Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Bacteriophages Against Pathogenic Bacteria: In Medicine and Agriculture

Author(s): Zahra Zaer Anaghez, Reyhaneh Rasizadeh, Parisa Shiri Aghbash, Hadi Feizi, Reza Khakvar and Hossein Bannazadeh Baghi*

Volume 19, Issue 5, 2023

Published on: 21 December, 2022

Article ID: e191022210146 Pages: 10

DOI: 10.2174/1573407219666221019090227

Price: $65

Abstract

One of the critical issues that humans worldwide are facing is bacterial infections. Antibiotics were developed as bactericidal agents to avoid the negative consequences of bacterial infections, and they were initially highly efficient against bacteria. However, we face a phenomenon called antibiotic resistance by misusing these chemical antibiotics in this era. In other words, bacteria began to acquire resistance to common antibiotics, and resistance means going back to a time before antibiotics. As it is a significant threat to human health and causes increased mortality, there is a rising demand for novel alternative therapies. An alternate method is to use bacteriophages (phages) as a therapeutic agent against bacterial infections in medicine and agriculture. Phages are viruses capable of infecting pathogenic bacteria, which can cause serious diseases. They do not affect the human microbiota; most only infect certain bacteria. Some research has been done on using phages as a treatment, and more experiments today. For instance, eye infections caused by methicillin-resistant Staphylococcus aureus (MRSA) can be treated by eye drops containing appropriate phages. In this regard, significant progress has been made in phage therapy. This review will discuss the current state of phage therapy, clinical breakthroughs, its superiorities and drawbacks, and the future perspectives of phage applications.

Graphical Abstract

[1]
Sinha, S.; Srivastava, S. Bacteriophage and phage-therapy: An alternative to antibiotics. eLifePress 2020, 1(1), 21-27.
[2]
Rajesh, D.; Rutuja, Z.; Manik, M.; Nikita, L. Status of bacteriophage genetic modifications: A review. Int. J. Mic. Sci., 2020, 1(1), 23-36.
[3]
Barua, P.; Nath, P.D. Bacteriophages: A potential next generation biocontrol tool for plant disease management. Int. J. Curr. Microbiol. Appl. Sci., 2018, 7(9), 1103-1112.
[http://dx.doi.org/10.20546/ijcmas.2018.709.131]
[4]
Górski, A.; Borysowski, J.; Międzybrodzki, R. Phage therapy: Towards a successful clinical trial. Antibiotics (Basel), 2020, 9(11), 827.
[http://dx.doi.org/10.3390/antibiotics9110827] [PMID: 33227949]
[5]
Wittebole, X.; De Roock, S.; Opal, S.M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 2014, 5(1), 226-235.
[http://dx.doi.org/10.4161/viru.25991] [PMID: 23973944]
[6]
Ye, M.; Sun, M.; Huang, D.; Zhang, Z.; Zhang, H.; Zhang, S.; Hu, F.; Jiang, X.; Jiao, W. A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. Environ. Int., 2019, 129, 488-496.
[http://dx.doi.org/10.1016/j.envint.2019.05.062] [PMID: 31158595]
[7]
Zalewska-Piątek, B.; Piątek, R. Phage therapy as a novel strategy in the treatment of urinary tract infections caused by E. coli. Antibiotics (Basel), 2020, 9(6), 304.
[http://dx.doi.org/10.3390/antibiotics9060304] [PMID: 32517088]
[8]
Bannazadeh, B.H.; Naghili, B.; Shanehbandi, D.; Ebrahimzadeh, L.H. Evaluation of a human gut-associated phage and gut dominant microbial phyla in the metabolic syndrome. Clin. Nutr. ESPEN, 2022, 50, 133-137.
[http://dx.doi.org/10.1016/j.clnesp.2022.06.009] [PMID: 35871914]
[9]
Van, B.J.; Dąbrowska, K.; Vaneechoutte, M.; Barr, J.; Bollyky, P. Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses, 2018, 11(1), 10.
[http://dx.doi.org/10.3390/v11010010] [PMID: 30585199]
[10]
Abbaszadeh, F.; Eslami, N.; Aghbash, P.S.; Leylabadlo, H.E.; Baghi, H.B. Bacteriophages: A possible choice for treatment of viral respiratory infections and COVID-19. Curr. Respir. Med. Rev., 2021, 17(4), 201-208.
[http://dx.doi.org/10.2174/1573398X17666211129102221]
[11]
Duplessis, C.A.; Biswas, B. A review of topical phage therapy for chronically infected wounds and preparations for a randomized adaptive clinical trial evaluating topical phage therapy in chronically infected diabetic foot ulcers. Antibiotics (Basel), 2020, 9(7), 377.
[http://dx.doi.org/10.3390/antibiotics9070377] [PMID: 32635429]
[12]
Nikolich, M.P.; Filippov, A.A. Bacteriophage therapy: Developments and directions. Antibiotics (Basel), 2020, 9(3), 135.
[http://dx.doi.org/10.3390/antibiotics9030135] [PMID: 32213955]
[13]
Vu, N.T.; Oh, C.S. Bacteriophage usage for bacterial disease management and diagnosis in plants. Plant Pathol. J., 2020, 36(3), 204-217.
[http://dx.doi.org/10.5423/PPJ.RW.04.2020.0074] [PMID: 32547337]
[14]
Pirnay, J.P. Phage therapy in the year 2035. Front. Microbiol., 2020, 11, 1171.
[http://dx.doi.org/10.3389/fmicb.2020.01171] [PMID: 32582107]
[15]
Loc-Carrillo, C.; Abedon, S.T. Pros and cons of phage therapy. Bacteriophage, 2011, 1(2), 111-114.
[http://dx.doi.org/10.4161/bact.1.2.14590] [PMID: 22334867]
[16]
Essa, N.; Rossitto, M.; Fiscarelli, E.V. Phages and phage therapy: Past, present and future. Microbiologia medica 2020, 35(1)
[http://dx.doi.org/10.4081/mm.2020.8709]
[17]
Abbaszadeh, F.; Leylabadlo, H.E.; Alinezhad, F.; Feizi, H.; Mobed, A.; Baghbanijavid, S.; Baghi, H.B. Bacteriophages: Cancer diagnosis, treatment, and future prospects. J. Pharm. Investig., 2021, 51(1), 23-34.
[http://dx.doi.org/10.1007/s40005-020-00503-x]
[18]
Pires, D.P.; Costa, A.R.; Pinto, G.; Meneses, L.; Azeredo, J. Current challenges and future opportunities of phage therapy. FEMS Microbiol. Rev., 2020, 44(6), 684-700.
[http://dx.doi.org/10.1093/femsre/fuaa017] [PMID: 32472938]
[19]
Salmond, G.P.C.; Fineran, P.C. A century of the phage: Past, present and future. Nat. Rev. Microbiol., 2015, 13(12), 777-786.
[http://dx.doi.org/10.1038/nrmicro3564] [PMID: 26548913]
[20]
Morrisette, T.; Lev, K.L.; Kebriaei, R.; Abdul-Mutakabbir, J.C.; Stamper, K.C.; Morales, S.; Lehman, S.M.; Canfield, G.S.; Duerkop, B.A.; Arias, C.A.; Rybak, M.J. Bacteriophage-antibiotic combinations for Enterococcus faecium with varying bacteriophage and daptomycin susceptibilities. Antimicrob. Agents Chemother., 2020, 64(9), e00993-e20.
[http://dx.doi.org/10.1128/AAC.00993-20] [PMID: 32571816]
[21]
Azeredo, J.; Pirnay, J.P.; Pires, D.P.; Kutateladze, M.; Dabrowska, K.; Lavigne, R.; Blasdel, B. Phage Therapy. WikiJournal preprints, Wikidata., 2020. Q100400597. Available from: https://wikidata.org/wiki/Q100400597
[22]
Danis-Wlodarczyk, K.; Dąbrowska, K.; Abedon, S.T. Phage Therapy: The pharmacology of antibacterial viruses. Curr. Issues Mol. Biol., 2021, 40, 81-164.
[http://dx.doi.org/10.21775/cimb.040.081] [PMID: 32503951]
[23]
Saad, T. Mutlk1, B.O.A.; Layla, T.Y. Phage therapy is a potential alternative for antimicrobial agents. J. Microbiol. Exp. 2017, 5(7) 00173.K
[24]
Kiljunen, S. Editorial for the Special Issue: Phage therapy: A biological approach to treatment of bacterial infections. Antibiotics (Basel), 2020, 9(10), 721.
[http://dx.doi.org/10.3390/antibiotics9100721] [PMID: 33096717]
[25]
Wei, J.; Peng, N.; Liang, Y.; Li, K.; Li, Y. Phage therapy: Consider the past, embrace the future. Appl. Sci. (Basel), 2020, 10(21), 7654.
[http://dx.doi.org/10.3390/app10217654]
[26]
Banu, H.; Prasad, K.P. Role of plasmids in microbiology. J. Aquac. Res. Dev., 2017, 8(466), 2.
[http://dx.doi.org/10.4172/2155-9546.1000466]
[27]
Shifa, B. A review on antibiotic resistance and way of combating antimicrobial resistance. GSC Biol. Pharm. Sci., 2021, 14(2), 087-097.
[28]
Fatima Ridha Safar, A.P.; Shabaraya, A.R. A review on crisis of antibiotic resistance. Int. J. imf. Res. Rev., 2021, 8(3)
[29]
Anomaly, J. The future of phage: Ethical challenges of using phage therapy to treat bacterial infections. Public Health Ethics, 2020, 13(1), 82-88.
[http://dx.doi.org/10.1093/phe/phaa003] [PMID: 32760449]
[30]
Gittrich, M.; Liu, Y.; Tian, F.; Crouch, A.; Jang, H.B.; Du, J.; Sullivan, M. The ecology of phage resistance: The key to successful phage therapy? Preprints, 2020, 2020050232.
[http://dx.doi.org/10.20944/preprints202005.0232.v1)]
[31]
Melo, L.D.R.; Oliveira, H.; Pires, D.P.; Dabrowska, K.; Azeredo, J. Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit. Rev. Microbiol., 2020, 46(1), 78-99.
[http://dx.doi.org/10.1080/1040841X.2020.1729695] [PMID: 32091280]
[32]
Gordillo Altamirano, F.L.; Barr, J.J. Unlocking the next generation of phage therapy: The key is in the receptors. Curr. Opin. Biotechnol., 2021, 68, 115-123.
[http://dx.doi.org/10.1016/j.copbio.2020.10.002] [PMID: 33202354]
[33]
Kowalska, J.D.; Kazimierczak, J.; Sowińska, P.M.; Wójcik, E.A.; Siwicki, A.K.; Dastych, J. Growing trend of fighting infections in aquaculture environment-Opportunities and challenges of phage therapy. Antibiotics (Basel), 2020, 9(6), 301.
[http://dx.doi.org/10.3390/antibiotics9060301] [PMID: 32512805]
[34]
Ryu, S. Grand challenges in phage biology. Front. Microbiol., 2021, 12, 715039.
[http://dx.doi.org/10.3389/fmicb.2021.715039] [PMID: 34305882]
[35]
Anand, T.; Virmani, N.; Bera, B.C.; Vaid, R.K.; Kumar, A.; Tripathi, B.N. Applications of personalised phage therapy highlighting the importance of bacteriophage banks against emerging antimicrobial resistance. Def. Life Sci. J., 2020, 5(4), 305-314.
[http://dx.doi.org/10.14429/dlsj.5.15760]
[36]
Hashemi Shahraki, A.; Mirsaeidi, M. Phage therapy for mycobacterium abscessus and strategies to improve outcomes. Microorganisms, 2021, 9(3), 596.
[http://dx.doi.org/10.3390/microorganisms9030596] [PMID: 33799414]
[37]
Clarke, A.; De Soir, S.; Jones, J. The safety and efficacy of phage therapy for bone and joint infections: A systematic review. Antibiotics (Basel), 2020, 9(11), 795.
[http://dx.doi.org/10.3390/antibiotics9110795] [PMID: 33182795]
[38]
Steele, A.; Stacey, H.J.; de Soir, S.; Jones, J.D. The safety and efficacy of phage therapy for superficial bacterial infections: A systematic review. Antibiotics (Basel), 2020, 9(11), 754.
[http://dx.doi.org/10.3390/antibiotics9110754] [PMID: 33138253]
[39]
Gutiérrez, B.; Domingo-Calap, P. Phage therapy in gastrointestinal diseases. Microorganisms, 2020, 8(9), 1420.
[http://dx.doi.org/10.3390/microorganisms8091420] [PMID: 32947790]
[40]
Suh, G.A. Phage therapy for alcohol-associated hepatitis. Hepatology, 2021, 73(4), 1609-1610.
[http://dx.doi.org/10.1002/hep.31623] [PMID: 33226160]
[41]
Sarkesh, A.; Daei Sorkhabi, A.; Sheykhsaran, E.; Alinezhad, F.; Mohammadzadeh, N.; Hemmat, N.; Bannazadeh Baghi, H. Extrapulmonary clinical manifestations in COVID-19 patients. Am. J. Trop. Med. Hyg., 2020, 103(5), 1783-1796.
[http://dx.doi.org/10.4269/ajtmh.20-0986] [PMID: 32940201]
[42]
Rezai, M.S. Phage therapy to prevent nosocomial bacterial pneumo-nia in patients with severe COVID-19 in 2020. Am. J. Biomed. Sci. Res., 2020, 10(6), 513-514.
[http://dx.doi.org/10.34297/AJBSR.2020.10.001563]
[43]
Pinto, T.S.; de Oliveira, C.P.; da Costa, A.C.V.; Lima, C.O.; Barreto, H.M.; de Souza, E.L.; Siqueira-Junior, J.P. Evidence for production of a bacteriocin-like substance by Staphylococcus pseudintermedius, inhibitory to Staphylococcus aureus from foods. Nat. Prod. Res., 2013, 27(12), 1098-1101.
[http://dx.doi.org/10.1080/14786419.2012.696260] [PMID: 22703567]
[44]
Triana-Vidal, L.E.; Castro, M.S.; Pires Júnior, O.R.; Álvares, A.C.M.; de Freitas, S.M.; Fontes, W; Vargas, J.A.G.; Zúñiga-Baos, J.A.; Correia Batista, I.F.; Grellier, P.; Charneau, S. ْDendropsophin 1, a novel antimicrobial peptide from the skin secretion of the endemic Colombian frog Dendropsophus columbianus. Nat. Prod. Res., 2018, 32(12), 1383-1389.
[http://dx.doi.org/10.1080/14786419.2017.1346646] [PMID: 28659061]
[45]
Elhalag, K.; Nasr-Eldin, M.; Hussien, A.; Ahmad, A. Potential use of soilborne lytic Podoviridae phage as a biocontrol agent against Ralstonia solanacearum. J. Basic Microbiol., 2018, 58(8), 658-669.
[http://dx.doi.org/10.1002/jobm.201800039] [PMID: 29938804]
[46]
Gašić, K.; Kuzmanović, N.; Ivanović, M.; Prokić, A.; Šević, M.; Obradović, A. Complete genome of the Xanthomonas euvesicatoria specific bacteriophage KΦ1, its survival and potential in control of pepper bacterial spot. Front. Microbiol., 2018, 9, 2021.
[http://dx.doi.org/10.3389/fmicb.2018.02021] [PMID: 30210484]
[47]
Svircev, A. Control of the fire blight pathogen with bacteriophages. Mitt. Biol. Bundesanet., 2006, (408), 259-261. M: tt. Bi. Ol. Bundesanet
[48]
Kutter, E.; Sulakvelidze, A. Bacteriophages: Biology and applications; Crc press: Florida, 2004.
[http://dx.doi.org/10.1201/9780203491751]
[49]
Balogh, B. Strategies for improving the efficacy of bacteriophages for controlling bacterial spot of tomato; University of Florida Gainesville: FL, USA, 2002.
[50]
Koskella, B.; Brockhurst, M.A. Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev., 2014, 38(5), 916-931.
[http://dx.doi.org/10.1111/1574-6976.12072] [PMID: 24617569]
[51]
Tanaka, H. Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum M4S and its bacteriophage. Ann. Phytopathol. Soc. Jpn., 1996, 62, 141-146.
[52]
Greer, G.G. Bacteriophage control of foodborne bacteriat. J. Food Prot., 2005, 68(5), 1102-1111.
[http://dx.doi.org/10.4315/0362-028X-68.5.1102] [PMID: 15895751]
[53]
Balogh, B.; Canteros, B.I.; Stall, R.E.; Jones, J.B. Control of citrus canker and citrus bacterial spot with bacteriophages. Plant Dis., 2008, 92(7), 1048-1052.
[http://dx.doi.org/10.1094/PDIS-92-7-1048] [PMID: 30769518]
[54]
Fujiwara, A.; Fujisawa, M.; Hamasaki, R.; Kawasaki, T.; Fujie, M.; Yamada, T. Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl. Environ. Microbiol., 2011, 77(12), 4155-4162.
[http://dx.doi.org/10.1128/AEM.02847-10] [PMID: 21498752]
[55]
Bae, J.Y.; Wu, J.; Lee, H.J.; Jo, E.J.; Murugaiyan, S.; Chung, E.; Lee, S.W. Biocontrol potential of a lytic bacteriophage PE204 against bacterial wilt of tomato. J. Microbiol. Biotechnol., 2012, 22(12), 1613-1620.
[http://dx.doi.org/10.4014/jmb.1208.08072] [PMID: 23221522]
[56]
Czajkowski, R.; Ozymko, Z.; Lojkowska, E. Isolation and characterization of novel soilborne lytic bacteriophages infecting Dickeya spp. biovar 3 (‘ D. solani ’). Plant Pathol., 2014, 63(4), 758-772.
[http://dx.doi.org/10.1111/ppa.12157]
[57]
Kim, M.H.; Park, S-W.; Kim, Y-K. Bacteriophages of Pseudomonas tolaasii for the biological control of brown blotch disease. J. Korean Soc. Appl. Biol. Chem., 2011, 54(1), 99-104.
[http://dx.doi.org/10.3839/jksabc.2011.014]
[58]
Das, M.; Bhowmick, T.S.; Ahern, S.J.; Young, R.; Gonzalez, C.F. Control of Pierce’s disease by phage. PLoS One, 2015, 10(6), e0128902.
[http://dx.doi.org/10.1371/journal.pone.0128902] [PMID: 26107261]
[59]
a) Lim, J.A.; Jee, S.; Lee, D.H.; Roh, E.; Jung, K.; Oh, C.; Heu, S. Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1. J. Microbiol. Biotechnol., 2013, 23(8), 1147-1153.
[http://dx.doi.org/10.4014/jmb.1304.04001] [PMID: 23727798];
b) Wei, C.; Liu, J.; Maina, A.N.; Mwaura, F.B.; Yu, J.; Yan, C.; Zhang, R.; Wei, H. Developing a bacteriophage cocktail for biocontrol of potato bacterial wilt. Virol. Sin., 2017, 32(6), 476-484.
[http://dx.doi.org/10.1007/s12250-017-3987-6] [PMID: 29168148]
[60]
Goodridge, L.D. Bacteriophage biocontrol of plant pathogens: Fact or fiction? Trends Biotechnol., 2004, 22(8), 384-385.
[http://dx.doi.org/10.1016/j.tibtech.2004.05.007] [PMID: 15283979]
[61]
Gill, J.; Abedon, S.T. Bacteriophage ecology and plants APSnet Feature, 2003, 1-17.
[http://dx.doi.org/10.1094/APSnetFeature-2003-1103]
[62]
Wang, X.; Wei, Z.; Yang, K.; Wang, J.; Jousset, A.; Xu, Y.; Shen, Q.; Friman, V.P. Phage combination therapies for bacterial wilt disease in tomato. Nat. Biotechnol., 2019, 37(12), 1513-1520.
[http://dx.doi.org/10.1038/s41587-019-0328-3] [PMID: 31792408]
[63]
Iriarte, F.B.; Balogh, B.; Momol, M.T.; Smith, L.M.; Wilson, M.; Jones, J.B. Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl. Environ. Microbiol., 2007, 73(6), 1704-1711.
[http://dx.doi.org/10.1128/AEM.02118-06] [PMID: 17259361]
[64]
Ackermann, H.W. 5500 Phages examined in the electron microscope. Arch. Virol., 2007, 152(2), 227-243.
[http://dx.doi.org/10.1007/s00705-006-0849-1] [PMID: 17051420]
[65]
Adriaenssens, E.M.; Van Vaerenbergh, J.; Vandenheuvel, D.; Dunon, V.; Ceyssens, P.J.; De Proft, M.; Kropinski, A.M.; Noben, J.P.; Maes, M.; Lavigne, R. T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by ‘Dickeya solani’. PLoS One, 2012, 7(3), e33227.
[http://dx.doi.org/10.1371/journal.pone.0033227] [PMID: 22413005]
[66]
Balogh, B.; Jones, J.B.; Momol, M.T.; Olson, S.M.; Obradovic, A.; King, P.; Jackson, L.E. Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis., 2003, 87(8), 949-954.
[http://dx.doi.org/10.1094/PDIS.2003.87.8.949] [PMID: 30812801]
[67]
Tewfike, T.; Desoky, S.M. Biocontrol of Xanthomonas axonopodis causing bacterial spot by application of formulated phage. Ann. Agric. Sci. Moshtohor, 2015, 53(4), 615-624.
[http://dx.doi.org/10.21608/assjm.2015.109939]
[68]
Örmälä A.M.; Jalasvuori, M. Phage therapy. Bacteriophage, 2013, 3(1), e24219.
[http://dx.doi.org/10.4161/bact.24219] [PMID: 23819105]
[69]
Behle, R.W.; Tamez-guerra, P.; Mcguire, M.R. Field activity and storage stability of Anagrapha falcifera nucleopolyhedrovirus (AfMNPV) in spray-dried lignin-based formulations. J. Econ. Entomol., 2003, 96(4), 1066-1075.
[http://dx.doi.org/10.1603/0022-0493-96.4.1066] [PMID: 14503576]
[70]
Bergamin, F.A.; Kimati, H.; Matyis, J.C.; Silva, D.M. Studies on a bacteriophage isolated from Xanthomonas campestris. I. Isolation and morphology. Summa Phytopathol, 1980. Available from: https://agris.fao.org/agris-search/search.do?recordID=US201302174469
[71]
Schnabel, E.L.; Fernando, W.G.D.; Meyer, M.P.; Jones, A.L.; Jackson, L.E. Bacteriophage of Erwinia amylovora and their potential for biocontrol. In: VIII International Workshop on Fire Blight 489; , 1999; pp. 649-654.
[72]
Flaherty, J.E.; Harbaugh, B.K.; Jones, J.B.; Somodi, G.C.; Jackson, L.E. H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium. HortScience, 2001, 36(1), 98-100.
[http://dx.doi.org/10.21273/HORTSCI.36.1.98]
[73]
Louws, F.J.; Wilson, M.; Campbell, H.L.; Cuppels, D.A.; Jones, J.B.; Shoemaker, P.B.; Sahin, F.; Miller, S.A. Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Dis., 2001, 85(5), 481-488.
[http://dx.doi.org/10.1094/PDIS.2001.85.5.481] [PMID: 30823123]
[74]
Moradpour, Z.; Sepehrizadeh, Z.; Rahbarizadeh, F.; Ghasemian, A.; Yazdi, M.T.; Shahverdi, A.R. Genetically engineered phage harbouring the lethal catabolite gene activator protein gene with an inducer-independent promoter for biocontrol of Escherichia coli. FEMS Microbiol. Lett., 2009, 296(1), 67-71.
[http://dx.doi.org/10.1111/j.1574-6968.2009.01620.x] [PMID: 19459966]
[75]
Haq, I.U.; Chaudhry, W.N.; Akhtar, M.N.; Andleeb, S.; Qadri, I. Bacteriophages and their implications on future biotechnology: A review. Virol. J., 2012, 9(1), 9.
[http://dx.doi.org/10.1186/1743-422X-9-9] [PMID: 22234269]
[76]
Ibrahim, Y.E.; Saleh, A.A.; Al-Saleh, M.A. Management of asiatic citrus canker under field conditions in Saudi Arabia using bacteriophages and acibenzolar-S-methyl. Plant Dis., 2017, 101(5), 761-765.
[http://dx.doi.org/10.1094/PDIS-08-16-1213-RE] [PMID: 30678580]
[77]
Chae, J.C.; Hung, N.B.; Yu, S.M.; Lee, H.K.; Lee, Y.H. Diversity of bacteriophages infecting Xanthomonas oryzae pv. oryzae in paddy fields and its potential to control bacterial leaf blight of rice. J. Microbiol. Biotechnol., 2014, 24(6), 740-747.
[http://dx.doi.org/10.4014/jmb.1402.02013] [PMID: 24651644]
[78]
Williams, S.; Mortimer, A.; Manchester, L. Ecology of soil bacteriophages In: Phage Ecology; Springer; Chem, 1987; pp. 157-179.
[79]
Obradovic, A.; Jones, J.B.; Momol, M.T.; Balogh, B.; Olson, S.M. Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Dis., 2004, 88(7), 736-740.
[http://dx.doi.org/10.1094/PDIS.2004.88.7.736] [PMID: 30812485]
[80]
Qui, D. Treatment of tomato seed with harpin enhances germination and growth and induces resistance to Ralstonia solanacearum. Phytopathology, 1997, 87, S80.
[81]
Kebriaei, R.; Lev, K.; Morrisette, T.; Stamper, K.C.; Abdul-Mutakabbir, J.C.; Lehman, S.M.; Morales, S.; Rybak, M.J. Bacteriophage-antibiotic combination strategy: An alternative against methicillin-resistant phenotypes of Staphylococcus aureus. Antimicrob. Agents Chemother., 2020, 64(7), e00461-20.
[http://dx.doi.org/10.1128/AAC.00461-20] [PMID: 32393490]
[82]
Petsong, K.; Vongkamjan, K.; Ahn, J. Synergistic effect of bacteriophage and antibiotic against antibiotic-resistant Salmonella typhimurium. J. Food Hyg. Safety, 2020, 35(2), 189-194.
[http://dx.doi.org/10.13103/JFHS.2020.35.2.189]
[83]
Luscher, A.; Simonin, J.; Falconnet, L.; Valot, B.; Hocquet, D.; Chanson, M.; Resch, G.; Köhler, T.; van Delden, C. Combined bacteriophage and antibiotic treatment prevents Pseudomonas aeruginosa infection of wild type and cftr- epithelial cells. Front. Microbiol., 2020, 11, 1947.
[http://dx.doi.org/10.3389/fmicb.2020.01947] [PMID: 32983005]
[84]
Yekani, M. Antibiotic resistance patterns of biofilm-forming Pseudomonas aeruginosa isolates from mechanically ventilated patients. Int. J., 2017, 5, 85.
[85]
Wang, L.; Tkhilaishvili, T.; Bernal Andres, B.; Trampuz, A.; Gonzalez Moreno, M. Bacteriophage–antibiotic combinations against ciprofloxacin/ceftriaxone-resistant Escherichia coli in vitro and in an experimental Galleria mellonella model. Int. J. Antimicrob. Agents, 2020, 56(6), 106200.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106200] [PMID: 33075514]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy