Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Cell Adhesion Molecule CD99 in Cancer Immunotherapy

Author(s): Feng Yu, Guodong Liu, Hailing Zhang, Xiaoyan Wang, Zhi Wu, Qinggang Xu, Yan Wu and Dongfeng Chen*

Volume 23, Issue 10, 2023

Published on: 27 October, 2022

Page: [1028 - 1036] Pages: 9

DOI: 10.2174/1566524023666221007143513

Price: $65

conference banner
Abstract

The CD99 antigen is a transmembrane protein expressed in a broad variety of tissues, particularly in hematopoietic cells, thymus, endothelial cells, etc. It participates in several crucial biological processes, including cell adhesion, migration, death, differentiation, and inflammation. CD99 has shown oncogenic or tumor suppressor roles in different types of cancer. Therefore, it has been used as a biomarker and therapeutic target for several types of cancer. Moreover, it has also been reported to be involved in several critical immune processes, such as T cell activation and differentiation, dendritic cell differentiation, and so on. Hence, CD99 may have potential values in cancer immunotherapy. Anti-CD99 antibodies have shown therapeutic effects on certain types of cancer, especially on Ewing sarcoma and T cell acute lymphoblastic leukemia (ALL). This review summarizes the recent progress of CD99 in cancer research and targeting therapies, especially in cancer immunotherapy, which may help researchers understand the crucial roles of CD99 in cancer development and design new therapeutic strategies.

[1]
Manara M, Pasello M, Scotlandi K. CD99: A cell surface protein with an oncojanus role in tumors. Genes 2018; 9(3): 159.
[http://dx.doi.org/10.3390/genes9030159] [PMID: 29534016]
[2]
Pasello M, Manara MC, Scotlandi K. CD99 at the crossroads of physiology and pathology. J Cell Commun Signal 2018; 12(1): 55-68.
[http://dx.doi.org/10.1007/s12079-017-0445-z] [PMID: 29305692]
[3]
Riggi N, Suvà ML, Stamenkovic I. Ewing’s sarcoma. N Engl J Med 2021; 384(2): 154-64.
[http://dx.doi.org/10.1056/NEJMra2028910] [PMID: 33497548]
[4]
Scotlandi K, Perdichizzi S, Bernard G, et al. Targeting CD99 in association with doxorubicin: An effective combined treatment for Ewing’s sarcoma. Eur J Cancer 2006; 42(1): 91-6.
[http://dx.doi.org/10.1016/j.ejca.2005.09.015] [PMID: 16326096]
[5]
Scotlandi K, Baldini N, Cerisano V, et al. CD99 engagement: an effective therapeutic strategy for Ewing tumors. Cancer Res 2000; 60(18): 5134-42.
[PMID: 11016640]
[6]
Seol HJ, Chang JH, Yamamoto J, et al. Overexpression of CD99 increases the migration and invasiveness of human malig-nant glioma cells. Genes Cancer 2012; 3(9-10): 535-49.
[http://dx.doi.org/10.1177/1947601912473603] [PMID: 23486730]
[7]
Cardoso L, Soares R, Laurentino T, Lerario A, Marie S, Oba-Shinjo S. CD99 Expression in glioblastoma molecular subtypes and role in migration and invasion. Int J Mol Sci 2019; 20(5): 1137.
[http://dx.doi.org/10.3390/ijms20051137] [PMID: 30845661]
[8]
Dworzak MN, Fröschl G, Printz D, et al. CD99 expression in T-lineage ALL: implications for flow cytometric detection of mini-mal residual disease. Leukemia 2004; 18(4): 703-8.
[http://dx.doi.org/10.1038/sj.leu.2403303] [PMID: 14961034]
[9]
Cox CV, Diamanti P, Moppett JP, Blair A. Investigating CD99 expression in leukemia propagating cells in childhood T cell acute lymphoblastic leukemia. PLoS One 2016; 11(10): e0165210.
[http://dx.doi.org/10.1371/journal.pone.0165210] [PMID: 27764235]
[10]
Enein AAA, Rahman HAA, Sharkawy NE, et al. Significance of CD99 expression in T-lineage acute lymphoblastic leukemia. Cancer Biomark 2016; 17(2): 117-23.
[http://dx.doi.org/10.3233/CBM-160608] [PMID: 27002769]
[11]
Chen D, Camponeschi A, Wu Q, et al. CD99 expression is strongly associated with clinical outcome in children with B-cell precursor acute lymphoblastic leukaemia. Br J Haematol 2019; 184(3): 418-23.
[http://dx.doi.org/10.1111/bjh.15683] [PMID: 30484860]
[12]
Chung SS, Eng WS, Hu W, et al. CD99 is a therapeutic target on disease stem cells in myeloid malignancies. Sci Transl Med 2017; 9(374): eaaj2025.
[http://dx.doi.org/10.1126/scitranslmed.aaj2025] [PMID: 28123069]
[13]
Kim SH, Shin YK, Lee I, et al. Viral latent membrane protein 1 (LMP-1)–induced CD99 down-regulation in B cells leads to the generation of cells with Hodgkin’s and Reed-Sternberg phenotype. Blood 2000; 95(1): 294-300.
[http://dx.doi.org/10.1182/blood.V95.1.294] [PMID: 10607715]
[14]
Gao Q, Yellapantula V, Fenelus M, et al. Tumor suppressor CD99 is downregulated in plasma cell neoplasms lacking CCND1 translocation and distinguishes neoplastic from normal plasma cells and B-cell lymphomas with plasmacytic differentiation from primary plasma cell neoplasms. Mod Pathol 2018; 31(6): 881-9.
[http://dx.doi.org/10.1038/s41379-018-0011-0] [PMID: 29403080]
[15]
Choi YL, Xuan YH, Shin YK, et al. An immunohistochemical study of the expression of adhesion molecules in gallbladder le-sions. J Histochem Cytochem 2004; 52(5): 591-601.
[http://dx.doi.org/10.1177/002215540405200504] [PMID: 15100237]
[16]
Maitra A, Hansel DE, Argani P, et al. Global expression analysis of well-differentiated pancreatic endocrine neoplasms using oligonucleotide microarrays. Clin Cancer Res 2003; 9(16 Pt 1): 5988-95.
[PMID: 14676124]
[17]
Jung KC, Park WS, Bae YM, et al. Immunoreactivity of CD99 in stomach cancer. J Korean Med Sci 2002; 17(4): 483-9.
[http://dx.doi.org/10.3346/jkms.2002.17.4.483] [PMID: 12172043]
[18]
Manara MC, Bernard G, Lollini PL, et al. CD99 acts as an oncosuppressor in osteosarcoma. Mol Biol Cell 2006; 17(4): 1910-21.
[http://dx.doi.org/10.1091/mbc.e05-10-0971] [PMID: 16421247]
[19]
Choi EY, Park WS, Jung KC, et al. Engagement of CD99 induces up-regulation of TCR and MHC class I and II molecules on the surface of human thymocytes. J Immunol 1998; 161(2): 749-54.
[PMID: 9670951]
[20]
Kim MK, Choi YL, Kim MK, et al. MHC class II engagement inhibits CD99-induced apoptosis and up-regulation of T cell recep-tor and MHC molecules in human thymocytes and T cell line. FEBS Lett 2003; 546(2-3): 379-84.
[http://dx.doi.org/10.1016/S0014-5793(03)00567-2] [PMID: 12832073]
[21]
Yoon SS, Kim HJ, Chung DH, Kim TJ. CD99 costimulation up-regulates T cell receptor-mediated activation of JNK and AP-1. Mol Cells 2004; 18(2): 186-91.
[PMID: 15528994]
[22]
Mahiddine K, Mallavialle A, Bziouech H, Larbret F, Bernard A, Bernard G. CD99 isoforms regulate CD1a expression in human monocyte-derived DCs through ATF-2/CREB-1 phosphorylation. Eur J Immunol 2016; 46(6): 1460-71.
[http://dx.doi.org/10.1002/eji.201546143] [PMID: 27094031]
[23]
Hahn JH, Kim MK, Choi EY, et al. CD99 (MIC2) regulates the LFA-1/ICAM-1-mediated adhesion of lymphocytes, and its gene encodes both positive and negative regulators of cellular adhesion. J Immunol 1997; 159(5): 2250-8.
[PMID: 9278313]
[24]
Banting GS, Pym B, Darling SM, Goodfellow PN. The MIC2 gene product: Epitope mapping and structural prediction analysis define an integral membrane protein. Mol Immunol 1989; 26(2): 181-8.
[http://dx.doi.org/10.1016/0161-5890(89)90100-4] [PMID: 2465491]
[25]
Ellis NA, Ye TZ, Patton S, German J, Goodfellow PN, Weller P. Cloning of PBDX, an MIC2-related gene that spans the pseudo-autosomal boundary on chromosome Xp. Nat Genet 1994; 6(4): 394-400.
[http://dx.doi.org/10.1038/ng0494-394] [PMID: 8054981]
[26]
Fouchet C, Gane P, Huet M, et al. A study of the coregulation and tissue specificity of XGand MIC2 gene expression in eukary-otic cells. Blood 2000; 95(5): 1819-26.
[http://dx.doi.org/10.1182/blood.V95.5.1819.005k05_1819_1826] [PMID: 10688843]
[27]
Rocchi A, Manara MC, Sciandra M, et al. CD99 inhibits neural differentiation of human Ewing sarcoma cells and thereby con-tributes to oncogenesis. J Clin Invest 2010; 120(3): 668-80.
[http://dx.doi.org/10.1172/JCI36667] [PMID: 20197622]
[28]
Takheaw N, Earwong P, Laopajon W, Pata S, Kasinrerk W. Interaction of CD99 and its ligand upregulates IL-6 and TNF-α upon T cell activation. PLoS One 2019; 14(5): e0217393.
[http://dx.doi.org/10.1371/journal.pone.0217393] [PMID: 31120992]
[29]
Takheaw N, Pata S, Laopajon W, Roytrakul S, Kasinrerk W. The presence of membrane bound CD99 ligands on leukocyte surface. BMC Res Notes 2020; 13(1): 496.
[http://dx.doi.org/10.1186/s13104-020-05347-0] [PMID: 33092634]
[30]
Goswami D, März S, Li YT, et al. Endothelial CD99 supports arrest of mouse neutrophils in venules and binds to neutrophil PILRs. Blood 2017; 129(13): 1811-22.
[http://dx.doi.org/10.1182/blood-2016-08-733394] [PMID: 28223280]
[31]
Ventura S, Aryee DNT, Felicetti F, et al. CD99 regulates neural differentiation of Ewing sarcoma cells through miR-34a-Notch-mediated control of NF-κB signaling. Oncogene 2016; 35(30): 3944-54.
[http://dx.doi.org/10.1038/onc.2015.463] [PMID: 26616853]
[32]
Miyagawa Y, Okita H, Nakaijima H, et al. Inducible expression of chimeric EWS/ETS proteins confers Ewing’s family tumor-like phenotypes to human mesenchymal progenitor cells. Mol Cell Biol 2008; 28(7): 2125-37.
[http://dx.doi.org/10.1128/MCB.00740-07] [PMID: 18212050]
[33]
Riggi N, Suvà ML, Suvà D, et al. EWS-FLI-1 expression triggers a Ewing’s sarcoma initiation program in primary human mes-enchymal stem cells. Cancer Res 2008; 68(7): 2176-85.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1761] [PMID: 18381423]
[34]
Franzetti GA, Laud-Duval K, Bellanger D, Stern MH, Sastre-Garau X, Delattre O. MiR-30a-5p connects EWS-FLI1 and CD99, two major therapeutic targets in Ewing tumor. Oncogene 2013; 32(33): 3915-21.
[http://dx.doi.org/10.1038/onc.2012.403] [PMID: 22986530]
[35]
Tavakkoli M, Chung SS, Park CY. Do preclinical studies suggest that CD99 is a potential therapeutic target in acute myeloid leukemia and the myelodysplastic syndromes? Expert Opin Ther Targets 2018; 22(5): 381-3.
[http://dx.doi.org/10.1080/14728222.2018.1464140] [PMID: 29637789]
[36]
Scotlandi K, Zuntini M, Manara MC, et al. CD99 isoforms dictate opposite functions in tumour malignancy and metastases by activating or repressing c-Src kinase activity. Oncogene 2007; 26(46): 6604-18.
[http://dx.doi.org/10.1038/sj.onc.1210481] [PMID: 17471235]
[37]
Lee JH, Kim SH, Wang LH, et al. Clinical significance of CD99 down-regulation in gastric adenocarcinoma. Clin Cancer Res 2007; 13(9): 2584-91.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1785] [PMID: 17473187]
[38]
Shin SJ, Lee H, Jung G, et al. Expression of CD99 in Multiple Myeloma: A Clinicopathologic and Immunohistochemical Study of 170 Cases. Korean J Pathol 2014; 48(3): 209-16.
[http://dx.doi.org/10.4132/KoreanJPathol.2014.48.3.209] [PMID: 25013419]
[39]
Edlund K, Lindskog C, Saito A, et al. CD99 is a novel prognostic stromal marker in non-small cell lung cancer. Int J Cancer 2012; 131(10): 2264-73.
[http://dx.doi.org/10.1002/ijc.27518] [PMID: 22392539]
[40]
Lee SP, Park S, Park J, Hong J, Ko YH. Clinicopathologic characteristics of CD99-positive diffuse large B-cell lymphoma. Acta Haematol 2011; 125(3): 167-74.
[http://dx.doi.org/10.1159/000322551] [PMID: 21196719]
[41]
Coustan-Smith E, Song G, Clark C, et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood 2011; 117(23): 6267-76.
[http://dx.doi.org/10.1182/blood-2010-12-324004] [PMID: 21487112]
[42]
Takheaw N, Sittithumcharee G, Kariya R, Kasinrerk W, Okada S. Anti-human CD99 antibody exerts potent antitumor effects in mantle cell lymphoma. Cancer Immunol Immunother 2021; 70(6): 1557-67.
[http://dx.doi.org/10.1007/s00262-020-02789-0] [PMID: 33215253]
[43]
Vaikari VP, Du Y, Wu S, et al. Clinical and preclinical characterization of CD99 isoforms in acute myeloid leukemia. Haematologica 2020; 105(4): 999-1012.
[http://dx.doi.org/10.3324/haematol.2018.207001] [PMID: 31371417]
[44]
Vaikari VP, Park M, Keossayan L, MacKay JA, Alachkar H. Anti-CD99 scFv-ELP nanoworms for the treatment of acute myeloid leukemia. Nanomedicine 2020; 29: 102236.
[http://dx.doi.org/10.1016/j.nano.2020.102236] [PMID: 32535112]
[45]
Wingett D, Forcier K, Nielson CP. A role for CD99 in T cell activation. Cell Immunol 1999; 193(1): 17-23.
[http://dx.doi.org/10.1006/cimm.1999.1470] [PMID: 10202109]
[46]
Laopajon W, Pata S, Takheaw N, Surinkaew S, Khummuang S, Kasinrerk W. Triggering of CD99 on monocytes by a specific monoclonal antibody regulates T cell activation. Cell Immunol 2019; 335: 51-8.
[http://dx.doi.org/10.1016/j.cellimm.2018.10.012] [PMID: 30396687]
[47]
Sohn HW, Shin YK, Lee IS, et al. CD99 regulates the transport of MHC class I molecules from the Golgi complex to the cell surface. J Immunol 2001; 166(2): 787-94.
[http://dx.doi.org/10.4049/jimmunol.166.2.787] [PMID: 11145651]
[48]
Bernard G, Breittmayer JP, de Matteis M, et al. Apoptosis of immature thymocytes mediated by E2/CD99. J Immunol 1997; 158(6): 2543-50.
[PMID: 9058785]
[49]
Pettersen RD, Bernard G, Olafsen MK, Pourtein M, Lie SO. CD99 signals caspase-independent T cell death. J Immunol 2001; 166(8): 4931-42.
[http://dx.doi.org/10.4049/jimmunol.166.8.4931] [PMID: 11290771]
[50]
Jensen MC, Riddell SR. Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol 2015; 33: 9-15.
[http://dx.doi.org/10.1016/j.coi.2015.01.002] [PMID: 25621840]
[51]
Shi J, Zhang Z, Cen H, et al. CAR T cells targeting CD99 as an approach to eradicate T-cell acute lymphoblastic leukemia without normal blood cells toxicity. J Hematol Oncol 2021; 14(1): 162.
[http://dx.doi.org/10.1186/s13045-021-01178-z] [PMID: 34627328]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy