Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Super Base Derived Ionic Liquids: A Useful Tool in Organic Synthesis

Author(s): Rana Chatterjee, Swadhapriya Bhukta and Rambabu Dandela*

Volume 26, Issue 13, 2022

Published on: 27 May, 2022

Page: [1237 - 1263] Pages: 27

DOI: 10.2174/1385272826666220418183249

Price: $65

conference banner
Abstract

Over the last few decades, ionic liquids have been raised as a great appliance to pursue many organic transformations. In the present research, the synthetic application of ILs has emerged largely as solvents, additives, or catalysts. With the developing commercial methods, task-specific ionic liquids have been constructed by appointing guanidine, amidine and other superbasic cations. By the nature of the cation or the anion, the properties of the ionic liquids can be adjusted. In this regard, superbasic ionic liquids have been derived from both acyclic and cyclic guanidine or amidine derivatives. In particular, some common super bases such as 1,1,3,3-tetramethylguanidine (TMG), 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), are used to design these special type of ionic liquids. These superbasic ionic liquids have shown a potential activity to accelerate many organic transformations including alcoholysis, esterification, multi-component reaction, Knoevenagel reaction, Michael addition, cyclization, etc. Additionally, because of their novel properties including high liquid range, nonvolatility, high thermal and chemical stability, these classic ionic liquids have a potential environmental impact and they are often found to play a promising role in the field of catalysis, electrochemistry, spectroscopy, and materials science. Not only that, the application of superionic liquids has been widely spread in the industrial and research area, especially, for the chemical transformation of CO2. This review aims to portray an outlook on the organic syntheses that have been promoted by superionic liquids in the last five years.

Keywords: Ionic liquids, organic synthesis, super basic cations, Knoevenagel reaction, Michael addition, cyclization.

Graphical Abstract

[1]
Holbrey, J.D.; Seddon, K.R. Ionic liquids. Clean Prod. Process., 1999, 1, 223-236.
[2]
Singh, S.K.; Savoy, A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq., 2020, 297, 112038.
[http://dx.doi.org/10.1016/j.molliq.2019.112038]
[3]
Welton, T. Ionic liquids in catalysis. Coord. Chem. Rev., 2004, 248(21-24), 21-24, 2459-2477.
[http://dx.doi.org/10.1016/j.ccr.2004.04.015]
[4]
Rogers, R.D.; Seddon, K.R. Chemistry. Ionic liquids--solvents of the future? Science, 2003, 302(5646), 792-793.
[http://dx.doi.org/10.1126/science.1090313] [PMID: 14593156]
[5]
Wasserscheid, P.; Welton, T. Ed.; Ionic liquids in synthesis; Weinheim: Wiley-Vch, 2008, Vol. 1, p. 367.
[6]
Zhang, S.; Sun, N.; He, X.; Lu, X.; Zhang, X. Physical properties of ionic liquids: Database and evaluation. J. Phys. Chem. Ref. Data, 2006, 35(4), 1475-1517.
[http://dx.doi.org/10.1063/1.2204959]
[7]
Handy, S. Ed.; Ionic Liquids: Classes and properties; BoD–Books on Demand, 2011.
[http://dx.doi.org/10.5772/853]
[8]
Plechkova, N.V.; Seddon, K.R. Ionic liquids: “Designer” solvents for green chemistry; John Wiley & Sons: Hoboken, 2007, Vol. 105, .
[9]
Newington, I.; Perez-Arlandis, J.M.; Welton, T. Ionic liquids as designer solvents for nucleophilic aromatic substitutions. Org. Lett., 2007, 9(25), 5247-5250.
[http://dx.doi.org/10.1021/ol702435f] [PMID: 18001045]
[10]
Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2008, 37(1), 123-150.
[http://dx.doi.org/10.1039/B006677J] [PMID: 18197338]
[11]
Abbott, A.P.; McKenzie, K.J. Application of ionic liquids to the electrodeposition of metals. Phys. Chem. Chem. Phys., 2006, 8(37), 4265-4279.
[http://dx.doi.org/10.1039/b607329h] [PMID: 16986069]
[12]
Watanabe, M.; Thomas, M.L.; Zhang, S.; Ueno, K.; Yasuda, T.; Dokko, K. Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev., 2017, 117(10), 7190-7239.
[http://dx.doi.org/10.1021/acs.chemrev.6b00504] [PMID: 28084733]
[13]
Weyershausen, B.; Lehmann, K. Industrial application of ionic liquids as performance additives. Green Chem., 2005, 7(1), 15-19.
[http://dx.doi.org/10.1039/b411357h]
[14]
Kubisa, P. Application of ionic liquids as solvents for polymerization processes. Prog. Polym. Sci., 2004, 29(1), 3-12.
[http://dx.doi.org/10.1016/j.progpolymsci.2003.10.002]
[15]
Liu, J.F.; Jiang, G.B.; Jönsson, J.Å. Application of ionic liquids in analytical chemistry. Trends Analyt. Chem., 2005, 24(1), 20-27.
[http://dx.doi.org/10.1016/j.trac.2004.09.005]
[16]
Park, J.; Jung, Y.; Kusumah, P.; Lee, J.; Kwon, K.; Lee, C.K. Application of ionic liquids in hydrometallurgy. Int. J. Mol. Sci., 2014, 15(9), 15320-15343.
[http://dx.doi.org/10.3390/ijms150915320] [PMID: 25177864]
[17]
Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq., 2017, 227, 44-60.
[http://dx.doi.org/10.1016/j.molliq.2016.11.123]
[18]
Steinrueck, H.P.; Wasserscheid, P. Ionic liquids in catalysis. Catal. Lett., 2015, 145(1), 380-397.
[http://dx.doi.org/10.1007/s10562-014-1435-x]
[19]
Qiao, Y.; Ma, W.; Theyssen, N.; Chen, C.; Hou, Z. Temperature-responsive ionic liquids: Fundamental behaviors and catalytic applications. Chem. Rev., 2017, 117(10), 6881-6928.
[http://dx.doi.org/10.1021/acs.chemrev.6b00652] [PMID: 28358505]
[20]
Li, H.; Bhadury, P.S.; Song, B.; Yang, S. Immobilized functional ionic liquids: Efficient, green, and reusable catalysts. RSC Advances, 2012, 2(33), 12525-12551.
[http://dx.doi.org/10.1039/c2ra21310a]
[21]
Davis, H., Jr James. “Task-specific ionic liquids. Chem. Lett., 2004, 33, 1072-1077.
[http://dx.doi.org/10.1246/cl.2004.1072]
[22]
Giernoth, R. Task-specific ionic liquids. Angew. Chem. Int. Ed. Engl., 2010, 49(16), 2834-2839.
[http://dx.doi.org/10.1002/anie.200905981] [PMID: 20229544]
[23]
Chaturvedi, D. Recent developments on task specific ionic liquids. Curr. Org. Chem., 2011, 15(8), 1236-1248.
[http://dx.doi.org/10.2174/138527211795202997]
[24]
Ishikawa, T. Superbases for organic synthesis: Guanidines, amidines, phosphazenes and related organocatalysts; John Wiley & Sons, 2009.
[http://dx.doi.org/10.1002/9780470740859]
[25]
Nowicki, J.; Muszyński, M.; Mikkola, J.P. Ionic liquids derived from organosuperbases: En route to superionic liquids. RSC Advances, 2016, 6(11), 9194-9208.
[http://dx.doi.org/10.1039/C5RA23616A]
[26]
Ding, T.; Zha, J.; Zhang, D.; Zhang, J.; Yuan, H.; Xia, F.; Gao, G. CO2 atmosphere enables efficient catalytic hydration of ethylene oxide by ionic liquids/organic bases at low water/epoxide ratios. Green Chem., 2021, 23(9), 3386-3391.
[http://dx.doi.org/10.1039/D1GC00758K]
[27]
Boyd, A.R.; Jessop, P.G.; Dust, J.M.; Buncel, E. Switchable polarity solvent (SPS) systems: Probing solvatoswitching with a spiropyran (SP)-merocyanine (MC) photoswitch. Org. Biomol. Chem., 2013, 11(36), 6047-6055.
[http://dx.doi.org/10.1039/c3ob41204k] [PMID: 23912153]
[28]
Rauber, D.; Philippi, F.; Zapp, J.; Kickelbick, G.; Natter, H.; Hempelmann, R. Transport properties of protic and aprotic guanidinium ionic liquids. RSC Advances, 2018, 8(72), 41639-41650.
[http://dx.doi.org/10.1039/C8RA07412G]
[29]
Wang, C.; Mahurin, S.M.; Luo, H.; Baker, G.A.; Li, H.; Dai, S. Reversible and robust CO2 capture by equimolar task-specific ionic liquid–superbase mixtures. Green Chem., 2010, 12(5), 870-874.
[http://dx.doi.org/10.1039/b927514b]
[30]
Orhan, O.Y.; Alper, E. Kinetics of reaction between CO2 and ionic liquid-carbon dioxide binding organic liquid hybrid systems: Analysis of gas-liquid absorption and stopped flow experiments. Chem. Eng. Sci., 2017, 170, 36-47.
[http://dx.doi.org/10.1016/j.ces.2017.01.051]
[31]
Zhao, Y.; Yu, B.; Yang, Z.; Zhang, H.; Hao, L.; Gao, X.; Liu, Z. A protic ionic liquid catalyzes CO2 conversion at atmospheric pressure and room temperature: Synthesis of quinazoline-2,4(1H,3H)-diones. Angew. Chem. Int. Ed. Engl., 2014, 53(23), 5922-5925.
[http://dx.doi.org/10.1002/anie.201400521] [PMID: 24788820]
[32]
Wang, C.; Luo, H.; Luo, X.; Li, H.; Dai, S. Equimolar CO2 capture by imidazolium-based ionic liquids and superbase systems. Green Chem., 2010, 12(11), 2019-2023.
[http://dx.doi.org/10.1039/c0gc00070a]
[33]
Wang, C.; Luo, H.; Jiang, D.E.; Li, H.; Dai, S. Carbon dioxide capture by superbase-derived protic ionic liquids. Angew. Chem. Int. Ed. Engl., 2010, 49(34), 5978-5981.
[http://dx.doi.org/10.1002/anie.201002641] [PMID: 20632428]
[34]
Anugwom, I.; Mäki-Arvela, P.; Virtanen, P.; Willför, S.; Sjöholm, R.; Mikkola, J.P. Selective extraction of hemicelluloses from spruce using switchable ionic liquids. Carbohydr. Polym., 2012, 87(3), 2005-2011.
[http://dx.doi.org/10.1016/j.carbpol.2011.10.006]
[35]
Zhu, X.; Song, M.; Ling, B.; Wang, S.; Luo, X. The highly efficient absorption of CO2 by a novel DBU based ionic liquid. J. Solution Chem., 2020, 49(3), 257-271.
[http://dx.doi.org/10.1007/s10953-020-00958-4]
[36]
Zhang, J.; Sun, J.; Zhang, X.; Zhao, Y.; Zhang, S. The recent development of CO2 fixation and conversion by ionic liquid. Greenh. Gases (Chichester UK), 2011, 1(2), 142-159.
[http://dx.doi.org/10.1002/ghg.13]
[37]
Zhu, X.; Song, M.; Xu, Y. DBU-based protic ionic liquids for CO2 capture. ACS Sustain. Chem.& Eng., 2017, 5(9), 8192-8198.
[http://dx.doi.org/10.1021/acssuschemeng.7b01839]
[38]
Wang, S.; Shi, Y.; Luo, X.; Song, M.; Ling, B.; Zhu, X. Electrical conductivities of dbu-based ionic liquid in its binary solutions with nonaqueous molecular solvents. J. Solution Chem., 2021, 50(4), 558-575.
[http://dx.doi.org/10.1007/s10953-021-01070-x]
[39]
Anugwom, I.; Mäki-Arvela, P.; Virtanen, P.; Damlin, P.; Sjöholm, R.; Mikkola, J.P. Switchable ionic liquids (SILs) based on glycerol and acid gases. RSC Advances, 2011, 1(3), 452-457.
[http://dx.doi.org/10.1039/c1ra00154j]
[40]
Meng, X.; Wang, J.; Jiang, H.; Zhang, X.; Liu, S.; Hu, Y. Guanidinium‐based dicarboxylic acid ionic liquids for SO2 capture. J. Chem. Technol. Biotechnol., 2017, 92(4), 767-774.
[http://dx.doi.org/10.1002/jctb.5052]
[41]
Zheng, L.; Yang, G.; Hu, X.; Zhang, Z. CO2 capturing and in situ conversion at mild condition: Efficient synthesis of methyl phenyl carbonate. J. Environ. Chem. Eng., 2021, 9(5), 105862.
[http://dx.doi.org/10.1016/j.jece.2021.105862]
[42]
Zalewski, M.; Krawczyk, T.; Siewniak, A.; Sobolewski, A. Carbon dioxide capture using water-imidazolium ionic liquids-amines ternary systems. Int. J. Greenh. Gas Control, 2021, 105, 103210.
[http://dx.doi.org/10.1016/j.ijggc.2020.103210]
[43]
Shang, Y.; Li, H.; Zhang, S.; Xu, H.; Wang, Z.; Zhang, L.; Zhang, J. Guanidinium-based ionic liquids for sulfur dioxide sorption. Chem. Eng. J., 2011, 175, 324-329.
[http://dx.doi.org/10.1016/j.cej.2011.09.114]
[44]
Yang, Z.Z.; He, L.N. Efficient CO2 capture by tertiary amine-functionalized ionic liquids through Li(+)-stabilized zwitterionic adduct formation. Beilstein J. Org. Chem., 2014, 10, 1959-1966.
[http://dx.doi.org/10.3762/bjoc.10.204] [PMID: 25246955]
[45]
Hasaninejad, A.; Golzar, N.; Beyrati, M.; Zare, A.; Doroodmand, M.M. Silica-bonded 5-n-propyl-octahydro-pyrimido [1, 2-a] azepinium chloride (SB-DBU)Cl as a highly efficient, heterogeneous and recyclable silica-supported ionic liquid catalyst for the synthesis of benzo [b] pyran, bis (benzo [b] pyran) and spiro-pyran derivatives. J. Mol. Catal. Chem., 2013, 372, 137-150.
[http://dx.doi.org/10.1016/j.molcata.2013.02.022]
[46]
Chatterjee, R.; Bhukta, S.; Dandela, R. Ionic liquid‐assisted synthesis of 2‐amino‐3‐cyano‐4H‐chromenes: A sustainable overview. J. Heterocycl. Chem., 2021, 59, 633-654.
[http://dx.doi.org/10.1002/jhet.4417]
[47]
Mahato, S.; Santra, S.; Chatterjee, R.; Zyryanov, G.V.; Hajra, A.; Majee, A. Brønsted acidic ionic liquid-catalyzed tandem reaction: An efficient approach towards regioselective synthesis of pyrano [3, 2-c] coumarins under solvent-free conditions bearing lower E-factors. Green Chem., 2017, 19(14), 3282-3295.
[http://dx.doi.org/10.1039/C7GC01158J]
[48]
Sarkar, S.; Chatterjee, R.; Mukherjee, A.; Mukherjee, D.; Chandra Mandal, N.; Mahato, S.; Santra, S.; Zyryanov, G.V.; Majee, A. Mechanochemical synthesis and antimicrobial studies of 4-hydroxy-3-thiomethylcoumarins using imidazolium zwitterionic molten salt as an organocatalyst. ACS Sustain. Chem.& Eng., 2021, 9(16), 5557-5569.
[http://dx.doi.org/10.1021/acssuschemeng.0c08975]
[49]
Chatterjee, R.; Mahato, S.; Santra, S.; Zyryanov, G.V.; Hajra, A.; Majee, A. Imidazolium zwitterionic molten salt: An efficient organocatalyst under neat conditions at room temperature for the synthesis of dipyrromethanes as well as bis (indolyl) methanes. ChemistrySelect, 2018, 3(21), 5843-5847.
[http://dx.doi.org/10.1002/slct.201800227]
[50]
Chatterjee, R.; Santra, S.; Zyryanov, G.V.; Majee, A. Brønsted acidic ionic liquid–catalyzed tandem trimerization of indoles: An efficient approach towards the synthesis of indole 3, 3′‐trimers under solvent‐free conditions. J. Heterocycl. Chem., 2020, 57(4), 1863-1874.
[http://dx.doi.org/10.1002/jhet.3914]
[51]
Chatterjee, R.; Santra, S.; Zyryanov, G.V.; Majee, A. Vinylation of carbonyl oxygen in 4-hydroxycoumarin: Synthesis of heteroarylated vinyl ethers. Synthesis, 2019, 51(11), 2371-2378.
[http://dx.doi.org/10.1055/s-0037-1610696]
[52]
Mahato, S.; Chatterjee, R.; Chakraborty Ghosal, N.; Majee, A. Zwitterionic imidazolium salt: An efficient organocatalyst for tetrahydropyranylation of alcohols. Synth. Commun., 2017, 47(20), 1905-1915.
[http://dx.doi.org/10.1080/00397911.2017.1356334]
[53]
Chatterjee, R.; Mukherjee, A.; Santra, S.; Zyryanov, G.V.; Chupakhin, O.N.; Majee, A. An expedient solvent-free C-benzylation of 4-hydroxycoumarin with styrenes. Mendeleev Commun., 2021, 31(1), 123-124.
[http://dx.doi.org/10.1016/j.mencom.2021.01.039]
[54]
Wang, B.; Qin, L.; Mu, T.; Xue, Z.; Gao, G. Are ionic liquids chemically stable? Chem. Rev., 2017, 117(10), 7113-7131.
[http://dx.doi.org/10.1021/acs.chemrev.6b00594] [PMID: 28240867]
[55]
Pârvulescu, V.I.; Hardacre, C. Catalysis in ionic liquids. Chem. Rev., 2007, 107(6), 2615-2665.
[http://dx.doi.org/10.1021/cr050948h] [PMID: 17518502]
[56]
Maton, C.; De Vos, N.; Stevens, C.V. Ionic liquid thermal stabilities: Decomposition mechanisms and analysis tools. Chem. Soc. Rev., 2013, 42(13), 5963-5977.
[http://dx.doi.org/10.1039/c3cs60071h] [PMID: 23598738]
[57]
Chakraborti, A.K.; Roy, S.R. On catalysis by ionic liquids. J. Am. Chem. Soc., 2009, 131(20), 6902-6903.
[http://dx.doi.org/10.1021/ja900076a] [PMID: 19413313]
[58]
Rahaman, R.; Devi, N.; Sarma, K.; Barman, P. Microwave-assisted synthesis of 3-sulfenylindoles by sulfonyl hydrazides using organic ionic base-Brønsted acid. RSC Advances, 2016, 6(13), 10873-10879.
[http://dx.doi.org/10.1039/C5RA24851E]
[59]
Singh, H.; Khanna, G.; Nand, B.; Khurana, J.M. Metal-free synthesis of 1, 2, 3-triazoles by azide–aldehyde cycloaddition under ultrasonic irradiation in TSIL [DBU-Bu]OH and in hydrated IL Bu4NOH under heating. Monatsh. Chem., 2016, 147(7), 1215-1219.
[http://dx.doi.org/10.1007/s00706-015-1623-4]
[60]
Wang, B.; Luo, Z.; Elageed, E.H.; Wu, S.; Zhang, Y.; Wu, X.; Xia, F.; Zhang, G.; Gao, G. DBU and DBU‐Derived ionic liquid synergistic catalysts for the conversion of carbon dioxide/carbon disulfide to 3‐aryl‐2‐oxazolidinones/[1,3] dithiolan‐2‐ylidenephenyl‐amine. chemcatchem, 2016, 8(4), 830-838.
[http://dx.doi.org/10.1002/cctc.201500928]
[61]
Cao, X.T.; Zhang, P.F.; Zheng, H. Metal-free catalytic synthesis of diaryl thioethers under mild conditions. New J. Chem., 2016, 40(8), 6762-6767.
[http://dx.doi.org/10.1039/C6NJ00322B]
[62]
Chen, K.; Shi, G.; Zhang, W.; Li, H.; Wang, C. Computer-assisted design of ionic liquids for efficient synthesis of 3(2H)-furanones: A domino reaction triggered by CO2. J. Am. Chem. Soc., 2016, 138(43), 14198-14201.
[http://dx.doi.org/10.1021/jacs.6b08895] [PMID: 27754650]
[63]
Patel, D.S.; Avalani, J.R.; Raval, D.K. One-pot solvent-free rapid and green synthesis of 3, 4-dihydropyrano [c] chromenes using grindstone chemistry. J. Saudi Chem. Soc., 2016, 20, S401-S405.
[http://dx.doi.org/10.1016/j.jscs.2012.12.008]
[64]
Bhupathi, R.S.; Madhu, B.; Reddy, C.V.R.; Devi, B.R.; Dubey, P.K. Ionic liquid mediated green synthesis of spirooxindoles from n‐methyl quinolones and their anti-bacterial activity. J. Heterocycl. Chem., 2017, 54(4), 2326-2332.
[http://dx.doi.org/10.1002/jhet.2821]
[65]
Zhang, Q.; Yuan, H.Y.; Fukaya, N.; Yasuda, H.; Choi, J.C. Direct synthesis of carbamate from CO2 using a task-specific ionic liquid catalyst. Green Chem., 2017, 19(23), 5614-5624.
[http://dx.doi.org/10.1039/C7GC02666H]
[66]
Zheng, L.; Yang, G.; Liu, J.; Hu, X.; Zhang, Z. Metal-free catalysis for the one-pot synthesis of organic carbamates from amines, CO2, and alcohol at mild conditions. Chem. Eng. J., 2021, 425, 131452.
[http://dx.doi.org/10.1016/j.cej.2021.131452]
[67]
Szánti-Pintér, E.; Maksó, L.; Gömöry, Á.; Wouters, J.; Edina Herman, B.; Szécsi, M.; Mikle, G.; Kollár, L.; Skoda-Földes, R. Synthesis of 16α-amino-pregnenolone derivatives via ionic liquid-catalyzed aza-Michael addition and their evaluation as C17,20-lyase inhibitors. Steroids, 2017, 123, 61-66.
[http://dx.doi.org/10.1016/j.steroids.2017.05.006] [PMID: 28502863]
[68]
Liu, Y.; Mao, G.; Zhao, H.; Song, J.; Han, H.; Li, Z.; Chu, W.; Sun, Z. DBU-Based dicationic ionic liquids promoted esterification reaction of carboxylic acid with primary chloroalkane under mild conditions. Catal. Lett., 2017, 147(11), 2764-2771.
[http://dx.doi.org/10.1007/s10562-017-2184-4]
[69]
Yang, C.; Liu, M.; Zhang, J.; Wang, X.; Jiang, Y.; Sun, J. Facile synthesis of DBU-based ionic liquids cooperated with ZnI2 as catalysts for efficient cycloaddition of CO2 to epoxides under mild and solvent-free conditions. Mol. Catal., 2018, 450, 39-45.
[http://dx.doi.org/10.1016/j.mcat.2018.02.018]
[70]
Li, W.; Cheng, W.; Yang, X.; Su, Q.; Dong, L.; Zhang, P.; Yi, Y.; Li, B.; Zhang, S. Synthesis of cyclic carbonate catalzed by DBU derived basic ionic liquids. Chin. J. Chem., 2018, 36(4), 293-298.
[http://dx.doi.org/10.1002/cjoc.201700747]
[71]
Meng, X.; Ju, Z.; Zhang, S.; Liang, X.; von Solms, N.; Zhang, X.; Zhang, X. Efficient transformation of CO2 to cyclic carbonates using bifunctional protic ionic liquids under mild conditions. Green Chem., 2019, 21(12), 3456-3463.
[http://dx.doi.org/10.1039/C9GC01165J]
[72]
Liu, M.; Guo, J.; Gu, Y.; Gao, J.; Liu, F.; Yu, S. Pushing the limits in alcoholysis of waste polycarbonate with DBU-based ionic liquids under metal-and solvent-free conditions. ACS Sustain. Chem.& Eng., 2018, 6(10), 13114-13121.
[http://dx.doi.org/10.1021/acssuschemeng.8b02650]
[73]
Liu, M.; Guo, J.; Gu, Y.; Gao, J.; Liu, F. Degradation of waste polycarbonate via hydrolytic strategy to recover monomer (bisphenol A) catalyzed by DBU-based ionic liquids under metal-and solvent-free conditions. Polym. Degrad. Stabil., 2018, 157, 9-14.
[http://dx.doi.org/10.1016/j.polymdegradstab.2018.09.018]
[74]
Liu, F.; Guo, J.; Zhao, P.; Jia, M.; Liu, M.; Gao, J. Novel succinimide-based ionic liquids as efficient and sustainable media for methanolysis of polycarbonate to recover bisphenol A (BPA) under mild conditions. Polym. Degrad. Stabil., 2019, 169, 108996.
[http://dx.doi.org/10.1016/j.polymdegradstab.2019.108996]
[75]
Xie, B.; Xu, Y.; Tang, X.; Shu, H.; Chen, T.; Zhu, X. Comparison of the alkalinity of hydroxypyridine anion-based protic ionic liquids and their catalytic performance for Knoevenagel reaction: The effect of the type of cation and the position of nitrogen atom of anion. J. Mol. Liq., 2018, 268, 610-616.
[http://dx.doi.org/10.1016/j.molliq.2018.07.094]
[76]
Zhao, S.; Meng, D.; Wei, L.; Qiao, Y.; Xi, F. Novel DBU-based hydroxyl ionic liquid for efficient Knoevenagel reaction in water. Green Chem. Lett. Rev., 2019, 12(3), 271-277.
[http://dx.doi.org/10.1080/17518253.2019.1637946]
[77]
Zhang, X.; He, X.; Zhao, S. Preparation of a novel Fe3O4@ SiO2@ propyl@ DBU magnetic core–shell nanocatalyst for Knoevenagel reaction in aqueous medium. Green Chem. Lett. Rev., 2021, 14(1), 85-98.
[http://dx.doi.org/10.1080/17518253.2020.1862312]
[78]
Guerrero-Ríos, I.; Ortiz-Ramírez, A.H.; van Leeuwen, P.W.N.M.; Martin, E. A protic ionic liquid as an atom economical solution for palladium catalyzed asymmetric allylic alkylation. Dalton Trans., 2018, 47(11), 3739-3744.
[http://dx.doi.org/10.1039/C7DT04466F] [PMID: 29441398]
[79]
Liu, F.; Guo, J.; Zhao, P.; Gu, Y.; Gao, J.; Liu, M. Facile synthesis of DBU-based protic ionic liquid for efficient alcoholysis of waste poly (lactic acid) to lactate esters. Polym. Degrad. Stabil., 2019, 167, 124-129.
[http://dx.doi.org/10.1016/j.polymdegradstab.2019.06.028]
[80]
Korade, S.N.; Pore, D.M. Basic Ionic Liquid [DPPA] Cl− Catalyzed Synthesis of Fluorescent 3‐Acetoacetyl− 6‐aryldiazenyl‐coumarins. ChemistrySelect, 2019, 4(16), 4804-4808.
[http://dx.doi.org/10.1002/slct.201900332]
[81]
Song, Y.; He, X.; Yu, B.; Li, H.R.; He, L.N. Protic ionic liquid-promoted synthesis of dimethyl carbonate from ethylene carbonate and methanol. Chin. Chem. Lett., 2020, 31(3), 667-672.
[http://dx.doi.org/10.1016/j.cclet.2019.07.053]
[82]
Li, X.Y.; Fu, H.C.; Liu, X.F.; Yang, S.H.; Chen, K.H.; He, L.N. Design of Lewis base functionalized ionic liquids for the N-formylation of amines with CO2 and hydrosilane: The cation effects. Catal. Today, 2020, 356, 563-569.
[http://dx.doi.org/10.1016/j.cattod.2020.01.030]
[83]
Gao, X.; Liu, J.; Liu, Z.; Zhang, L.; Zuo, X.; Chen, L.; Bai, X.; Bai, Q.; Wang, X.; Zhou, A. DBU coupled ionic liquid-catalyzed efficient synthesis of quinazolinones from CO2 and 2-aminobenzonitriles under mild conditions. RSC Advances, 2020, 10(20), 12047-12052.
[http://dx.doi.org/10.1039/D0RA00194E]
[84]
Gildeh, S.F.G.; Mehrdad, M.; Roohi, H.; Ghauri, K.; Gildeh, S.F.G.; Rad-Moghadam, K. Experimental and DFT mechanistic insights into one-pot synthesis of 1 H-pyrazolo [1, 2-b] phthalazine-5, 10-diones under catalysis of DBU-based ionic liquids. New J. Chem., 2020, 44(38), 16594-16601.
[http://dx.doi.org/10.1039/D0NJ03478A]
[85]
Cândido, A.A.; Rozada, T.C.; Rozada, A.M.; Souza, J.R.; Pilau, E.J.; Rosa, F.A.; Basso, E.A.; Gauze, G.F. Mechanistic investigation of dbu-based ionic liquids for aza-michael reaction: Mass spectrometry and dft studies of catalyst role. J. Braz. Chem. Soc., 2020, 31, 1796-1804.
[http://dx.doi.org/10.21577/0103-5053.20200066]
[86]
Ara, G.; Miran, M.S.; Islam, M.M.; Mollah, M.Y.A.; Rahman, M.M.; Susan, M.A.B.H. 1, 8-Diazabicyclo [5.4.0]-undec-7-ene based protic ionic liquids and their binary systems with molecular solvents catalyzed Michael addition reaction. New J. Chem., 2020, 44(32), 13701-13706.
[http://dx.doi.org/10.1039/D0NJ03012K]
[87]
Kakko, T.; King, A.W.; Kilpeläinen, I. Homogenous esterification of cellulose pulp in. Cellulose, 2017, 24(12), 5341-5354.
[http://dx.doi.org/10.1007/s10570-017-1521-5]
[88]
Bereska, B.; Czaja, K.; Nowicki, J.; Iłowska, J.; Bereska, A.; Muszyński, M.; Szmatoła, M.; Grabowski, R. Effect of Superbasic Ionic Liquids on the Synthesis of Dendritic Polyamines via Aza‐Michael Addition Reaction. ChemistrySelect, 2017, 2(31), 10020-10026.
[http://dx.doi.org/10.1002/slct.201702130]
[89]
Patil, M.U.; Shinde, S.K.; Patil, S.P.; Patil, S.S. [BBSA-DBN][HSO4]: A novel–SO3 H functionalized Bronsted acidic ionic liquid for easy access of quinoxalines. Res. Chem. Intermed., 2020, 46(11), 4923-4938.
[http://dx.doi.org/10.1007/s11164-020-04227-3]
[90]
Ying, A.; Hou, H.; Liu, S.; Chen, G.; Yang, J.; Xu, S. Ionic modified TBD supported on magnetic nanoparticles: A highly efficient and recoverable catalyst for organic transformations. ACS Sustain. Chem.& Eng., 2016, 4(2), 625-632.
[http://dx.doi.org/10.1021/acssuschemeng.5b01757]
[91]
Wu, L.; Liu, W.; Ye, J.; Cheng, R. Fast cyclotrimerization of a wide range of isocyanates to isocyanurates over acid/base conjugates under bulk conditions. Catal. Commun., 2020, 145, 106097.
[http://dx.doi.org/10.1016/j.catcom.2020.106097]
[92]
Dai, W.; Mao, J.; Liu, Y.; Mao, P.; Luo, X.; Zou, J. Commercial polymer microsphere grafted TBD-based ionic liquids as efficient and low-cost catalyst for the cycloaddition of CO2 with epoxides. Catal. Lett., 2019, 149(3), 699-712.
[http://dx.doi.org/10.1007/s10562-018-02650-1]
[93]
Phatake, V.V.; Gokhale, T.A.; Bhanage, B.M. [TBDH][HFIP] ionic liquid catalyzed synthesis of quinazoline-2, 4 (1H, 3H)-diones in the presence of ambient temperature and pressure. J. Mol. Liq., 2021, 117008.
[94]
Kalurazi, S.Y.; Rad-Moghadam, K.; Moradi, S. Efficient catalytic application of a binary ionic liquid mixture in the synthesis of novel spiro. New J. Chem., 2017, 41(18), 10291-10298. [4H-pyridine-oxindoles]
[http://dx.doi.org/10.1039/C7NJ01858D]
[95]
Liu, F.; Ping, R.; Gu, Y.; Zhao, P.; Liu, B.; Gao, J.; Liu, M. Efficient one pot capture and conversion of CO2 into quinazoline-2, 4 (1H, 3H)-diones using triazolium-based ionic liquids. ACS Sustain. Chem.& Eng., 2020, 8(7), 2910-2918.
[http://dx.doi.org/10.1021/acssuschemeng.9b07242]
[96]
Ping, R.; Zhao, P.; Zhang, Q.; Zhang, G.; Liu, F.; Liu, M. Catalytic conversion of CO2 from simulated flue gases with aminophenol-based protic ionic liquids to produce quinazoline-2, 4 (1H, 3H)-diones under mild conditions. ACS Sustain. Chem.& Eng., 2021, 9(14), 5240-5249.
[http://dx.doi.org/10.1021/acssuschemeng.1c01466]
[97]
Kim, K.M.; Kim, K.M. Copper Catalyzed N‐Arylation of Amines in Ionic Liquid Using 1‐Aryltriazenes as Aryl Surrogates. ChemistrySelect, 2021, 6(11), 2709-2715.
[http://dx.doi.org/10.1002/slct.202100180]
[98]
Sutar, S.M.; Prabhala, P.; Savanur, H.M.; Kalkhambkar, R.G.; Aridoss, G.; Laali, K.K. Copper‐catalyzed coupling of arylethynes and aryltriazenes to access libraries of 1, 2‐diketones and their efficacy in synthesis of triaryloxazoles, imidazoles and diaryl‐diazepines. ChemistrySelect, 2021, 6(19), 4741-4749.
[http://dx.doi.org/10.1002/slct.202100505]
[99]
Ramajayam, R.; Giridhar, R.; Yadav, M.R.; Balaraman, R.; Djaballah, H.; Shum, D.; Radu, C. Synthesis, antileukemic and antiplatelet activities of 2,3-diaryl-6,7-dihydro-5H-1,4-diazepines. Eur. J. Med. Chem., 2008, 43(9), 2004-2010.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.023] [PMID: 18191304]
[100]
Pan, M.; Wang, C. Ionic Liquids for Chemisorption of CO2; Materials for Carbon Capture, 2020, pp. 297-315.
[101]
Taylor, S.R.; McCrellis, C.; McStay, C.; Jacquemin, J.; Hardacre, C.; Mercy, M.; Bell, R.G.; de Leeuw, N.H. CO2 Capture in wet and dry superbase ionic liquids. J. Solution Chem., 2015, 44(3-4), 511-527.
[http://dx.doi.org/10.1007/s10953-015-0319-z]
[102]
Chaugule, A.A.; Tamboli, A.H.; Kim, H. Efficient fixation and conversion of CO2 into dimethyl carbonate catalyzed by an imidazolium containing tri-cationic ionic liquid/super base system. RSC Advances, 2016, 6(48), 42279-42287.
[http://dx.doi.org/10.1039/C6RA04084E]
[103]
Taylor, S.R.; McClung, M.; McReynolds, C.; Daly, H.; Greer, A.J.; Jacquemin, J.; Hardacre, C. Understanding the competitive gas absorption of CO2 and SO2 in superbase ionic liquids. Ind. Eng. Chem. Res., 2018, 57(50), 17033-17042.
[http://dx.doi.org/10.1021/acs.iecr.8b03623]
[104]
Qian, W.; Liu, L.; Zhang, Z.; Su, Q.; Zhao, W.; Cheng, W.; Dong, L.; Yang, Z.; Bai, R.; Xu, F.; Zhang, Y.; Zhang, S. Synthesis of bioderived polycarbonates with adjustable molecular weights catalyzed by phenolic-derived ionic liquids. Green Chem., 2020, 22(8), 2488-2497.
[http://dx.doi.org/10.1039/D0GC00493F]
[105]
Hebal, H.; Parviainen, A.; Anbarasan, S.; Li, H.; Makkonen, L.; Bankar, S.; King, A.W.; Kilpeläinen, I.; Benallaoua, S.; Turunen, O. Inhibition of hyperthermostable xylanases by superbase ionic liquids. Process Biochem., 2020, 95, 148-156.
[http://dx.doi.org/10.1016/j.procbio.2020.03.022]
[106]
Anugwom, I.; Eta, V.; Virtanen, P.; Mäki-Arvela, P.; Hedenström, M.; Hummel, M.; Sixta, H.; Mikkola, J.P. Switchable ionic liquids as delignification solvents for lignocellulosic materials. ChemSusChem, 2014, 7(4), 1170-1176.
[http://dx.doi.org/10.1002/cssc.201300773] [PMID: 24616172]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy