Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Targeting ADAM10 in Renal Diseases

Author(s): Jie-Na Wang and Xiao-Jing Cao*

Volume 23, Issue 10, 2023

Published on: 07 November, 2022

Page: [1037 - 1045] Pages: 9

DOI: 10.2174/1566524023666221020142504

Price: $65

conference banner
Abstract

ADAM10 is part of the ADAM superfamily containing cell surface proteins with special structures and potential adhesion and protease domains. This paper provides a review of the specific effects of ADAM10 in kidney development as well as its relations with renal diseases. ADAM10 plays an important role in developing tissues and organs and the pathogenesis of multiple diseases. The catalytic mechanism of ADAM10 on kidney-related molecules, including Notch, epidermal growth factor receptors, tumor necrosis factor-α, CXCL16, E-cadherin, cell adhesion molecule 1, meprin and klotho. ADAM10 is also closely associated with the progress of glomerular diseases, acute kidney injury and renal fibrosis. It probably is a good therapeutic target for renal diseases.

[1]
Yang H, Qiu B, Chen S, et al. Soluble CXCL16 promotes TNF‐α‐induced apoptosis in DLBCL via the AMAD10‐NF‐κB regulatory feedback loop. Cell Biol Int 2019; 43(8): 863-74.
[http://dx.doi.org/10.1002/cbin.11154] [PMID: 31033093]
[2]
Rabquer BJ, Amin MA, Teegala N, et al. Junctional adhesion molecule-C is a soluble mediator of angiogenesis. J Immunol 2010; 185(3): 1777-85.
[http://dx.doi.org/10.4049/jimmunol.1000556] [PMID: 20592283]
[3]
Lemjabbar H, Basbaum C. Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat Med 2002; 8(1): 41-6.
[http://dx.doi.org/10.1038/nm0102-41] [PMID: 11786905]
[4]
Zhu H, Wang J, Nie W, Armando I, Han F. ADAMs family in kidney physiology and pathology. EBioMedicine 2021; 72: 103628.
[http://dx.doi.org/10.1016/j.ebiom.2021.103628] [PMID: 34653870]
[5]
Kato T, Hagiyama M, Ito A. Renal ADAM10 and 17: Their Physiological and Medical Meanings. Front Cell Dev Biol 2018; 6: 153.
[http://dx.doi.org/10.3389/fcell.2018.00153] [PMID: 30460232]
[6]
Atapattu L, Saha N, Chheang C, et al. An activated form of ADAM10 is tumor selective and regulates cancer stem-like cells and tumor growth. J Exp Med 2016; 213(9): 1741-57.
[http://dx.doi.org/10.1084/jem.20151095] [PMID: 27503072]
[7]
Caescu CI, Jeschke GR, Turk BE. Active-site determinants of substrate recognition by the metalloproteinases TACE and ADAM10. Biochem J 2009; 424(1): 79-88.
[http://dx.doi.org/10.1042/BJ20090549] [PMID: 19715556]
[8]
Tucher J, Linke D, Koudelka T, et al. LC-MS based cleavage site profiling of the proteases ADAM10 and ADAM17 using proteome-derived peptide libraries. J Proteome Res 2014; 13(4): 2205-14.
[http://dx.doi.org/10.1021/pr401135u] [PMID: 24635658]
[9]
Seegar TCM, Killingsworth LB, Saha N, et al. Structural basis for regulated proteolysis by the α-Secretase ADAM10. Cell 2017; 171(7): 1638-1648.e7.
[http://dx.doi.org/10.1016/j.cell.2017.11.014] [PMID: 29224781]
[10]
Bozkulak EC, Weinmaster G. Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Mol Cell Biol 2009; 29(21): 5679-95.
[http://dx.doi.org/10.1128/MCB.00406-09] [PMID: 19704010]
[11]
Bray SJ. Notch signalling in context. Nat Rev Mol Cell Biol 2016; 17(11): 722-35.
[http://dx.doi.org/10.1038/nrm.2016.94] [PMID: 27507209]
[12]
Weber S, Saftig P. Ectodomain shedding and ADAMs in development. Development 2012; 139(20): 3693-709.
[http://dx.doi.org/10.1242/dev.076398] [PMID: 22991436]
[13]
Cho C, O’Dell Bunch D, Faure JE, et al. Fertilization defects in sperm from mice lacking fertilin beta. Science 1998; 281(5384): 1857-9.
[http://dx.doi.org/10.1126/science.281.5384.1857] [PMID: 9743500]
[14]
Weskamp G, Ford JW, Sturgill J, et al. ADAM10 is a principal ‘sheddase’ of the low-affinity immunoglobulin E receptor CD23. Nat Immunol 2006; 7(12): 1293-8.
[http://dx.doi.org/10.1038/ni1399] [PMID: 17072319]
[15]
Suh J, Choi SH, Romano DM, et al. ADAM10 missense mutations potentiate β-amyloid accumulation by impairing prodomain chaperone function. Neuron 2013; 80(2): 385-401.
[http://dx.doi.org/10.1016/j.neuron.2013.08.035] [PMID: 24055016]
[16]
Kopan R, Ilagan MXG. The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell 2009; 137(2): 216-33.
[http://dx.doi.org/10.1016/j.cell.2009.03.045] [PMID: 19379690]
[17]
Ilagan MXG, Kopan R. SnapShot: Notch signaling pathway. Cell 2007; 128(6): 1246.e1-2.
[http://dx.doi.org/10.1016/j.cell.2007.03.011] [PMID: 17382890]
[18]
Chen J, Moloney DJ, Stanley P. Fringe modulation of Jagged1-induced Notch signaling requires the action of β4galactosyltransferase-1. Proc Natl Acad Sci 2001; 98(24): 13716-21.
[http://dx.doi.org/10.1073/pnas.241398098] [PMID: 11707585]
[19]
Ray WJ, Yao M, Mumm J, et al. Cell surface presenilin-1 participates in the gamma-secretase-like proteolysis of Notch. J Biol Chem 1999; 274(51): 36801-7.
[http://dx.doi.org/10.1074/jbc.274.51.36801] [PMID: 10593990]
[20]
Sahin U, Weskamp G, Kelly K, et al. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 2004; 164(5): 769-79.
[http://dx.doi.org/10.1083/jcb.200307137] [PMID: 14993236]
[21]
Richards WG, Sweeney WE, Yoder BK, Wilkinson JE, Woychik RP, Avner ED. Epidermal growth factor receptor activity mediates renal cyst formation in polycystic kidney disease. J Clin Invest 1998; 101(5): 935-9.
[http://dx.doi.org/10.1172/JCI2071] [PMID: 9486961]
[22]
Massagué J, Pandiella A. Membrane-anchored growth factors. Annu Rev Biochem 1993; 62(1): 515-41.
[http://dx.doi.org/10.1146/annurev.bi.62.070193.002503] [PMID: 8394682]
[23]
Yan Y, Shirakabe K, Werb Z. The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein–coupled receptors. J Cell Biol 2002; 158(2): 221-6.
[http://dx.doi.org/10.1083/jcb.200112026] [PMID: 12119356]
[24]
Ernandez T, Mayadas T. Immunoregulatory role of TNFα in inflammatory kidney diseases. Kidney Int 2009; 76(3): 262-76.
[http://dx.doi.org/10.1038/ki.2009.142] [PMID: 19436333]
[25]
Sanchez-Niño MD, Benito-Martin A, Gonçalves S, et al. TNF superfamily: A growing saga of kidney injury modulators. Mediators Inflamm 2010.
[http://dx.doi.org/10.1155/2010/182958]
[26]
Minami M, Kume N, Shimaoka T, et al. Expression of SR-PSOX, a novel cell-surface scavenger receptor for phosphatidylserine and oxidized LDL in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2001; 21(11): 1796-800.
[http://dx.doi.org/10.1161/hq1001.096652] [PMID: 11701468]
[27]
Okamura DM, López-Guisa JM, Koelsch K, Collins S, Eddy AA. Atherogenic scavenger receptor modulation in the tubulointerstitium in response to chronic renal injury. Am J Physiol Renal Physiol 2007; 293(2): F575-85.
[http://dx.doi.org/10.1152/ajprenal.00063.2007] [PMID: 17537985]
[28]
Hassan AM, Farghal NMA, Hegab DS, Mohamed WS, Abd-Elnabi HH. Serum-soluble CXCL16 in juvenile systemic lupus erythematosus: A promising predictor of disease severity and lupus nephritis. Clin Rheumatol 2018; 37(11): 3025-32.
[http://dx.doi.org/10.1007/s10067-018-4203-2] [PMID: 30006918]
[29]
Gall TMH, Frampton AE. Gene of the month: E-cadherin (CDH1). J Clin Pathol 2013; 66(11): 928-32.
[http://dx.doi.org/10.1136/jclinpath-2013-201768] [PMID: 23940132]
[30]
Crawford H, Dempsey P, Brown G, Adam L, Moss M. ADAM10 as a therapeutic target for cancer and inflammation. Curr Pharm Des 2009; 15(20): 2288-99.
[http://dx.doi.org/10.2174/138161209788682442] [PMID: 19601831]
[31]
Xu JX, Lu TS, Li S, et al. Polycystin-1 and Gα12 regulate the cleavage of E-cadherin in kidney epithelial cells. Physiol Genomics 2015; 47(2): 24-32.
[http://dx.doi.org/10.1152/physiolgenomics.00090.2014] [PMID: 25492927]
[32]
Murakami Y. Involvement of a cell adhesion molecule, TSLC1/IGSF4, in human oncogenesis. Cancer Sci 2005; 96(9): 543-52.
[http://dx.doi.org/10.1111/j.1349-7006.2005.00089.x] [PMID: 16128739]
[33]
Fogel AI, Li Y, Giza J, et al. N-glycosylation at the SynCAM (synaptic cell adhesion molecule) immunoglobulin interface modulates synaptic adhesion. J Biol Chem 2010; 285(45): 34864-74.
[http://dx.doi.org/10.1074/jbc.M110.120865] [PMID: 20739279]
[34]
Kato T, Hagiyama M, Takashima Y, Yoneshige A, Ito A. Cell adhesion molecule-1 shedding induces apoptosis of renal epithelial cells and exacerbates human nephropathies. Am J Physiol Renal Physiol 2018; 314(3): F388-98.
[http://dx.doi.org/10.1152/ajprenal.00385.2017] [PMID: 29070574]
[35]
Stöcker W, Grams F, Reinemer P, et al. The metzincins - Topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a super family of zinc-peptidases. Protein Sci 1995; 4(5): 823-40.
[http://dx.doi.org/10.1002/pro.5560040502] [PMID: 7663339]
[36]
Bond JS, Matters GL, Banerjee S, Dusheck RE. Meprin metalloprotease expression and regulation in kidney, intestine, urinary tract infections and cancer. FEBS Lett 2005; 579(15): 3317-22.
[http://dx.doi.org/10.1016/j.febslet.2005.03.045] [PMID: 15943977]
[37]
Kawaguchi H, Manabe N, Miyaura C, Chikuda H, Nakamura K, Kuro-o M. Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low-turnover osteopenia. J Clin Invest 1999; 104(3): 229-37.
[http://dx.doi.org/10.1172/JCI5705] [PMID: 10430604]
[38]
Leunissen EHP, Nair AV, Büll C, et al. The epithelial calcium channel TRPV5 is regulated differentially by klotho and sialidase. J Biol Chem 2013; 288(41): 29238-46.
[http://dx.doi.org/10.1074/jbc.M113.473520] [PMID: 23970553]
[39]
Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci 2007; 104(50): 19796-801.
[http://dx.doi.org/10.1073/pnas.0709805104] [PMID: 18056631]
[40]
Dressler GR. The cellular basis of kidney development. Annu Rev Cell Dev Biol 2006; 22(1): 509-29.
[http://dx.doi.org/10.1146/annurev.cellbio.22.010305.104340] [PMID: 16822174]
[41]
Chang CP, McDill BW, Neilson JR, et al. Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery. J Clin Invest 2004; 113(7): 1051-8.
[http://dx.doi.org/10.1172/JCI20049] [PMID: 15057312]
[42]
Chen F. Genetic and developmental basis for urinary tract obstruction. Pediatr Nephrol 2009; 24(9): 1621-32.
[http://dx.doi.org/10.1007/s00467-008-1072-y] [PMID: 19085015]
[43]
Farber G, Hurtado R, Loh S, et al. Glomerular endothelial cell maturation depends on ADAM10, a key regulator of Notch signaling. Angiogenesis 2018; 21(2): 335-47.
[http://dx.doi.org/10.1007/s10456-018-9599-4] [PMID: 29397483]
[44]
Wang Y, Rattner A, Zhou Y, Williams J, Smallwood PM, Nathans J. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 2012; 151(6): 1332-44.
[http://dx.doi.org/10.1016/j.cell.2012.10.042] [PMID: 23217714]
[45]
Covassin L, Amigo JD, Suzuki K, Teplyuk V, Straubhaar J, Lawson ND. Global analysis of hematopoietic and vascular endothelial gene expression by tissue specific microarray profiling in zebrafish. Dev Biol 2006; 299(2): 551-62.
[http://dx.doi.org/10.1016/j.ydbio.2006.08.020] [PMID: 16999953]
[46]
Alabi RO, Glomski K, Haxaire C, Weskamp G, Monette S, Blobel CP. ADAM10-dependent signaling through Notch1 and Notch4 controls development of organ-specific vascular beds. Circ Res 2016; 119(4): 519-31.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307738] [PMID: 27354212]
[47]
Glomski K, Monette S, Manova K, De Strooper B, Saftig P, Blobel CP. Deletion of Adam10 in endothelial cells leads to defects in organ-specific vascular structures. Blood 2011; 118(4): 1163-74.
[http://dx.doi.org/10.1182/blood-2011-04-348557] [PMID: 21652679]
[48]
Debiec H, Christensen EI, Ronco PM. The cell adhesion molecule L1 is developmentally regulated in the renal epithelium and is involved in kidney branching morphogenesis. J Cell Biol 1998; 143(7): 2067-79.
[http://dx.doi.org/10.1083/jcb.143.7.2067] [PMID: 9864376]
[49]
Gutwein P, Mechtersheimer S, Riedle S, et al. ADAM10‐mediated cleavage of L1 adhesion molecule at the cell surface and in released membrane vesicles. FASEB J 2003; 17(2): 292-4.
[http://dx.doi.org/10.1096/fj.02-0430fje] [PMID: 12475894]
[50]
Schramme A, Abdel-Bakky MS, Kämpfer-Kolb N, Pfeilschifter J, Gutwein P. The role of CXCL16 and its processing metalloproteinases ADAM10 and ADAM17 in the proliferation and migration of human mesangial cells. Biochem Biophys Res Commun 2008; 370(2): 311-6.
[http://dx.doi.org/10.1016/j.bbrc.2008.03.088] [PMID: 18373975]
[51]
Gómez-Guerrero C, Hernández-Vargas P, López-Franco O, Ortiz-Muñoz G, Egido J. Mesangial cells and glomerular inflammation: From the pathogenesis to novel therapeutic approaches. Curr Drug Targets Inflamm Allergy 2005; 4(3): 341-51.
[http://dx.doi.org/10.2174/1568010054022169] [PMID: 16101544]
[52]
Marshall CB, Shankland SJ. Cell cycle and glomerular disease: A minireview. Nephron, Exp Nephrol 2005; 102(2): e39-48.
[http://dx.doi.org/10.1159/000088400] [PMID: 16179806]
[53]
Zhao XP, Chang SY, Liao MC, et al. Hedgehog interacting protein promotes fibrosis and apoptosis in glomerular endothelial cells in murine diabetes. Sci Rep 2018; 8(1): 5958.
[http://dx.doi.org/10.1038/s41598-018-24220-6] [PMID: 29654303]
[54]
Feistritzer C, Riewald M. Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1–phosphate receptor-1 crossactivation. Blood 2005; 105(8): 3178-84.
[http://dx.doi.org/10.1182/blood-2004-10-3985] [PMID: 15626732]
[55]
Becker-Pauly C, Höwel M, Walker T, et al. The alpha and beta subunits of the metalloprotease meprin are expressed in separate layers of human epidermis, revealing different functions in keratinocyte proliferation and differentiation. J Invest Dermatol 2007; 127(5): 1115-25.
[http://dx.doi.org/10.1038/sj.jid.5700675] [PMID: 17195012]
[56]
Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) Infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front Microbiol 2017; 8: 1566.
[http://dx.doi.org/10.3389/fmicb.2017.01566] [PMID: 28861072]
[57]
Carmago S, Shah SV, Walker PD. Meprin, a brush-border enzyme, plays an important role in hypoxic/ischemic acute renal tubular injury in rats1. Kidney Int 2002; 61(3): 959-66.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00209.x] [PMID: 11849450]
[58]
Herzog C, Haun RS, Ludwig A, Shah SV, Kaushal GP. ADAM10 is the major sheddase responsible for the release of membrane-associated meprin A. J Biol Chem 2014; 289(19): 13308-22.
[http://dx.doi.org/10.1074/jbc.M114.559088] [PMID: 24662289]
[59]
Stein R, Dogan HS, Hoebeke P, et al. Urinary tract infections in children: EAU/ESPU guidelines. Eur Urol 2015; 67(3): 546-58.
[http://dx.doi.org/10.1016/j.eururo.2014.11.007] [PMID: 25477258]
[60]
Heydtmann M, Lalor PF, Eksteen JA, Hübscher SG, Briskin M, Adams DH. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. J Immunol 2005; 174(2): 1055-62.
[http://dx.doi.org/10.4049/jimmunol.174.2.1055] [PMID: 15634930]
[61]
Schieppati A, Remuzzi G. Chronic renal diseases as a public health problem: Epidemiology, social, and economic implications. Kidney Int 2005; 68(98): S7-S10.
[http://dx.doi.org/10.1111/j.1523-1755.2005.09801.x] [PMID: 16108976]
[62]
Abel S, Hundhausen C, Mentlein R, et al. The transmembrane CXC-chemokine ligand 16 is induced by IFN-gamma and TNF-alpha and shed by the activity of the disintegrin-like metalloproteinase ADAM10. J Immunol 2004; 172(10): 6362-72.
[http://dx.doi.org/10.4049/jimmunol.172.10.6362] [PMID: 15128827]
[63]
Hirschberg R. Wound healing in the kidney: Complex interactions in renal interstitial fibrogenesis. J Am Soc Nephrol 2005; 16(1): 9-11.
[http://dx.doi.org/10.1681/ASN.2004110901] [PMID: 15574504]
[64]
Lagares D, Ghassemi-Kakroodi P, Tremblay C, et al. ADAM10-mediated ephrin-B2 shedding promotes myofibroblast activation and organ fibrosis. Nat Med 2017; 23(12): 1405-15.
[http://dx.doi.org/10.1038/nm.4419] [PMID: 29058717]
[65]
Kida Y, Ieronimakis N, Schrimpf C, Reyes M, Duffield JS. EphrinB2 reverse signaling protects against capillary rarefaction and fibrosis after kidney injury. J Am Soc Nephrol 2013; 24(4): 559-72.
[http://dx.doi.org/10.1681/ASN.2012080871] [PMID: 23492730]
[66]
Hou L, Du Y, Zhao C, Wu Y. PAX2 may induce ADAM10 expression in renal tubular epithelial cells and contribute to epithelial-to-mesenchymal transition. Int Urol Nephrol 2018; 50(9): 1729-41.
[http://dx.doi.org/10.1007/s11255-018-1956-0] [PMID: 30117015]
[67]
Dreymueller D, Uhlig S, Ludwig A. ADAM-family metalloproteinases in lung inflammation: Potential therapeutic targets. Am J Physiol Lung Cell Mol Physiol 2015; 308(4): L325-43.
[http://dx.doi.org/10.1152/ajplung.00294.2014] [PMID: 25480335]
[68]
Zocchi MR, Camodeca C, Nuti E, et al. ADAM10 new selective inhibitors reduce NKG2D ligand release sensitizing Hodgkin lymphoma cells to NKG2D-mediated killing. OncoImmunology 2016; 5(5): e1123367.
[http://dx.doi.org/10.1080/2162402X.2015.1123367] [PMID: 27467923]
[69]
Duffy MJ, Mullooly M, O’Donovan N, et al. The ADAMs family of proteases: New biomarkers and therapeutic targets for cancer? Clin Proteomics 2011; 8(1): 9.
[http://dx.doi.org/10.1186/1559-0275-8-9] [PMID: 21906355]
[70]
Grabowska MM, Sandhu B, Day ML. EGF promotes the shedding of soluble E-cadherin in an ADAM10-dependent manner in prostate epithelial cells. Cell Signal 2012; 24(2): 532-8.
[http://dx.doi.org/10.1016/j.cellsig.2011.10.004] [PMID: 22024284]
[71]
Atapattu L, Saha N, Llerena C, et al. Antibodies binding the ADAM10 substrate recognition domain inhibit Eph function. J Cell Sci 2012; 125(24): 6084-93.
[http://dx.doi.org/10.1242/jcs.112631] [PMID: 23108669]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy