Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Recent Developments in Microfluidic Paper-based Analytical Devices for Pharmaceutical Analysis

Author(s): Wisarut Khamcharoen, Kantima Kaewjua, Phanumas Yomthiangthae, Ananyaporn Anekrattanasap, Orawon Chailapakul and Weena Siangproh*

Volume 22, Issue 27, 2022

Published on: 15 November, 2022

Page: [2241 - 2260] Pages: 20

DOI: 10.2174/1568026623666221027144310

Price: $65

Abstract

In the last decade, due to the global increase in diseases, drugs for biomedical applications have increased dramatically. Therefore, there is an urgent need for analytical tools to monitor, treat, investigate, and control drug compounds in diverse matrices. The new and challenging task has been looking for simple, low-cost, rapid, and portable analytical platforms. The development of microfluidic paper-based analytical devices (μPADs) has garnered immense attention in many analytical applications due to the benefit of cellulose structure. It can be functionalized and serves as an ideal channel and scaffold for the transportation and immobilization of various substances. Microfluidic technology has been considered an effective tool in pharmaceutical analysis that facilitates the quantitative measurement of several parameters on cells or other biological systems. The μPADs represent unique advantages over conventional microfluidics, such as the self-pumping capability. They have low material costs, are easy to fabricate, and do not require external power sources. This review gives an overview of the current designs in this decade for μPADs and their respective application in pharmaceutical analysis. These include device designs, choice of paper material, and fabrication techniques with their advantages and drawbacks. In addition, the strategies for improving analytical performance in terms of simplicity, high sensitivity, and selectivity are highlighted, followed by the application of μPADs design for the detection of drug compounds for various purposes. Moreover, we present recent advances involving μPAD technologies in the field of pharmaceutical applications. Finally, we discussed the challenges and potential of μPADs for the transition from laboratory to commercialization.

Graphical Abstract

[1]
FDA. Drugs@FDA Glossary of Terms. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/drugsfda-glossary-terms (Accessed on: Feb 1, 2022).
[2]
Statista. Global pharmaceutical industry-statistics & facts. Available from: https://www.statista.com/topics/1764/global-pharmaceutical-industry/#dossierKeyfigures (Accessed on: Feb 1, 2022).
[3]
Therapeutic drug monitoring. Use of alternative specimens: Drugs of abuse in saliva and D... Available from: https://journals.lww. com/drug-monitoring/Abstract/2002/04000/Use_of_Alternative_Specimens__Drugs_of_Abuse_in.6.aspx (Accessed on: Feb 1, 2022).
[4]
Gülfen, M.; Canbaz, Y.; Özdemir, A. Simultaneous determination of amoxicillin, lansoprazole, and levofloxacin in pharmaceuticals by HPLC with UV–Vis detector. J. Anal. Test., 2020, 4(1), 45-53.
[http://dx.doi.org/10.1007/s41664-020-00121-4]
[5]
Chantada-Vázquez, M.P.; de-Becerra-Sánchez, C.; Fernández-del-Río, A.; Sánchez-González, J.; Bermejo, A.M.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Development and application of molecularly imprinted polymer – Mn-doped ZnS quantum dot fluorescent optosens-ing for cocaine screening in oral fluid and serum. Talanta, 2018, 181, 232-238.
[http://dx.doi.org/10.1016/j.talanta.2018.01.017] [PMID: 29426506]
[6]
Orooji, Y. Haddad Irani-nezhad, M.; Hassandoost, R.; Khataee, A.; Rahim Pouran, S.; Joo, S.W. Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 234, 118272.
[http://dx.doi.org/10.1016/j.saa.2020.118272] [PMID: 32229321]
[7]
Sebastian, N.; Yu, W.C.; Balram, D. Electrochemical detection of an antibiotic drug chloramphenicol based on a graphene ox-ide/hierarchical zinc oxide nanocomposite. Inorg. Chem. Front., 2019, 6(1), 82-93.
[http://dx.doi.org/10.1039/C8QI01000E]
[8]
Whitesides, G.M. The origins and the future of microfluidics. Nature, 2006, 442(7101), 368-373.
[http://dx.doi.org/10.1038/nature05058]
[9]
Wlodarczyk, K.L.; Hand, D.P.; Maroto-Valer, M.M. Rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser. Sci. Rep., 2019, 9, 1-13.
[10]
Qi, Z.; Xu, L.; Xu, Y.; Zhong, J.; Abedini, A.; Cheng, X.; Sinton, D. Disposable silicon-glass microfluidic devices: Precise, robust and cheap. Lab Chip, 2018, 18(24), 3872-3880.
[http://dx.doi.org/10.1039/C8LC01109E] [PMID: 30457137]
[11]
Oyama, T.G.; Oyama, K.; Taguchi, M. A simple method for production of hydrophilic, rigid, and sterilized multi-layer 3D integrated poly-dimethylsiloxane microfluidic chips. Lab Chip, 2020, 20(13), 2354-2363.
[http://dx.doi.org/10.1039/D0LC00316F] [PMID: 32495806]
[12]
Matellan, C.; del Río Hernández, A.E. Cost-Effective rapid prototyping and assembly of poly(methyl methacrylate) microfluidic devices. Sci. Rep., 2018, 8(1), 1-13.
[13]
Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioas-says. Angew. Chem. Int. Ed., 2007, 46(8), 1318-1320.
[http://dx.doi.org/10.1002/anie.200603817] [PMID: 17211899]
[14]
Akyazi, T.; Basabe-Desmonts, L.; Benito-Lopez, F. Review on microfluidic paper-based analytical devices towards commercialisation. Anal. Chim. Acta, 2018, 1001, 1-17.
[http://dx.doi.org/10.1016/j.aca.2017.11.010] [PMID: 29291790]
[15]
Chiang, C.K.; Kurniawan, A.; Kao, C.Y.; Wang, M.J. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays. Talanta, 2019, 194, 837-845.
[http://dx.doi.org/10.1016/j.talanta.2018.10.104] [PMID: 30609613]
[16]
Peters, K.L.; Corbin, I.; Kaufman, L.M.; Zreibe, K.; Blanes, L.; McCord, B.R. Simultaneous colorimetric detection of improvised explo-sive compounds using microfluidic paper-based analytical devices (μPADs). Anal. Methods, 2015, 7(1), 63-70.
[http://dx.doi.org/10.1039/C4AY01677G]
[17]
Lee, S.H.; Lee, J.H.; Tran, V.K.; Ko, E.; Park, C.H.; Chung, W.S.; Seong, G.H. Determination of acetaminophen using functional paper-based electrochemical devices. Sens. Actuat. Biol. Chem., 2016, 232, 514-522.
[http://dx.doi.org/10.1016/j.snb.2016.03.169]
[18]
Schonhorn, J.E.; Fernandes, S.C.; Rajaratnam, A.; Deraney, R.N.; Rolland, J.P.; Mace, C.R. A device architecture for three-dimensional, patterned paper immunoassays. Lab Chip, 2014, 14(24), 4653-4658.
[http://dx.doi.org/10.1039/C4LC00876F] [PMID: 25300302]
[19]
de Oliveira, R.A.G.; Camargo, F.; Pesquero, N.C.; Faria, R.C. A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis. Anal. Chim. Acta, 2017, 957, 40-46.
[http://dx.doi.org/10.1016/j.aca.2017.01.002] [PMID: 28107832]
[20]
Morbioli, G.G.; Mazzu-Nascimento, T.; Milan, L.A.; Stockton, A.M.; Carrilho, E. Improving sample distribution homogeneity in three-dimensional microfluidic paper-based analytical devices by rational device design. Anal. Chem., 2017, 89(9), 4786-4792.
[http://dx.doi.org/10.1021/acs.analchem.6b04953] [PMID: 28401754]
[21]
Tian, T.; An, Y.; Wu, Y.; Song, Y.; Zhu, Z.; Yang, C. Integrated distance-based origami paper analytical device for one-step visualized analysis. ACS Appl. Mater. Interfaces, 2017, 9(36), 30480-30487.
[http://dx.doi.org/10.1021/acsami.7b09717] [PMID: 28816436]
[22]
Müller, R.H.; Clegg, D.L. Automatic Paper Chromatography. Anal. Chem., 1949, 21(9), 1123-1125.
[http://dx.doi.org/10.1021/ac60033a032]
[23]
Hong, B.; Xue, P.; Wu, Y.; Bao, J.; Chuah, Y.J.; Kang, Y. A concentration gradient generator on a paper-based microfluidic chip coupled with cell culture microarray for high-throughput drug screening. Biomed. Microdevices, 2016, 18(1), 21.
[http://dx.doi.org/10.1007/s10544-016-0054-2] [PMID: 26864970]
[24]
Cate, D.M.; Adkins, J.A.; Mettakoonpitak, J.; Henry, C.S. Recent developments in paper-based microfluidic devices. Anal. Chem., 2015, 87(1), 19-41.
[http://dx.doi.org/10.1021/ac503968p] [PMID: 25375292]
[25]
Schabel, S.; Biesalski, M.; Schabel, S.; Biesalski, M. The role of paper chemistry and paper manufacture in the design of paper-based diagnostics. In: Paper-based Diagnostics; Springer: Cham, 2019; pp. 23-46.
[http://dx.doi.org/10.1007/978-3-319-96870-4_2]
[26]
Musile, G.; Wang, L.; Bottoms, J.; Tagliaro, F.; McCord, B. The development of paper microfluidic devices for presumptive drug detec-tion. Anal. Methods, 2015, 7(19), 8025-8033.
[http://dx.doi.org/10.1039/C5AY01432H]
[27]
Boehle, K.E.; Carrell, C.S.; Caraway, J.; Henry, C.S. Paper-based enzyme competition assay for detecting falsified β-lactam antibiotics. ACS Sens., 2018, 3(7), 1299-1307.
[http://dx.doi.org/10.1021/acssensors.8b00163] [PMID: 29943573]
[28]
Weaver, A.A.; Reiser, H.; Barstis, T.; Benvenuti, M.; Ghosh, D.; Hunckler, M.; Joy, B.; Koenig, L.; Raddell, K.; Lieberman, M. Paper ana-lytical devices for fast field screening of beta lactam antibiotics and antituberculosis pharmaceuticals. Anal. Chem., 2013, 85(13), 6453-6460.
[http://dx.doi.org/10.1021/ac400989p] [PMID: 23725012]
[29]
Shiroma, L.Y.; Santhiago, M.; Gobbi, A.L.; Kubota, L.T. Separation and electrochemical detection of paracetamol and 4-aminophenol in a paper-based microfluidic device. Anal. Chim. Acta, 2012, 725, 44-50.
[http://dx.doi.org/10.1016/j.aca.2012.03.011] [PMID: 22502610]
[30]
Silva, T.G.; de Araujo, W.R.; Muñoz, R.A.A.; Richter, E.M.; Santana, M.H.P.; Coltro, W.K.T.; Paixão, T.R.L.C. Simple and sensitive pa-per-based device coupling electrochemical sample pretreatment and colorimetric detection. Anal. Chem., 2016, 88(10), 5145-5151.
[http://dx.doi.org/10.1021/acs.analchem.6b00072] [PMID: 27103080]
[31]
Nishat, S.; Jafry, A.T.; Martinez, A.W.; Awan, F.R. Paper-based microfluidics: Simplified fabrication and assay methods. Sens. Actuators B Chem., 2021, 336, 129681.
[http://dx.doi.org/10.1016/j.snb.2021.129681]
[32]
Xia, Y.; Si, J.; Li, Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosens. Bioelectron., 2016, 77, 774-789.
[http://dx.doi.org/10.1016/j.bios.2015.10.032] [PMID: 26513284]
[33]
Karamahito, P.; Sitanurak, J.; Nacapricha, D.; Wilairat, P.; Chaisiwamongkhol, K.; Phonchai, A. Paper device for distance-based visual quantification of sibutramine adulteration in slimming products. Microchem. J., 2021, 162, 105784.
[http://dx.doi.org/10.1016/j.microc.2020.105784]
[34]
Primpray, V.; Chailapakul, O.; Tokeshi, M.; Rojanarata, T.; Laiwattanapaisal, W. A paper-based analytical device coupled with electro-chemical detection for the determination of dexamethasone and prednisolone in adulterated traditional medicines. Anal. Chim. Acta, 2019, 1078, 16-23.
[http://dx.doi.org/10.1016/j.aca.2019.05.072] [PMID: 31358214]
[35]
Ghosh, R.; Gopalakrishnan, S.; Savitha, R.; Renganathan, T.; Pushpavanam, S. Fabrication of laser printed microfluidic paper-based ana-lytical devices (LP-µPADs) for point-of-care applications. Sci. Rep., 2019, 9, 1-11.
[36]
Yang, M.; Zhang, W.; Zheng, W.; Cao, F.; Jiang, X. Inkjet-printed barcodes for a rapid and multiplexed paper-based assay compatible with mobile devices. Lab Chip, 2017, 17(22), 3874-3882.
[http://dx.doi.org/10.1039/C7LC00780A] [PMID: 29039868]
[37]
Yamada, K.; Henares, T.G.; Suzuki, K.; Citterio, D. Paper-based inkjet-printed microfluidic analytical devices. Angew. Chem. Int. Ed., 2015, 54(18), 5294-5310.
[http://dx.doi.org/10.1002/anie.201411508] [PMID: 25864471]
[38]
Ng, J.S.; Hashimoto, M. Fabrication of paper microfluidic devices using a toner laser printer. RSC Advances, 2020, 10(50), 29797-29807.
[http://dx.doi.org/10.1039/D0RA04301J] [PMID: 35518222]
[39]
Noviana, E.; Ozer, T.; Carrell, C.S.; Link, J.S.; McMahon, C.; Jang, I.; Henry, C.S. Microfluidic paper-based analytical devices: From de-sign to applications. Chem. Rev., 2021, 121(19), 11835-11885.
[http://dx.doi.org/10.1021/acs.chemrev.0c01335] [PMID: 34125526]
[40]
Ostad, M.A.; Hajinia, A.; Heidari, T. A novel direct and cost effective method for fabricating paper-based microfluidic device by commer-cial eye pencil and its application for determining simultaneous calcium and magnesium. Microchem. J., 2017, 133, 545-550.
[http://dx.doi.org/10.1016/j.microc.2017.04.031]
[41]
Fu, E.; Liang, T.; Spicar-Mihalic, P.; Houghtaling, J.; Ramachandran, S.; Yager, P. Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal. Chem., 2012, 84(10), 4574-4579.
[http://dx.doi.org/10.1021/ac300689s] [PMID: 22537313]
[42]
Lutz, B.R.; Trinh, P.; Ball, C.; Fu, E.; Yager, P. Two-dimensional paper networks: Programmable fluidic disconnects for multi-step pro-cesses in shaped paper. Lab Chip, 2011, 11(24), 4274-4278.
[http://dx.doi.org/10.1039/c1lc20758j] [PMID: 22037591]
[43]
Yakoh, A.; Chaiyo, S.; Siangproh, W.; Chailapakul, O., 3D Capillary-driven paper-based sequential microfluidic device for electrochemical sensing applications. ACS Sens., 2019, 4(5), 1211-1221.
[http://dx.doi.org/10.1021/acssensors.8b01574] [PMID: 30969113]
[44]
Carrell, C.S.; Wydallis, R.M.; Bontha, M.; Boehle, K.E.; Beveridge, J.R.; Geiss, B.J.; Henry, C.S. Rotary manifold for automating a paper-based Salmonella immunoassay. RSC Advances, 2019, 9(50), 29078-29086.
[http://dx.doi.org/10.1039/C9RA07106G] [PMID: 35528425]
[45]
Chen, C.A.; Yeh, W.S.; Tsai, T.T.; Li, Y.D.; Chen, C.F. Three-dimensional origami paper-based device for portable immunoassay applica-tions. Lab Chip, 2019, 19(4), 598-607.
[http://dx.doi.org/10.1039/C8LC01255E] [PMID: 30664133]
[46]
Preechakasedkit, P.; Siangproh, W.; Khongchareonporn, N.; Ngamrojanavanich, N.; Chailapakul, O. Development of an automated wax-printed paper-based lateral flow device for alpha-fetoprotein enzyme-linked immunosorbent assay. Biosens. Bioelectron., 2018, 102, 27-32.
[http://dx.doi.org/10.1016/j.bios.2017.10.051] [PMID: 29107857]
[47]
Wang, C.C.; Hennek, J.W.; Ainla, A.; Kumar, A.A.; Lan, W.J. Im, J.; Smith, B.S.; Zhao, M.; Whitesides, G.M. A paper-based “pop-up” electrochemical device for analysis of beta-hydroxybutyrate. Anal. Chem., 2016, 88(12), 6326-6333.
[http://dx.doi.org/10.1021/acs.analchem.6b00568] [PMID: 27243791]
[48]
Srisomwat, C.; Teengam, P.; Chuaypen, N.; Tangkijvanich, P.; Vilaivan, T.; Chailapakul, O. Pop-up paper electrochemical device for label-free hepatitis B virus DNA detection. Sens. Actuat. Biol. Chem., 2020, 316, 128077.
[http://dx.doi.org/10.1016/j.snb.2020.128077]
[49]
Cate, D.M.; Noblitt, S.D.; Volckens, J.; Henry, C.S. Multiplexed paper analytical device for quantification of metals using distance-based detection. Lab Chip, 2015, 15(13), 2808-2818.
[http://dx.doi.org/10.1039/C5LC00364D] [PMID: 26009988]
[50]
Nguyen, M.P.; Kelly, S.P.; Wydallis, J.B.; Henry, C.S. Read-by-eye quantification of aluminum (III) in distance-based microfluidic paper-based analytical devices. Anal. Chim. Acta, 2020, 1100, 156-162.
[http://dx.doi.org/10.1016/j.aca.2019.11.052] [PMID: 31987136]
[51]
Yamada, K.; Citterio, D.; Henry, C.S. “Dip-and-read” paper-based analytical devices using distance-based detection with color screening. Lab Chip, 2018, 18(10), 1485-1493.
[http://dx.doi.org/10.1039/C8LC00168E] [PMID: 29693672]
[52]
Gerold, C.T.; Bakker, E.; Henry, C.S. Selective distance-based K + quantification on paper-based microfluidics. Anal. Chem., 2018, 90(7), 4894-4900.
[http://dx.doi.org/10.1021/acs.analchem.8b00559] [PMID: 29551065]
[53]
Jarujamrus, P.; Meelapsom, R.; Naksen, P.; Ditcharoen, N.; Anutrasakda, W.; Siripinyanond, A.; Amatatongchai, M.; Supasorn, S. Screen-printed microfluidic paper-based analytical device (μPAD) as a barcode sensor for magnesium detection using rubber latex waste as a novel hydrophobic reagent. Anal. Chim. Acta, 2019, 1082, 66-77.
[http://dx.doi.org/10.1016/j.aca.2019.06.058] [PMID: 31472714]
[54]
Park, C.; Kim, H.R.; Kim, S.K.; Jeong, I.K.; Pyun, J.C.; Park, S. Three-dimensional paper-based microfluidic analytical devices integrated with a plasma separation membrane for the detection of biomarkers in whole blood. ACS Appl. Mater. Interfaces, 2019, 11(40), 36428-36434.
[http://dx.doi.org/10.1021/acsami.9b13644] [PMID: 31512861]
[55]
Caratelli, V.; Ciampaglia, A.; Guiducci, J.; Sancesario, G.; Moscone, D.; Arduini, F. Precision medicine in Alzheimer’s disease: An origami paper-based electrochemical device for cholinesterase inhibitors. Biosens. Bioelectron., 2020, 165, 112411.
[http://dx.doi.org/10.1016/j.bios.2020.112411] [PMID: 32729530]
[56]
Li, C.G.; Joung, H.A.; Noh, H.; Song, M.B.; Kim, M.G.; Jung, H. One-touch-activated blood multidiagnostic system using a minimally invasive hollow microneedle integrated with a paper-based sensor. Lab Chip, 2015, 15(16), 3286-3292.
[http://dx.doi.org/10.1039/C5LC00669D] [PMID: 26190447]
[57]
Tan, W.; Zhang, L.; Doery, J.C.G.; Shen, W. Three-dimensional microfluidic tape-paper-based sensing device for blood total bilirubin measurement in jaundiced neonates. Lab Chip, 2020, 20(2), 394-404.
[http://dx.doi.org/10.1039/C9LC00939F] [PMID: 31853529]
[58]
Khamcharoen, W.; Siangproh, W. A multilayer microfluidic paper coupled with an electrochemical platform developed for sample separa-tion and detection of dopamine. New J. Chem., 2021, 45(29), 12886-12894.
[http://dx.doi.org/10.1039/D1NJ02271G]
[59]
Mettakoonpitak, J.; Volckens, J.; Henry, C.S. Janus electrochemical paper-based analytical devices for metals detection in aerosol samples. Anal. Chem., 2020, 92(1), 1439-1446.
[http://dx.doi.org/10.1021/acs.analchem.9b04632] [PMID: 31820945]
[60]
Nantaphol, S.; Kava, A.A.; Channon, R.B.; Kondo, T.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Janus electrochemistry: Simultaneous electrochemical detection at multiple working conditions in a paper-based analytical device. Anal. Chim. Acta, 2019, 1056, 88-95.
[http://dx.doi.org/10.1016/j.aca.2019.01.026] [PMID: 30797465]
[61]
Ninwong, B.; Ratnarathorn, N.; Henry, C.S.; Mace, C.R.; Dungchai, W. Dual sample preconcentration for simultaneous quantification of metal ions using electrochemical and colorimetric assays. ACS Sens., 2020, 5(12), 3999-4008.
[http://dx.doi.org/10.1021/acssensors.0c01793] [PMID: 33237766]
[62]
Ninwong, B.; Sangkaew, P.; Hapa, P.; Ratnarathorn, N.; Menger, R.F.; Henry, C.S.; Dungchai, W. Sensitive distance-based paper-based quantification of mercury ions using carbon nanodots and heating-based preconcentration. RSC Advances, 2020, 10(17), 9884-9893.
[http://dx.doi.org/10.1039/D0RA00791A] [PMID: 35498601]
[63]
Wong, S.Y.; Cabodi, M.; Rolland, J.; Klapperich, C.M. Evaporative concentration on a paper-based device to concentrate analytes in a biological fluid. Anal. Chem., 2014, 86(24), 11981-11985.
[http://dx.doi.org/10.1021/ac503751a] [PMID: 25419873]
[64]
Mettakoonpitak, J.; Henry, C.S. Electrophoretic separations on Parafilm-paper-based analytical devices. Sens. Actuators B Chem., 2018, 273, 1022-1028.
[http://dx.doi.org/10.1016/j.snb.2018.06.130] [PMID: 32863586]
[65]
Pholsiri, T.; Lomae, A.; Pungjunun, K.; Vimolmangkang, S.; Siangproh, W.; Chailapakul, O. A chromatographic paper-based electrochemi-cal device to determine Δ9-tetrahydrocannabinol and cannabidiol in cannabis oil. Sens. Actuat. Biol. Chem., 2022, 355, 131353.
[http://dx.doi.org/10.1016/j.snb.2021.131353]
[66]
Rattanarat, P.; Dungchai, W.; Cate, D.; Volckens, J.; Chailapakul, O.; Henry, C.S. Multilayer paper-based device for colorimetric and elec-trochemical quantification of metals. Anal. Chem., 2014, 86(7), 3555-3562.
[http://dx.doi.org/10.1021/ac5000224] [PMID: 24576180]
[67]
Apilux, A.; Dungchai, W.; Siangproh, W.; Praphairaksit, N.; Henry, C.S.; Chailapakul, O. Lab-on-paper with dual electrochemi-cal/colorimetric detection for simultaneous determination of gold and iron. Anal. Chem., 2010, 82(5), 1727-1732.
[http://dx.doi.org/10.1021/ac9022555] [PMID: 20121066]
[68]
Chaiyo, S.; Apiluk, A.; Siangproh, W.; Chailapakul, O. High sensitivity and specificity simultaneous determination of lead, cadmium and copper using μPAD with dual electrochemical and colorimetric detection. Sens. Actuat. Biol. Chem., 2016, 233, 540-549.
[http://dx.doi.org/10.1016/j.snb.2016.04.109]
[69]
Zhou, C.; Cui, K.; Liu, Y.; Hao, S.; Zhang, L.; Ge, S.; Yu, J. Ultrasensitive microfluidic paper-based electrochemical/visual analytical de-vice via signal amplification of Pd@Hollow Zn/Co Core–Shell ZIF67/ZIF8 nanoparticles for prostate-specific antigen detection. Anal. Chem., 2021, 93(13), 5459-5467.
[http://dx.doi.org/10.1021/acs.analchem.0c05134] [PMID: 33755444]
[70]
Ameku, W.A.; Gonçalves, J.M.; Ataide, V.N.; Ferreira Santos, M.S.; Gutz, I.G.R.; Araki, K.; Paixão, T.R.L.C. Combined colorimetric and electrochemical measurement paper-based device for chemometric proof-of-concept analysis of cocaine samples. ACS Omega, 2021, 6(1), 594-605.
[http://dx.doi.org/10.1021/acsomega.0c05077] [PMID: 33458511]
[71]
Yehia, A.M.; Farag, M.A.; Tantawy, M.A. A novel trimodal system on a paper-based microfluidic device for on-site detection of the date rape drug “ketamine”. Anal. Chim. Acta, 2020, 1104, 95-104.
[http://dx.doi.org/10.1016/j.aca.2020.01.002] [PMID: 32106962]
[72]
Weaver, A.A.; Halweg, S.; Joyce, M.; Lieberman, M.; Goodson, H.V. Incorporating yeast biosensors into paper-based analytical tools for pharmaceutical analysis. Anal. Bioanal. Chem., 2015, 407(2), 615-619.
[http://dx.doi.org/10.1007/s00216-014-8280-z] [PMID: 25381614]
[73]
Nilghaz, A.; Lu, X. Detection of antibiotic residues in pork using paper-based microfluidic device coupled with filtration and concentra-tion. Anal. Chim. Acta, 2019, 1046, 163-169.
[http://dx.doi.org/10.1016/j.aca.2018.09.041] [PMID: 30482295]
[74]
Trofimchuk, E.; Nilghaz, A.; Sun, S.; Lu, X. Determination of norfloxacin residues in foods by exploiting the coffee‐ring effect and pa-per‐based microfluidics device coupling with smartphone‐based detection. J. Food Sci., 2020, 85(3), 736-743.
[http://dx.doi.org/10.1111/1750-3841.15039] [PMID: 32017096]
[75]
Abdulsattar, J.O.; Hadi, H.; Richardson, S.; Iles, A.; Pamme, N. Detection of doxycycline hyclate and oxymetazoline hydrochloride in pharmaceutical preparations via spectrophotometry and microfluidic paper-based analytical device (μPADs). Anal. Chim. Acta, 2020, 1136, 196-204.
[http://dx.doi.org/10.1016/j.aca.2020.09.045] [PMID: 33081945]
[76]
Asif, M.; Awan, F.R.; Khan, Q.M.; Ngamsom, B.; Pamme, N. Paper-based analytical devices for colorimetric detection of S. aureus and E. coli and their antibiotic resistant strains in milk. Analyst (Lond.), 2020, 145(22), 7320-7329.
[http://dx.doi.org/10.1039/D0AN01075H] [PMID: 32902519]
[77]
Taghizadeh-Behbahani, M.; Shamsipur, M.; Hemmateenejad, B. Detection and discrimination of antibiotics in food samples using a micro-fluidic paper-based optical tongue. Talanta, 2022, 241, 123242.
[http://dx.doi.org/10.1016/j.talanta.2022.123242] [PMID: 35085991]
[78]
Wang, L.; Musile, G.; McCord, B.R. An aptamer-based paper microfluidic device for the colorimetric determination of cocaine. Electrophoresis, 2018, 39(3), 470-475.
[http://dx.doi.org/10.1002/elps.201700254] [PMID: 28834613]
[79]
Arantes, I.V.S.; Paixão, T.R.L.C. Couple batch-injection analysis and microfluidic paper-based analytical device: A simple and disposable alternative to conventional BIA apparatus. Talanta, 2022, 240, 123201.
[http://dx.doi.org/10.1016/j.talanta.2021.123201] [PMID: 34998146]
[80]
Noirahaeng, N.; Uraisin, K.; Wattanasin, P.; Saetear, P. Simplified fabrication of laminated paper-based analytical device (LPAD) with color-palette mobile app for analysis of salicylic acid in pharmaceutical products. Anal. Sci., 2021, 2021, 21P23.
[81]
Farahani, A.; Sereshti, H. An integrated microfluidic device for solid-phase extraction and spectrophotometric detection of opium alka-loids in urine samples. Anal. Bioanal. Chem., 2020, 412(1), 129-138.
[http://dx.doi.org/10.1007/s00216-019-02214-1] [PMID: 31773230]
[82]
Shende, C.; Brouillette, C.; Farquharson, S. Detection of codeine and fentanyl in saliva, blood plasma and whole blood in 5-minutes using a SERS flow-separation strip. Analyst (Lond.), 2019, 144(18), 5449-5454.
[http://dx.doi.org/10.1039/C9AN01087D] [PMID: 31424465]
[83]
Narang, J.; Singhal, C.; Mathur, A.; Dubey, A.K.; Krishna, P.N.A.; Anil, A.; Pundir, C.S. Naked-eye quantitative assay on paper device for date rape drug sensing via smart phone APP. Vacuum, 2018, 153, 300-305.
[http://dx.doi.org/10.1016/j.vacuum.2018.03.056]
[84]
Chen, C.A.; Wang, P.W.; Yen, Y.C.; Lin, H.L.; Fan, Y.C.; Wu, S.M.; Chen, C.F. Fast analysis of ketamine using a colorimetric immuno-sorbent assay on a paper-based analytical device. Sens. Actuat. Biol. Chem., 2019, 282, 251-258.
[http://dx.doi.org/10.1016/j.snb.2018.11.071]
[85]
Ansari, N.; Lodha, A.; Pandya, A.; Menon, S.K. Determination of cause of death using paper-based microfluidic device as a colorimetric probe. Anal. Methods, 2017, 9(38), 5632-5639.
[http://dx.doi.org/10.1039/C7AY01784G]
[86]
Narang, J.; Singhal, C.; Khanuja, M.; Mathur, A.; Jain, A.; Pundir, C.S. Hydrothermally synthesized zinc oxide nanorods incorporated on lab-on-paper device for electrochemical detection of recreational drug. Artif. Cells Nanomed. Biotechnol., 2017, 46(8), 1-8.
[http://dx.doi.org/10.1080/21691401.2017.1381614] [PMID: 28959894]
[87]
Lockwood, T.L.E.; Leong, T.X.; Bliese, S.L.; Helmke, A.; Richard, A.; Merga, G.; Rorabeck, J.; Lieberman, M. idPAD: Paper analytical device for presumptive identification of illicit drugs. J. Forensic Sci., 2020, 65(4), 1289-1297.
[http://dx.doi.org/10.1111/1556-4029.14318] [PMID: 32227600]
[88]
Costa-Rama, E.; Nouws, H.P.A.; Delerue-Matos, C.; Blanco-López, M.C.; Fernández-Abedul, M.T. Preconcentration and sensitive deter-mination of the anti-inflammatory drug diclofenac on a paper-based electroanalytical platform. Anal. Chim. Acta, 2019, 1074, 89-97.
[http://dx.doi.org/10.1016/j.aca.2019.05.016] [PMID: 31159943]
[89]
Li, S.; Ge, W.; Suryoprabowo, S.; Liu, J.; Kuang, H.; Zhu, J.; Liu, L.; Xu, C. A paper-based sensor for rapid and ultrasensitive detection of ibuprofen in water and herbal tea. Analyst (Lond.), 2021, 146(22), 6874-6882.
[http://dx.doi.org/10.1039/D1AN01533H] [PMID: 34633393]
[90]
Pratiwi, R.; Septyani, R.N.; Febriany, R.; Saputri, F.A.; Nuwarda, R.F. Design and optimization of colorimetric paper-based analytical de-vice for rapid detection of allopurinol in herbal medicine. Int. J. Anal. Chem., 2019, 2019, 4682839.
[http://dx.doi.org/10.1155/2019/4682839]
[91]
Lantigua, D.; Trimper, J.; Unal, B.; Camci-Unal, G. A new paper-based biosensor for therapeutic drug monitoring. Lab Chip, 2021, 21(17), 3289-3297.
[http://dx.doi.org/10.1039/D1LC00473E] [PMID: 34612459]
[92]
Dou, B.; Luo, Y.; Chen, X.; Shi, B.; Du, Y.; Gao, Z.; Zhao, W.; Lin, B. Direct measurement of beta-agonists in swine hair extract in multi-plexed mode by surface-enhanced Raman spectroscopy and microfluidic paper. Electrophoresis, 2015, 36(3), 485-487.
[http://dx.doi.org/10.1002/elps.201400362] [PMID: 25296903]
[93]
Li, W.; Luo, Y.; Yue, X.; Wu, J.; Wu, R.; Qiao, Y.; Peng, Q.; Shi, B.; Lin, B.; Chen, X. A novel microfluidic paper-based analytical device based on chemiluminescence for the determination of β-agonists in swine hair. Anal. Methods, 2020, 12(18), 2317-2322.
[http://dx.doi.org/10.1039/C9AY02754H] [PMID: 32930256]
[94]
El-Shaheny, R.; Al-Khateeb, L.A.; El Hamd, M.A.; El-Maghrabey, M. Correction pen as a hydrophobic/lipophobic barrier plotter integrat-ed with paper-based chips and a mini UV-torch to implement all-in-one device for determination of carbazochrome. Anal. Chim. Acta, 2021, 1172, 338684.
[http://dx.doi.org/10.1016/j.aca.2021.338684] [PMID: 34119023]
[95]
de Araujo, T.A.; de Moraes, N.C.; Petroni, J.M.; Ferreira, V.S.; Lucca, B.G. Simple, fast, and instrumentless fabrication of paper analytical devices by novel contact stamping method based on acrylic varnish and 3D printing. Mikrochim. Acta, 2021, 188(12), 437.
[http://dx.doi.org/10.1007/s00604-021-05102-7] [PMID: 34837526]
[96]
Zeng, L.; Guo, L.; Wang, Z.; Xu, X.; Song, S.; Xu, L.; Kuang, H.; Li, A.; Xu, C. Immunoassays for the rapid detection of pantothenic acid in pharmaceutical and food products. Food Chem., 2021, 348, 129114.
[http://dx.doi.org/10.1016/j.foodchem.2021.129114] [PMID: 33516998]
[97]
Mancera-Andrade, E.I.; Parsaeimehr, A.; Arevalo-Gallegos, A.; Ascencio-Favela, G.; Parra-Saldivar, R. Microfluidics technology for drug delivery: A review. Front. Biosci.-. Elite, 2018, 10, 74-91.
[98]
Sanjay, S.T.; Zhou, W.; Dou, M.; Tavakoli, H.; Ma, L.; Xu, F.; Li, X. Recent advances of controlled drug delivery using microfluidic plat-forms. Adv. Drug Deliv. Rev., 2018, 128, 3-28.
[http://dx.doi.org/10.1016/j.addr.2017.09.013] [PMID: 28919029]
[99]
Li, C.; Boban, M.; Tuteja, A. Open-channel, water-in-oil emulsification in paper-based microfluidic devices. Lab Chip, 2017, 17(8), 1436-1441.
[http://dx.doi.org/10.1039/C7LC00114B] [PMID: 28322402]
[100]
Su, M.; Ge, L.; Ge, S.; Li, N.; Yu, J.; Yan, M.; Huang, J. Paper-based electrochemical cyto-device for sensitive detection of cancer cells and in situ anticancer drug screening. Anal. Chim. Acta, 2014, 847, 1-9.
[http://dx.doi.org/10.1016/j.aca.2014.08.013] [PMID: 25261894]
[101]
Fu, S.; Zuo, P.; Ye, B-C. A novel wick‐like paper‐based microfluidic device for 3D cell culture and anti‐cancer drugs screening. Biotechnol. J., 2021, 16(2), 2000126.
[http://dx.doi.org/10.1002/biot.202000126]
[102]
Koesdjojo, M.T.; Wu, Y.; Boonloed, A.; Dunfield, E.M.; Remcho, V.T. Low-cost, high-speed identification of counterfeit antimalarial drugs on paper. Talanta, 2014, 130, 122-127.
[http://dx.doi.org/10.1016/j.talanta.2014.05.050] [PMID: 25159388]
[103]
Weaver, A.A.; Lieberman, M. Paper test cards for presumptive testing of very low quality antimalarial medications. Am. J. Trop. Med. Hyg., 2015, 92(6)(Suppl.), 17-23.
[http://dx.doi.org/10.4269/ajtmh.14-0384] [PMID: 25897064]
[104]
Cockburn, R.; Newton, P.N.; Agyarko, E.K.; Akunyili, D.; White, N.J. The global threat of counterfeit drugs: Why industry and govern-ments must communicate the dangers. PLoS Med., 2005, 2(4), e100.
[http://dx.doi.org/10.1371/journal.pmed.0020100] [PMID: 15755195]
[105]
Mullaicharam, A.R. Counterfeit herbal medicine. Int. J. Nutr. Pharmacol. Neurol. Dis., 2011, 1(2), 97.
[http://dx.doi.org/10.4103/2231-0738.84191]
[106]
Craig, D.; Mazilu, M.; Dholakia, K. Quantitative detection of pharmaceuticals using a combination of paper microfluidics and wavelength modulated Raman spectroscopy. PLoS One, 2015, 10(5), e0123334.
[http://dx.doi.org/10.1371/journal.pone.0123334] [PMID: 25938464]
[107]
de Oliveira, T.R.; Fonseca, W.T.; de Oliveira Setti, G.; Faria, R.C. Fast and flexible strategy to produce electrochemical paper-based analyt-ical devices using a craft cutter printer to create wax barrier and screen-printed electrodes. Talanta, 2019, 195, 480-489.
[http://dx.doi.org/10.1016/j.talanta.2018.11.047] [PMID: 30625573]
[108]
Bacanlı, M.; Başaran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol., 2019, 125, 462-466.
[http://dx.doi.org/10.1016/j.fct.2019.01.033] [PMID: 30710599]
[109]
Wei, X.; Tian, T.; Jia, S.; Zhu, Z.; Ma, Y.; Sun, J.; Lin, Z.; Yang, C.J. Microfluidic distance readout sweet hydrogel integrated paper-based analytical device (μDiSH-PAD) for visual quantitative point-of-care testing. Anal. Chem., 2016, 88(4), 2345-2352.
[http://dx.doi.org/10.1021/acs.analchem.5b04294] [PMID: 26765320]
[110]
Fornasaro, S.; Marta, S.D.; Rabusin, M.; Bonifacio, A.; Sergo, V. Toward SERS-based point-of-care approaches for therapeutic drug moni-toring: The case of methotrexate. Faraday Discuss., 2016, 187, 485-499.
[http://dx.doi.org/10.1039/C5FD00173K] [PMID: 27055173]
[111]
Petroni, J.M.; Lucca, B.G.; da Silva Júnior, L.C.; Barbosa Alves, D.C.; Souza Ferreira, V. Paper-based electrochemical devices coupled to external graphene-Cu nanoparticles modified solid electrode through meniscus configuration and their use in biological analysis. Electroanalysis, 2017, 29(11), 2628-2637.
[http://dx.doi.org/10.1002/elan.201700398]
[112]
Dias, A.A.; Cardoso, T.M.G.; Chagas, C.L.S.; Oliveira, V.X.G.; Munoz, R.A.A.; Henry, C.S.; Santana, M.H.P.; Paixão, T.R.L.C.; Coltro, W.K.T. Detection of analgesics and sedation drugs in whiskey using electrochemical paper-based analytical devices. Electroanalysis, 2018, 30(10), 2250-2257.
[http://dx.doi.org/10.1002/elan.201800308]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy