]
[http://dx.doi.org/10.1021/ar030048s]
[14]
Li, M.; He, W.; Zhang, S-Y. The use of Cinchona alkaloid derivatives as chiral ligands and organocatalysts in asymmetric catalysis. Mini Rev. Org. Chem., 2022, 19, 146-165.
[http://dx.doi.org/10.2174/1570193X18666210428133120]
[http://dx.doi.org/10.2174/1570193X18666210428133120]
[15]
Juaristi, E. Recent developments in next generation (S)-proline-derived chiral organocatalysts. Tetrahedron, 2021, 88, 132143.
[http://dx.doi.org/10.1016/j.tet.2021.132143]
[http://dx.doi.org/10.1016/j.tet.2021.132143]
[16]
Venkateswarlu, K.; Rao, K.U. Cu(OAc)2-porphyrins as an efficient catalytic system for base-free, nature mimicking Chan–Lam coupling in water. Appl. Organomet. Chem., 2021, 35, e6223.
[http://dx.doi.org/10.1002/aoc.6223]
[http://dx.doi.org/10.1002/aoc.6223]
[17]
Rao, K.U.; Venkateswarlu, K. PdII-porphyrin complexes – the first use as safer and efficient catalysts for miyaura Borylation. Synlett, 2018, 29, 1055-1060.
[http://dx.doi.org/10.1055/s-0036-1591549]
[http://dx.doi.org/10.1055/s-0036-1591549]
[18]
Janczewski, Ł.; Walczak, M.; Frączyk, J.; Kamiński, Z.J.; Kolesińska, B. Microwave-assisted Cannizzaro reaction–Optimisation of reaction conditions. Synth. Commun., 2010, 49, 3290-3300.
[http://dx.doi.org/10.1080/00397911.2019.1657459]
[http://dx.doi.org/10.1080/00397911.2019.1657459]
[19]
Shih, C-T.; Kuo, B-H.; Tsai, C-Y.; Tseng, M-C.; Shie, J-J. Dibenzocyclooctendiones (DBCDOs): Arginine-Selective Chemical Labeling Reagents Obtained through Benzilic Acid Rearrangement. Org. Lett., 2022, 24, 4694-4698.
[http://dx.doi.org/10.1021/acs.orglett.2c01970]
[http://dx.doi.org/10.1021/acs.orglett.2c01970]
[20]
Chatterjee, R.; Bhukta, S.; Dandala, R. Super base derived ionic liquids: A useful tool in organic synthesis. Curr. Org. Chem., 2022, 26(13), 1237-1263.
[http://dx.doi.org/10.2174/1385272826666220418183249]
[http://dx.doi.org/10.2174/1385272826666220418183249]
[21]
Jyothi, R.S.M.; Sripathi, M.P.; Thirupathi, P. Recent advances in base-assisted Michael addition reactions. Curr. Org. Chem., 2022, 26(13), 1264-1293.
[http://dx.doi.org/10.2174/1385272826666220827095110]
[http://dx.doi.org/10.2174/1385272826666220827095110]
[22]
Rao, K.S.V.K.; Nagaraja, K.; Lakshmi, B.A.; Lakshmidevi, J.; Reddy, G.V.; Han, S.S.; Rao, K.M. Recent advances in chitosan based composite materials in organic transformations - A review. Curr. Org. Chem., 2022, 26(13), 1294-1302.
[http://dx.doi.org/10.2174/1385272826666220908120319]
[http://dx.doi.org/10.2174/1385272826666220908120319]
[23]
Kumar, K.S.; Gugulothu, K.; Reddy, S.R.; Venkateswarlu, K. A critical review on recent advances in base-assisted Smiles rearrangement. Curr. Org. Chem., 2022, 26(13), 1303-1310.
[http://dx.doi.org/10.2174/1385272826666220509143140]
[http://dx.doi.org/10.2174/1385272826666220509143140]
[24]
Naidu, B.R.; Krishnaiah, M. A review on the catalytic applications of polyaniline supported palladium (Pd@PANI) in C–C coupling reactions. Curr. Org. Chem., 2022, 26(13), 1311-1320.
[http://dx.doi.org/10.2174/1385272826666220517123128]
[http://dx.doi.org/10.2174/1385272826666220517123128]