Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Mechanistic Features and Therapeutic Implications Related to the MiRNAs and Wnt Signaling Regulatory in Breast Cancer

Author(s): Marjan Talebi, Tahereh Farkhondeh, Mohammad Sadra Harifi-Mood, Mohsen Talebi and Saeed Samarghandian*

Volume 16, Issue 5, 2023

Published on: 30 December, 2022

Article ID: e171022210080 Pages: 12

DOI: 10.2174/1874467216666221017122105

Price: $65

Abstract

Breast cancer (BC) is accountable for a large number of female-related malignancies that lead to lethality worldwide. Various factors are considered in the occurrence of BC, including the deregulation of cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT). Genetic factors such as microRNAs (miRs) are crucially responsible for BC progression and aggressiveness.

Hence, the association of miRs and EMT regulators (e.g., Wnt signaling pathway) is of importance. In the present review, we accurately discussed this interplay (interaction between Wnt and miRs) concerning cell - invasion, -migration, -differentiation, -chemoresistance, survival, and-proliferation, and BC prognosis. The putative therapeutic agents, multidrug resistance (MDR) evade, and possible molecular targets are described as well.

Graphical Abstract

[1]
Talebi, M.; Talebi, M.; Farkhondeh, T.; Simal-Gandara, J.; Kopustinskiene, D.M.; Bernatoniene, J.; Samarghandian, S. Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin. Cancer Cell Int., 2021, 21(1), 214.
[http://dx.doi.org/10.1186/s12935-021-01906-y] [PMID: 33858433]
[2]
Talebi, M. Talebi, M.; Farkhondeh, T.; Mishra, G.; İlgün, S.; Samarghandian, S. New insights into the role of the Nrf2 signaling pathway in green tea catechin applications. Phytother. Res., 2021, 36(6), 3078-3112.
[http://dx.doi.org/10.1002/ptr.7033] [PMID: 33569875]
[3]
Biganzoli, L.; Battisti, N.M.L.; Wildiers, H.; McCartney, A.; Colloca, G.; Kunkler, I.H.; Cardoso, M.J.; Cheung, K.L.; de Glas, N.A.; Trimboli, R.M.; Korc-Grodzicki, B.; Soto-Perez-de-Celis, E.; Ponti, A.; Tsang, J.; Marotti, L.; Benn, K.; Aapro, M.S.; Brain, E.G.C. Updated recommendations regarding the management of older patients with breast cancer: a joint paper from the European Society of Breast Cancer Specialists (EUSOMA) and the International Society of Geriatric Oncology (SIOG). Lancet Oncol., 2021, 22(7), e327-e340.
[http://dx.doi.org/10.1016/S1470-2045(20)30741-5] [PMID: 34000244]
[4]
Talebi, M.; Talebi, M.; Farkhondeh, T.; Samarghandian, S. Molecular mechanism-based therapeutic properties of honey. Biomed. Pharmacother., 2020, 130, 110590.
[http://dx.doi.org/10.1016/j.biopha.2020.110590] [PMID: 32768885]
[5]
Ford, N.A.; Dunlap, S.M.; Wheatley, K.E.; Hursting, S.D. Obesity, independent of p53 gene dosage, promotes mammary tumor progression and upregulates the p53 regulator microRNA-504. PLoS One, 2013, 8(6), e68089.
[http://dx.doi.org/10.1371/journal.pone.0068089] [PMID: 23840816]
[6]
Klopotowska, D.; Matuszyk, J.; Wietrzyk, J. Steroid hormone calcitriol and its analog tacalcitol inhibit miR-125b expression in a human breast cancer MCF-7 cell line. Steroids, 2019, 141, 70-75.
[http://dx.doi.org/10.1016/j.steroids.2018.11.014] [PMID: 30503385]
[7]
Kurozumi, S.; Yamaguchi, Y.; Kurosumi, M.; Ohira, M.; Matsumoto, H.; Horiguchi, J. Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J. Hum. Genet., 2017, 62(1), 15-24.
[http://dx.doi.org/10.1038/jhg.2016.89] [PMID: 27439682]
[8]
Loh, H.Y.; Norman, B.P.; Lai, K.S.; Rahman, N.M.A.N.A.; Alitheen, N.B.M.; Osman, M.A. The regulatory role of MicroRNAs in Breast Cancer. Int. J. Mol. Sci., 2019, 20(19), 4940.
[http://dx.doi.org/10.3390/ijms20194940] [PMID: 31590453]
[9]
Martin-Orozco, E.; Sanchez-Fernandez, A.; Ortiz-Parra, I.; Ayala-San Nicolas, M. WNT signaling in tumors: The way to evade drugs and immunity. Front. Immunol., 2019, 10, 2854.
[http://dx.doi.org/10.3389/fimmu.2019.02854] [PMID: 31921125]
[10]
Farkhondeh, T.; Amirabadizadeh, A.; Aramjoo, H.; Llorens, S.; Roshanravan, B.; Saeedi, F.; Talebi, M.; Shakibaei, M.; Samarghandian, S. Impact of metformin on cancer biomarkers in non-diabetic cancer patients: A systematic review and meta-analysis of clinical trials. Curr. Oncol., 2021, 28(2), 1412-1423.
[http://dx.doi.org/10.3390/curroncol28020134] [PMID: 33917520]
[11]
Talebi, M.; Talebi, M.; Farkhondeh, T.; Samarghandian, S. Biological and therapeutic activities of thymoquinone: Focus on the Nrf2 signaling pathway. Phytother. Res., 2021, 35(4), 1739-1753.
[http://dx.doi.org/10.1002/ptr.6905] [PMID: 33051921]
[12]
Liu, L.; Zhang, Y.; Lu, J. The roles of long noncoding RNAs in breast cancer metastasis. Cell Death Dis., 2020, 11(9), 749.
[http://dx.doi.org/10.1038/s41419-020-02954-4] [PMID: 32929060]
[13]
Gong, C.; Qu, S.; Lv, X.B.; Liu, B.; Tan, W.; Nie, Y.; Su, F.; Liu, Q.; Yao, H.; Song, E. BRMS1L suppresses breast cancer metastasis by inducing epigenetic silence of FZD10. Nat. Commun., 2014, 5(1), 5406.
[http://dx.doi.org/10.1038/ncomms6406] [PMID: 25406648]
[14]
Liu, S.J.; Dang, H.X.; Lim, D.A.; Feng, F.Y.; Maher, C.A. Long noncoding RNAs in cancer metastasis. Nat. Rev. Cancer, 2021, 21(7), 446-460.
[http://dx.doi.org/10.1038/s41568-021-00353-1] [PMID: 33953369]
[15]
Pe, M.; Dorme, L.; Coens, C.; Basch, E.; Calvert, M.; Campbell, A.; Cleeland, C.; Cocks, K.; Collette, L.; Dirven, L.; Dueck, A.C.; Devlin, N.; Flechtner, H.H.; Gotay, C.; Griebsch, I.; Groenvold, M.; King, M.; Koller, M.; Malone, D.C.; Martinelli, F.; Mitchell, S.A.; Musoro, J.Z.; Oliver, K.; Piault-Louis, E.; Piccart, M.; Pimentel, F.L.; Quinten, C.; Reijneveld, J.C.; Sloan, J.; Velikova, G.; Bottomley, A. Statistical analysis of patient-reported outcome data in randomised controlled trials of locally advanced and metastatic breast cancer: a systematic review. Lancet Oncol., 2018, 19(9), e459-e469.
[http://dx.doi.org/10.1016/S1470-2045(18)30418-2] [PMID: 30191850]
[16]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[17]
Cleator, S.; Heller, W.; Coombes, R.C. Triple-negative breast cancer: therapeutic options. Lancet Oncol., 2007, 8(3), 235-244.
[http://dx.doi.org/10.1016/S1470-2045(07)70074-8] [PMID: 17329194]
[18]
Dittmer, J. Breast cancer stem cells: Features, key drivers and treatment options. Semin. Cancer Biol., 2018, 53, 59-74.
[http://dx.doi.org/10.1016/j.semcancer.2018.07.007] [PMID: 30059727]
[19]
Furuya, K.; Sasaki, A.; Tsunoda, Y.; Tsuji, M.; Udaka, Y.; Oyamada, H.; Tsuchiya, H.; Oguchi, K. Eribulin upregulates miR-195 expression and downregulates Wnt3a expression in non-basal-like type of triple-negative breast cancer cell MDA-MB-231. Hum. Cell, 2016, 29(2), 76-82.
[http://dx.doi.org/10.1007/s13577-015-0126-2] [PMID: 26573286]
[20]
Garmpis, N.; Damaskos, C.; Garmpi, A.; Nikolettos, K.; Dimitroulis, D.; Diamantis, E.; Farmaki, P.; Patsouras, A.; Voutyritsa, E.; Syllaios, A.; Zografos, C.G.; Antoniou, E.A.; Nikolettos, N.; Kostakis, A.; Kontzoglou, K.; Schizas, D.; Nonni, A. Molecular classification and future therapeutic challenges of triple-negative breast cancer. In Vivo, 2020, 34(4), 1715-1727.
[http://dx.doi.org/10.21873/invivo.11965] [PMID: 32606140]
[21]
Jiang, S.; Zhang, M.; Zhang, Y.; Zhou, W.; Zhu, T.; Ruan, Q.; Chen, H.; Fang, J.; Zhou, F.; Sun, J.; Yang, X. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun. Signal., 2019, 17(1), 109.
[http://dx.doi.org/10.1186/s12964-019-0419-2] [PMID: 31462314]
[22]
Medina, M.A.; Oza, G.; Sharma, A.; Arriaga, L.G.; Hernández Hernández, J.M.; Rotello, V.M.; Ramirez, J.T. Triple-negative breast cancer: A review of conventional and advanced therapeutic strategies. Int. J. Environ. Res. Public Health, 2020, 17(6), 2078.
[http://dx.doi.org/10.3390/ijerph17062078] [PMID: 32245065]
[23]
Chen, Z.; Pan, T.; Jiang, D.; Jin, L.; Geng, Y.; Feng, X.; Shen, A.; Zhang, L. The lncRNA-GAS5/miR-221-3p/DKK2 axis modulates ABCB1-Mediated adriamycin resistance of breast cancer via the Wnt/β-Catenin signaling pathway. Mol. Ther. Nucleic Acids, 2020, 19, 1434-1448.
[http://dx.doi.org/10.1016/j.omtn.2020.01.030] [PMID: 32160712]
[24]
Samarghandian, S.; Hadjzadeh, M.A.R.; Afshari, J.T.; Hosseini, M. Antiproliferative activity and induction of apoptotic by ethanolic extract of Alpinia galanga rhizhome in human breast carcinoma cell line. BMC Complement. Altern. Med., 2014, 14(1), 192-192.
[http://dx.doi.org/10.1186/1472-6882-14-192] [PMID: 24935101]
[25]
Esteva, F.J.; Hubbard-Lucey, V.M.; Tang, J.; Pusztai, L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol., 2019, 20(3), e175-e186.
[http://dx.doi.org/10.1016/S1470-2045(19)30026-9] [PMID: 30842061]
[26]
Makhoul, I.; Montgomery, C.O.; Gaddy, D.; Suva, L.J. The best of both worlds — managing the cancer, saving the bone. Nat. Rev. Endocrinol., 2016, 12(1), 29-42.
[http://dx.doi.org/10.1038/nrendo.2015.185] [PMID: 26503674]
[27]
Abolghasemi, M.; Tehrani, S.S.; Yousefi, T.; Karimian, A.; Mahmoodpoor, A.; Ghamari, A.; Jadidi-Niaragh, F.; Yousefi, M.; Kafil, H.S.; Bastami, M.; Edalati, M.; Eyvazi, S.; Naghizadeh, M.; Targhazeh, N.; Yousefi, B.; Safa, A.; Majidinia, M.; Rameshknia, V. MicroRNAs in breast cancer: Roles, functions, and mechanism of actions. J. Cell. Physiol., 2020, 235(6), 5008-5029.
[http://dx.doi.org/10.1002/jcp.29396] [PMID: 31724738]
[28]
Niu, T.; Zhang, W.; Xiao, W. MicroRNA regulation of cancer stem cells in the pathogenesis of breast cancer. Cancer Cell Int., 2021, 21(1), 31.
[http://dx.doi.org/10.1186/s12935-020-01716-8] [PMID: 33413418]
[29]
Jain, P.; Alahari, S.K. Breast cancer stem cells: A new challenge for breast cancer treatment. Front. Biosci., 2011, 16(1), 1824-1832.
[http://dx.doi.org/10.2741/3824] [PMID: 21196267]
[30]
Leal, J.A.; Lleonart, M.E. MicroRNAs and cancer stem cells: Therapeutic approaches and future perspectives. Cancer Lett., 2013, 338(1), 174-183.
[http://dx.doi.org/10.1016/j.canlet.2012.04.020] [PMID: 22554710]
[31]
Guo, W.; Ruth, L.; Gottesman, D.S. Concise review: breast cancer stem cells: regulatory networks, stem cell niches, and disease relevance. Stem Cells Transl. Med., 2014, 3(8), 942-948.
[http://dx.doi.org/10.5966/sctm.2014-0020] [PMID: 24904174]
[32]
Ghasemi, F.; Sarabi, P.Z.; Athari, S.S.; Esmaeilzadeh, A. Therapeutics strategies against cancer stem cell in breast cancer. Int. J. Biochem. Cell Biol., 2019, 109, 76-81.
[http://dx.doi.org/10.1016/j.biocel.2019.01.015] [PMID: 30772480]
[33]
Roshanravan, B.; Yousefizadeh, S.; Apaydin Yildirim, B.; Farkhondeh, T.; Amirabadizadeh, A.; Ashrafizadeh, M.; Talebi, M.; Samarghandian, S. The effects of Berberis vulgaris L. and Berberis aristata L. in metabolic syndrome patients: a systematic and meta-analysis study. Arch. Physiol. Biochem., 2020, 1-12.
[http://dx.doi.org/10.1080/13813455.2020.1828482] [PMID: 33040642]
[34]
Kim, Y.S.; Farrar, W.; Colburn, N.H.; Milner, J.A. Cancer stem cells: potential target for bioactive food components. J. Nutr. Biochem., 2012, 23(7), 691-698.
[http://dx.doi.org/10.1016/j.jnutbio.2012.03.002] [PMID: 22704055]
[35]
Markowska, J.; Kojs, Z.; Twardawa, D. Cancer stem cells in targeted therapy. Curr. Gyneco. Oncol., 2018, 16(2), 96-100.
[http://dx.doi.org/10.15557/CGO.2018.0012]
[36]
Luo, M.; Clouthier, S.G.; Deol, Y.; Liu, S.; Nagrath, S.; Azizi, E.; Wicha, M.S. Breast cancer stem cells: current advances and clinical implications. Methods Mol. Biol., 2015, 1293, 1-49.
[http://dx.doi.org/10.1007/978-1-4939-2519-3_1] [PMID: 26040679]
[37]
Creighton, C.; Gibbons, D.L.; Kurie, J.M. The role of epithelial–mesenchymal transition programming in invasion and metastasis: a clinical perspective. Cancer Manag. Res., 2013, 5(1), 187-195.
[http://dx.doi.org/10.2147/CMAR.S35171] [PMID: 23986650]
[38]
Kotiyal, S.; Bhattacharya, S. Breast cancer stem cells, EMT and therapeutic targets. Biochem. Biophys. Res. Commun., 2014, 453(1), 112-116.
[http://dx.doi.org/10.1016/j.bbrc.2014.09.069] [PMID: 25261721]
[39]
Lu, W.; Kang, Y. Cell lineage determinants as regulators of breast cancer metastasis. Cancer Metastasis Rev., 2016, 35(4), 631-644.
[http://dx.doi.org/10.1007/s10555-016-9644-y] [PMID: 27866304]
[40]
Nusse, R.; Varmus, H.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell, 1982, 31(1), 99-109.
[http://dx.doi.org/10.1016/0092-8674(82)90409-3] [PMID: 6297757]
[41]
Farooqi, A.A.; Tang, J.Y.; Li, R.N.; Ismail, M.; Chang, Y.T.; Shu, C.W.; Yuan, S.S.F.; Liu, J.R.; Mansoor, Q.; Huang, C.J.; Chang, H.W. Epigenetic mechanisms in cancer: push and pull between kneaded erasers and fate writers. Int. J. Nanomed, 2015, 10, 3183-3191.
[PMID: 25995628]
[42]
Ashrafizadeh, M.; Ahmadi, Z.; Farkhondeh, T.; Samarghandian, S. Resveratrol targeting the Wnt signaling pathway: A focus on therapeutic activities. J. Cell. Physiol., 2020, 235(5), 4135-4145.
[http://dx.doi.org/10.1002/jcp.29327] [PMID: 31637721]
[43]
Ashrafizadeh, M.; Rafiei, H.; Mohammadinejad, R.; Farkhondeh, T.; Samarghandian, S. Wnt-regulating microRNAs role in gastric cancer malignancy. Life Sci., 2020, 250, 117547.
[http://dx.doi.org/10.1016/j.lfs.2020.117547] [PMID: 32173311]
[44]
Clevers, H.; Nusse, R. Wnt/β-catenin signaling and disease. Cell, 2012, 149(6), 1192-1205.
[http://dx.doi.org/10.1016/j.cell.2012.05.012] [PMID: 22682243]
[45]
Galluzzi, L.; Spranger, S.; Fuchs, E.; López-Soto, A. WNT signaling in cancer immunosurveillance. Trends Cell Biol., 2019, 29(1), 44-65.
[http://dx.doi.org/10.1016/j.tcb.2018.08.005] [PMID: 30220580]
[46]
Khawaled, S.; Nigita, G.; Distefano, R.; Oster, S.; Suh, S.S.; Smith, Y.; Khalaileh, A.; Peng, Y.; Croce, C.M.; Geiger, T.; Seewaldt, V.L.; Aqeilan, R.I. Pleiotropic tumor suppressor functions of WWOX antagonize metastasis. Signal Transduct. Target. Ther., 2020, 5(1), 43.
[http://dx.doi.org/10.1038/s41392-020-0136-8] [PMID: 32300104]
[47]
Farooqi, A.; Khalid, S.; Ahmad, A. Regulation of cell signaling pathways and miRNAs by resveratrol in different cancers. Int. J. Mol. Sci., 2018, 19(3), 652.
[http://dx.doi.org/10.3390/ijms19030652] [PMID: 29495357]
[48]
Farooqi, A.A.; Pinheiro, M.; Granja, A.; Farabegoli, F.; Reis, S.; Attar, R.; Sabitaliyevich, U.Y.; Xu, B.; Ahmad, A. EGCG mediated targeting of deregulated signaling pathways and non-coding rnas in different cancers: Focus on JAK/STAT, Wnt/β-catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL mediated signaling pathways. Cancers, 2020, 12(4), 951.
[http://dx.doi.org/10.3390/cancers12040951] [PMID: 32290543]
[49]
Aaliyari-Serej, Z.; Ebrahimi, A.; Barazvan, B.; Ebrahimi-Kalan, A.; Hajiasgharzadeh, K.; Kazemi, T.; Baradaran, B. Recent advances in targeting of breast cancer stem cells based on biological concepts and drug delivery system modification. Adv. Pharm. Bull., 2020, 10(3), 338-349.
[http://dx.doi.org/10.34172/apb.2020.042] [PMID: 32665892]
[50]
Cai, Y.; He, J.; Zhang, D. Long noncoding RNA CCAT2 promotes breast tumor growth by regulating the Wnt signaling pathway. OncoTargets Ther., 2015, 8, 2657-2664.
[PMID: 26442763]
[51]
Ghandadi, M.; Valadan, R.; Mohammadi, H.; Akhtari, J.; Khodashenas, S.; Ashari, S. Wnt-β-catenin signaling pathway, the achilles’ heels of cancer multidrug resistance. Curr. Pharm. Des., 2019, 25(39), 4192-4207.
[http://dx.doi.org/10.2174/1381612825666191112142943] [PMID: 31721699]
[52]
Bao, B.; Azmi, A.S.; Ali, S.; Ahmad, A.; Li, Y.; Banerjee, S.; Kong, D.; Sarkar, F.H. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochim. Biophys. Acta, 2012, 1826(2), 272-296.
[PMID: 22579961]
[53]
Pai, S.G.; Carneiro, B.A.; Mota, J.M.; Costa, R.; Leite, C.A.; Barroso-Sousa, R.; Kaplan, J.B.; Chae, Y.K.; Giles, F.J. Wnt/beta-catenin pathway: modulating anticancer immune response. J. Hematol. Oncol., 2017, 10(1), 101-101.
[http://dx.doi.org/10.1186/s13045-017-0471-6] [PMID: 28476164]
[54]
Patel, S.; Alam, A.; Pant, R.; Chattopadhyay, S. Wnt signaling and its significance within the tumor microenvironment: novel therapeutic insights. Front. Immunol., 2019, 10, 2872.
[http://dx.doi.org/10.3389/fimmu.2019.02872] [PMID: 31921137]
[55]
Liang, Q.; Li, W.; Zhao, Z.; Fu, Q. Advancement of Wnt signal pathway and the target of breast cancer. Open Life Sci., 2016, 11(1), 98-104.
[http://dx.doi.org/10.1515/biol-2016-0013]
[56]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[57]
Pourbagher-Shahri, A.M.; Farkhondeh, T.; Ashrafizadeh, M.; Talebi, M.; Samargahndian, S. Curcumin and cardiovascular diseases: Focus on cellular targets and cascades. Biomed. Pharmacother., 2021, 136, 111214.
[http://dx.doi.org/10.1016/j.biopha.2020.111214] [PMID: 33450488]
[58]
Escuin, D.; López-Vilaró, L.; Bell, O.; Mora, J.; Moral, A.; Pérez, J.I.; Arqueros, C.; Ramón y Cajal, T.; Lerma, E.; Barnadas, A. MicroRNA-1291 is associated with locoregional metastases in patients with early-stage breast cancer. Front. Genet., 2020, 11, 562114.
[http://dx.doi.org/10.3389/fgene.2020.562114] [PMID: 33343622]
[59]
Kim, N.H.; Kim, H.S.; Kim, N.G.; Lee, I.; Choi, H.S.; Li, X.Y.; Kang, S.E.; Cha, S.Y.; Ryu, J.K.; Na, J.M.; Park, C.; Kim, K.; Lee, S.; Gumbiner, B.M.; Yook, J.I.; Weiss, S.J. p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci. Signal., 2011, 4(197), ra71.
[http://dx.doi.org/10.1126/scisignal.2001744] [PMID: 22045851]
[60]
Ashrafizadeh, M.; Ang, H.L.; Moghadam, E.R.; Mohammadi, S.; Zarrin, V.; Hushmandi, K.; Samarghandian, S.; Zarrabi, A.; Najafi, M.; Mohammadinejad, R.; Kumar, A.P. MicroRNAs and their influence on the zeb family: Mechanistic aspects and therapeutic applications in cancer therapy. Biomolecules, 2020, 10(7), 1040.
[http://dx.doi.org/10.3390/biom10071040] [PMID: 32664703]
[61]
Do Canto, L.M.; Marian, C.; Willey, S.; Sidawy, M.; Da Cunha, P.A.; Rone, J.D.; Li, X.; Gusev, Y.; Haddad, B.R. MicroRNA analysis of breast ductal fluid in breast cancer patients. Int. J. Oncol., 2016, 48(5), 2071-2078.
[http://dx.doi.org/10.3892/ijo.2016.3435] [PMID: 26984519]
[62]
Dvinge, H.; Git, A.; Gräf, S.; Salmon-Divon, M.; Curtis, C.; Sottoriva, A.; Zhao, Y.; Hirst, M.; Armisen, J.; Miska, E.A.; Chin, S.F.; Provenzano, E.; Turashvili, G.; Green, A.; Ellis, I.; Aparicio, S.; Caldas, C. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature, 2013, 497(7449), 378-382.
[http://dx.doi.org/10.1038/nature12108] [PMID: 23644459]
[63]
Kang, H. MicroRNA-Mediated health-promoting effects of phytochemicals. Int. J. Mol. Sci., 2019, 20(10), 2535.
[http://dx.doi.org/10.3390/ijms20102535] [PMID: 31126043]
[64]
Chin, A.R.; Fong, M.Y.; Somlo, G.; Wu, J.; Swiderski, P.; Wu, X.; Wang, S.E. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res., 2016, 26(2), 217-228.
[http://dx.doi.org/10.1038/cr.2016.13] [PMID: 26794868]
[65]
Dai, J.; Su, Y.; Zhong, S.; Cong, L.; Liu, B.; Yang, J.; Tao, Y.; He, Z.; Chen, C.; Jiang, Y. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct. Target. Ther., 2020, 5(1), 145.
[http://dx.doi.org/10.1038/s41392-020-00261-0] [PMID: 32759948]
[66]
Talebi, M. Kakouri, E.; Talebi, M.; Tarantilis, P.A.; Farkhondeh, T.; İlgün, S.; Pourbagher-Shahri, A.M.; Samarghandian, S. Nutraceuticals-based therapeutic approach: recent advances to combat pathogenesis of Alzheimer’s disease. Expert Rev. Neurother., 2021, 21(6), 625-642.
[http://dx.doi.org/10.1080/14737175.2021.1923479] [PMID: 33910446]
[67]
Hayes, J.; Peruzzi, P.P.; Lawler, S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med., 2014, 20(8), 460-469.
[http://dx.doi.org/10.1016/j.molmed.2014.06.005] [PMID: 25027972]
[68]
Abd-Aziz, N.; Kamaruzman, N.I.; Poh, C.L. Development of micrornas as potential therapeutics against cancer. J. Oncol., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/8029721] [PMID: 32733559]
[69]
Aggarwal, V.; Priyanka, K.; Tuli, H.S. Emergence of circulating micrornas in breast cancer as diagnostic and therapeutic efficacy biomarkers. Mol. Diagn. Ther., 2020, 24(2), 153-173.
[http://dx.doi.org/10.1007/s40291-020-00447-w] [PMID: 32067191]
[70]
Biersack, B. Current state of phenolic and terpenoidal dietary factors and natural products as non-coding RNA/microRNA modulators for improved cancer therapy and prevention. Noncoding RNA Res., 2016, 1(1), 12-34.
[http://dx.doi.org/10.1016/j.ncrna.2016.07.001] [PMID: 30159408]
[71]
Bhat, S.A.; Majid, S.; Hassan, T. MicroRNAs and its emerging role as breast cancer diagnostic marker- A review. Adv. Biomar. Sci. Technol., 2019, 1, 1-8.
[http://dx.doi.org/10.1016/j.abst.2019.05.001]
[72]
Das, P.K.; Siddika, M.A.; Asha, S.Y.; Aktar, S.; Rakib, M.A.; Khanam, J.A.; Pillai, S.; Islam, F. MicroRNAs, a promising target for breast cancer stem cells. Mol. Diagn. Ther., 2020, 24(1), 69-83.
[http://dx.doi.org/10.1007/s40291-019-00439-5] [PMID: 31758333]
[73]
Ahmad, A. Pathways to breast cancer recurrence. ISRN Oncol., 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/290568] [PMID: 23533807]
[74]
Naorem, L.D.; Muthaiyan, M.; Venkatesan, A. Identification of dysregulated miRNAs in triple negative breast cancer: A meta-analysis approach. J. Cell. Physiol., 2019, 234(7), 11768-11779.
[http://dx.doi.org/10.1002/jcp.27839] [PMID: 30488443]
[75]
Talebi, M.; Zarshenas, M.; Yazdani, E.; Moein, M. Preparation and evaluation of possible antioxidant activities of Rose traditional tablet “[Qurs-e-Vard]” a selected Traditional Persian Medicine [TPM] formulation via various procedures. Curr. Drug Discov. Technol., 2020.
[PMID: 32990537]
[76]
Farkhondeh, T.; Llorens, S.; Pourbagher-Shahri, A.M.; Ashrafizadeh, M.; Talebi, M.; Shakibaei, M.; Samarghandian, S. An overview of the role of adipokines in cardiometabolic diseases. Molecules, 2020, 25(21), 5218.
[http://dx.doi.org/10.3390/molecules25215218] [PMID: 33182462]
[77]
Cervantes-Garduño, A.; Zampedri, C.; Espinosa, M.; Maldonado, V.; Melendez-Zajgla, J.; Ceballos-Cancino, G. MT4-MMP modulates the expression of miRNAs in breast cancer cells. Arch. Med. Res., 2018, 49(7), 471-478.
[http://dx.doi.org/10.1016/j.arcmed.2019.02.001] [PMID: 30792164]
[78]
Talebi, M.; Talebi, M.; Kakouri, E.; Farkhondeh, T.; Pourbagher-Shahri, A.M.; Tarantilis, P.A.; Samarghandian, S. Tantalizing role of p53 molecular pathways and its coherent medications in neurodegenerative diseases. Int. J. Biol. Macromol., 2021, 172, 93-103.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.042] [PMID: 33440210]
[79]
Dorling, L.; Carvalho, S.; Allen, J.; González-Neira, A.; Luccarini, C.; Wahlström, C.; Pooley, K.A.; Parsons, M.T.; Fortuno, C.; Wang, Q.; Bolla, M.K.; Dennis, J.; Keeman, R.; Alonso, M.R.; Álvarez, N.; Herraez, B.; Fernandez, V.; Núñez-Torres, R.; Osorio, A.; Valcich, J.; Li, M.; Törngren, T.; Harrington, P.A.; Baynes, C.; Conroy, D.M.; Decker, B.; Fachal, L.; Mavaddat, N.; Ahearn, T.; Aittomäki, K.; Antonenkova, N.N.; Arnold, N.; Arveux, P.; Ausems, M.G.E.M.; Auvinen, P.; Becher, H.; Beckmann, M.W.; Behrens, S.; Bermisheva, M. Białkowska, K.; Blomqvist, C.; Bogdanova, N.V.; Bogdanova-Markov, N.; Bojesen, S.E.; Bonanni, B.; Børresen-Dale, A.L.; Brauch, H.; Bremer, M.; Briceno, I.; Brüning, T.; Burwinkel, B.; Cameron, D.A.; Camp, N.J.; Campbell, A.; Carracedo, A.; Castelao, J.E.; Cessna, M.H.; Chanock, S.J.; Christiansen, H.; Collée, J.M.; Cordina-Duverger, E.; Cornelissen, S.; Czene, K.; Dörk, T.; Ekici, A.B.; Engel, C.; Eriksson, M.; Fasching, P.A.; Figueroa, J.; Flyger, H.; Försti, A.; Gabrielson, M.; Gago-Dominguez, M.; Georgoulias, V.; Gil, F.; Giles, G.G.; Glendon, G.; Garcia, E.B.G.; Alnæs, G.I.G.; Guénel, P.; Hadjisavvas, A.; Haeberle, L.; Hahnen, E.; Hall, P.; Hamann, U.; Harkness, E.F.; Hartikainen, J.M.; Hartman, M.; He, W.; Heemskerk-Gerritsen, B.A.M.; Hillemanns, P.; Hogervorst, F.B.L.; Hollestelle, A.; Ho, W.K.; Hooning, M.J.; Howell, A.; Humphreys, K.; Idris, F.; Jakubowska, A.; Jung, A.; Kapoor, P.M.; Kerin, M.J.; Khusnutdinova, E.; Kim, S.W.; Ko, Y.D.; Kosma, V.M.; Kristensen, V.N.; Kyriacou, K.; Lakeman, I.M.M.; Lee, J.W.; Lee, M.H.; Li, J.; Lindblom, A.; Lo, W.Y.; Loizidou, M.A.; Lophatananon, A.; Lubiński, J.; MacInnis, R.J.; Madsen, M.J.; Mannermaa, A.; Manoochehri, M.; Manoukian, S.; Margolin, S.; Martinez, M.E.; Maurer, T.; Mavroudis, D.; McLean, C.; Meindl, A.; Mensenkamp, A.R.; Michailidou, K.; Miller, N.; Mohd Taib, N.A.; Muir, K.; Mulligan, A.M.; Nevanlinna, H.; Newman, W.G.; Nordestgaard, B.G.; Ng, P.S.; Oosterwijk, J.C.; Park, S.K.; Park-Simon, T.W.; Perez, J.I.A.; Peterlongo, P.; Porteous, D.J.; Prajzendanc, K.; Prokofyeva, D.; Radice, P.; Rashid, M.U.; Rhenius, V.; Rookus, M.A.; Rüdiger, T.; Saloustros, E.; Sawyer, E.J.; Schmutzler, R.K.; Schneeweiss, A.; Schürmann, P.; Shah, M.; Sohn, C.; Southey, M.C.; Surowy, H.; Suvanto, M.; Thanasitthichai, S.; Tomlinson, I.; Torres, D.; Truong, T.; Tzardi, M.; Valova, Y.; van Asperen, C.J.; Van Dam, R.M.; van den Ouweland, A.M.W.; van der Kolk, L.E.; van Veen, E.M.; Wendt, C.; Williams, J.A.; Yang, X.R.; Yoon, S.Y.; Zamora, M.P.; Evans, D.G.; de la Hoya, M.; Simard, J.; Antoniou, A.C.; Borg, Å.; Andrulis, I.L.; Chang-Claude, J.; García-Closas, M.; Chenevix-Trench, G.; Milne, R.L.; Pharoah, P.D.P.; Schmidt, M.K.; Spurdle, A.B.; Vreeswijk, M.P.G.; Benitez, J.; Dunning, A.M.; Kvist, A.; Teo, S.H.; Devilee, P.; Easton, D.F. Breast cancer risk genes — association analysis in more than 113,000 women. N. Engl. J. Med., 2021, 384(5), 428-439.
[http://dx.doi.org/10.1056/NEJMoa1913948] [PMID: 33471991]
[80]
Liu, T.; Hu, K.; Zhao, Z.; Chen, G.; Ou, X.; Zhang, H.; Zhang, X.; Wei, X.; Wang, D.; Cui, M.; Liu, C. MicroRNA-1 down-regulates proliferation and migration of breast cancer stem cells by inhibiting the Wnt/β-catenin pathway. Oncotarget, 2015, 6(39), 41638-41649.
[http://dx.doi.org/10.18632/oncotarget.5873] [PMID: 26497855]
[81]
Akalay, I.; Tan, T.Z.; Kumar, P.; Janji, B.; Mami-Chouaib, F.; Charpy, C.; Vielh, P.; Larsen, A.K.; Thiery, J.P.; Sabbah, M.; Chouaib, S. Targeting WNT1-inducible signaling pathway protein 2 alters human breast cancer cell susceptibility to specific lysis through regulation of KLF-4 and miR-7 expression. Oncogene, 2015, 34(17), 2261-2271.
[http://dx.doi.org/10.1038/onc.2014.151] [PMID: 24931170]
[82]
Fan, M.; Sethuraman, A.; Brown, M.; Sun, W.; Pfeffer, L.M. Systematic analysis of metastasis-associated genes identifies miR-17-5p as a metastatic suppressor of basal-like breast cancer. Breast Cancer Res. Treat., 2014, 146(3), 487-502.
[http://dx.doi.org/10.1007/s10549-014-3040-5] [PMID: 25001613]
[83]
Nair, M.G.; Prabhu, J.S.; Korlimarla, A.; Rajarajan, S. P S, H.; Kaul, R.; Alexander, A.; Raghavan, R.; B S, S.; T S, S. miR-18a activates Wnt pathway in ER-positive breast cancer and is associated with poor prognosis. Cancer Med., 2020, 9(15), 5587-5597.
[http://dx.doi.org/10.1002/cam4.3183] [PMID: 32543775]
[84]
Du, Q.; Zhang, X.; Zhang, X.; Wei, M.; Xu, H.; Wang, S. Propofol inhibits proliferation and epithelial-mesenchymal transition of MCF-7 cells by suppressing miR-21 expression. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1265-1271.
[http://dx.doi.org/10.1080/21691401.2019.1594000] [PMID: 30942630]
[85]
Ma, F.; Li, W.; Liu, C.; Li, W.; Yu, H.; Lei, B.; Ren, Y.; Li, Z.; Pang, D.; Qian, C. MiR-23a promotes TGF-β1-induced EMT and tumor metastasis in breast cancer cells by directly targeting CDH1 and activating Wnt/β-catenin signaling. Oncotarget, 2017, 8(41), 69538-69550.
[http://dx.doi.org/10.18632/oncotarget.18422] [PMID: 29050223]
[86]
Kong, L.Y.; Xue, M.; Zhang, Q.C.; Su, C.F. In vivo and in vitro effects of microRNA-27a on proliferation, migration and invasion of breast cancer cells through targeting of SFRP1 gene via Wnt/β-catenin signaling pathway. Oncotarget, 2017, 8(9), 15507-15519.
[http://dx.doi.org/10.18632/oncotarget.14662] [PMID: 28099945]
[87]
Wu, R.; Zhao, B.; Ren, X.; Wu, S.; Liu, M.; Wang, Z.; Liu, W. MiR-27a-3p Targeting GSK3β promotes triple-negative breast cancer proliferation and migration through Wnt/β-Catenin PATHWAY. Cancer Manag. Res., 2020, 12, 6241-6249.
[http://dx.doi.org/10.2147/CMAR.S255419] [PMID: 32801869]
[88]
Miao, Y.; Wang, L.; Zhang, X.; Xing, R.G.; Zhou, W.W.; Liu, C.R.; Zhang, X.L.; Tian, L. miR-30a inhibits breast cancer progression through the Wnt/β-catenin pathway. Int. J. Clin. Exp. Pathol., 2019, 12(1), 241-250.
[PMID: 31933739]
[89]
García-Vazquez, R.; Ruiz-García, E.; Meneses García, A.; Astudillo-de la Vega, H.; Lara-Medina, F.; Alvarado-Miranda, A.; Maldonado-Martínez, H.; González-Barrios, J.A.; Campos-Parra, A.D.; Rodríguez Cuevas, S.; Marchat, L.A.; López-Camarillo, C. A microRNA signature associated with pathological complete response to novel neoadjuvant therapy regimen in triple-negative breast cancer. Tumour Biol., 2017, 39(6), 1-6.
[http://dx.doi.org/10.1177/1010428317702899] [PMID: 28621239]
[90]
Lv, C.; Li, F.; Li, X.; Tian, Y.; Zhang, Y.; Sheng, X.; Song, Y.; Meng, Q.; Yuan, S.; Luan, L.; Andl, T.; Feng, X.; Jiao, B.; Xu, M.; Plikus, M.V.; Dai, X.; Lengner, C.; Cui, W.; Ren, F.; Shuai, J.; Millar, S.E.; Yu, Z. MiR-31 promotes mammary stem cell expansion and breast tumorigenesis by suppressing Wnt signaling antagonists. Nat. Commun., 2017, 8(1), 1036.
[http://dx.doi.org/10.1038/s41467-017-01059-5] [PMID: 29051494]
[91]
Bonetti, P.; Climent, M.; Panebianco, F.; Tordonato, C.; Santoro, A.; Marzi, M.J.; Pelicci, P.G.; Ventura, A.; Nicassio, F. Dual role for miR-34a in the control of early progenitor proliferation and commitment in the mammary gland and in breast cancer. Oncogene, 2019, 38(3), 360-374.
[http://dx.doi.org/10.1038/s41388-018-0445-3] [PMID: 30093634]
[92]
Han, B.; Peng, X.; Cheng, D.; Zhu, Y.; Du, J.; Li, J.; Yu, X. Delphinidin suppresses breast carcinogenesis through the HOTAIR/micro RNA -34a axis. Cancer Sci., 2019, 110(10), 3089-3097.
[http://dx.doi.org/10.1111/cas.14133] [PMID: 31325197]
[93]
Si, W.; Li, Y.; Shao, H.; Hu, R.; Wang, W.; Zhang, K.; Yang, Q. MiR-34a inhibits breast cancer proliferation and progression by targeting wnt1 in wnt/β-catenin signaling pathway. Am. J. Med. Sci., 2016, 352(2), 191-199.
[http://dx.doi.org/10.1016/j.amjms.2016.05.002] [PMID: 27524218]
[94]
Gao, X.; Zhang, Y.; Zhang, Z.; Guo, S.; Chen, X.; Guo, Y. MicroRNA-96-5p represses breast cancer proliferation and invasion through Wnt/β-catenin signaling via targeting CTNND1. Sci. Rep., 2020, 10(1), 44.
[http://dx.doi.org/10.1038/s41598-019-56571-z] [PMID: 31913290]
[95]
Nie, J.; Jiang, H.C.; Zhou, Y.C.; Jiang, B.; He, W.J.; Wang, Y.F.; Dong, J. MiR-125b regulates the proliferation and metastasis of triple negative breast cancer cells via the Wnt/β-catenin pathway and EMT. Biosci. Biotechnol. Biochem., 2019, 83(6), 1062-1071.
[http://dx.doi.org/10.1080/09168451.2019.1584521] [PMID: 30950326]
[96]
Chen, Y.; Wu, N.; Liu, L.; Dong, H.; Liu, X. microRNA-128-3p overexpression inhibits breast cancer stem cell characteristics through suppression of Wnt signalling pathway by down-regulating NEK2. J. Cell. Mol. Med., 2020, 24(13), 7353-7369.
[http://dx.doi.org/10.1111/jcmm.15317] [PMID: 32558224]
[97]
Jiang, D.; Zhou, B.; Xiong, Y.; Cai, H. miR-135 regulated breast cancer proliferation and epithelial-mesenchymal transition acts by the Wnt/β-catenin signaling pathway. Int. J. Mol. Med., 2019, 43(4), 1623-1634.
[http://dx.doi.org/10.3892/ijmm.2019.4081] [PMID: 30720046]
[98]
Isobe, T.; Hisamori, S.; Hogan, D.J.; Zabala, M.; Hendrickson, D.G.; Dalerba, P.; Cai, S.; Scheeren, F.; Kuo, A.H.; Sikandar, S.S.; Lam, J.S.; Qian, D.; Dirbas, F.M.; Somlo, G.; Lao, K.; Brown, P.O.; Clarke, M.F.; Shimono, Y. miR-142 regulates the tumorigenicity of human breast cancer stem cells through the canonical WNT signaling pathway. eLife, 2014, 3, e01977.
[http://dx.doi.org/10.7554/eLife.01977] [PMID: 25406066]
[99]
García-Vázquez, R.; Marchat, L.A.; Ruíz-García, E.; Astudillo-de la Vega, H.; Meneses-García, A.; Arce-Salinas, C.; Bargallo-Rocha, E.; Carlos-Reyes, Á.; López-González, J.S.; Pérez-Plasencia, C.; Ramos-Payán, R.; Aguilar-Medina, M.; López-Camarillo, C. MicroRNA-143 is associated with pathological complete response and regulates multiple signaling proteins in breast cancer. Technol. Cancer Res. Treat., 2019, 18.
[http://dx.doi.org/10.1177/1533033819827309] [PMID: 30755102]
[100]
Gao, W.; Ge, S.; Sun, J. Ailanthone exerts anticancer effect by up-regulating miR-148a expression in MDA-MB-231 breast cancer cells and inhibiting proliferation, migration and invasion. Biomed. Pharmacother., 2019, 109, 1062-1069.
[http://dx.doi.org/10.1016/j.biopha.2018.10.114] [PMID: 30551356]
[101]
Jiang, Q.; He, M.; Ma, M.T.; Wu, H.Z.; Yu, Z.J.; Guan, S.; Jiang, L.Y.; Wang, Y.; Zheng, D.D.; Jin, F.; Wei, M.J. MicroRNA-148a inhibits breast cancer migration and invasion by directly targeting WNT-1. Oncol. Rep., 2016, 35(3), 1425-1432.
[http://dx.doi.org/10.3892/or.2015.4502] [PMID: 26707142]
[102]
Mu, J.; Zhu, D.; Shen, Z.; Ning, S.; Liu, Y.; Chen, J.; Li, Y.; Li, Z. The repressive effect of miR-148a on Wnt/β-catenin signaling involved in Glabridin-induced anti-angiogenesis in human breast cancer cells. BMC Cancer, 2017, 17(1), 307.
[http://dx.doi.org/10.1186/s12885-017-3298-1] [PMID: 28464803]
[103]
Jiang, J.; Cheng, X. Circular RNA circABCC4 acts as a ceRNA of miR-154-5p to improve cell viability, migration and invasion of breast cancer cells in vitro. Cell Cycle, 2020, 19(20), 2653-2661.
[http://dx.doi.org/10.1080/15384101.2020.1815147] [PMID: 33023375]
[104]
Ahmad, A.; Sarkar, S.H.; Bitar, B.; Ali, S.; Aboukameel, A.; Sethi, S.; Li, Y.; Bao, B.; Kong, D.; Banerjee, S.; Padhye, S.B.; Sarkar, F.H. Garcinol regulates EMT and Wnt signaling pathways in vitro and in vivo, leading to anticancer activity against breast cancer cells. Mol. Cancer Ther., 2012, 11(10), 2193-2201.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0232-T] [PMID: 22821148]
[105]
Liu, F.; Liu, Y.; Shen, J.; Zhang, G.; Han, J. MicroRNA-224 inhibits proliferation and migration of breast cancer cells by down-regulating Frizzled 5 expression. Oncotarget, 2016, 7(31), 49130-49142.
[http://dx.doi.org/10.18632/oncotarget.9734] [PMID: 27323393]
[106]
Ma, F.; Zhang, J.; Zhong, L.; Wang, L.; Liu, Y.; Wang, Y.; Peng, L.; Guo, B. Upregulated microRNA-301a in breast cancer promotes tumor metastasis by targeting PTEN and activating Wnt/β-catenin signaling. Gene, 2014, 535(2), 191-197.
[http://dx.doi.org/10.1016/j.gene.2013.11.035] [PMID: 24315818]
[107]
Mohammadi-Yeganeh, S.; Paryan, M.; Arefian, E.; Vasei, M.; Ghanbarian, H.; Mahdian, R.; Karimipoor, M.; Soleimani, M. MicroRNA-340 inhibits the migration, invasion, and metastasis of breast cancer cells by targeting Wnt pathway. Tumour Biol., 2016, 37(7), 8993-9000.
[http://dx.doi.org/10.1007/s13277-015-4513-9] [PMID: 26758430]
[108]
Cai, J.; Guan, H.; Fang, L.; Yang, Y.; Zhu, X.; Yuan, J.; Wu, J.; Li, M. MicroRNA-374a activates Wnt/β-catenin signaling to promote breast cancer metastasis. J. Clin. Invest., 2013, 123(2), 566-579.
[http://dx.doi.org/10.1172/JCI65871] [PMID: 23321667]
[109]
Mohammadi-Yeganeh, S.; Hosseini, V.; Paryan, M. Wnt pathway targeting reduces triple-negative breast cancer aggressiveness through miRNA regulation in vitro and in vivo. J. Cell. Physiol., 2019, 234(10), 18317-18328.
[http://dx.doi.org/10.1002/jcp.28465] [PMID: 30945294]
[110]
Song, L.; Liu, D.; Wang, B.; He, J.; Zhang, S.; Dai, Z.; Ma, X.; Wang, X. miR-494 suppresses the progression of breast cancer in vitro by targeting CXCR4 through the Wnt/β-catenin signaling pathway. Oncol. Rep., 2015, 34(1), 525-531.
[http://dx.doi.org/10.3892/or.2015.3965] [PMID: 25955111]
[111]
Mandal, S.; Gamit, N.; Varier, L.; Dharmarajan, A.; Warrier, S. Inhibition of breast cancer stem-like cells by a triterpenoid, ursolic acid, via activation of Wnt antagonist, sFRP4 and suppression of miRNA-499a-5p. Life Sci., 2021, 265, 118854.
[http://dx.doi.org/10.1016/j.lfs.2020.118854] [PMID: 33278391]
[112]
Chi, Y.; Wang, F.; Zhang, T.; Xu, H.; Zhang, Y.; Shan, Z.; Wu, S.; Fan, Q.; Sun, Y. miR-516a-3p inhibits breast cancer cell growth and EMT by blocking the Pygo2/Wnt signalling pathway. J. Cell. Mol. Med., 2019, 23(9), 6295-6307.
[http://dx.doi.org/10.1111/jcmm.14515] [PMID: 31273950]
[113]
He, S.Z.; Wang, Q. MicroRNA-548c-5p inhibits the proliferation of breast cancer cells through regulating Wnt/β-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(7), 3795-3804.
[PMID: 32329856]
[114]
Gao, J.; Yu, S.R.; Yuan, Y.; Zhang, L.L.; Lu, J.W.; Feng, J.F.; Hu, S.N. Retracted: MicroRNA-590-5p functions as a tumor suppressor in breast cancer conferring inhibitory effects on cell migration, invasion, and epithelial–mesenchymal transition by downregulating the Wnt–β-catenin signaling pathway. J. Cell. Physiol., 2019, 234(2), 1827-1841.
[http://dx.doi.org/10.1002/jcp.27056] [PMID: 30191949]
[115]
El Helou, R.; Pinna, G.; Cabaud, O.; Wicinski, J.; Bhajun, R.; Guyon, L.; Rioualen, C.; Finetti, P.; Gros, A.; Mari, B.; Barbry, P.; Bertucci, F.; Bidaut, G.; Harel-Bellan, A.; Birnbaum, D.; Charafe-Jauffret, E.; Ginestier, C. miR-600 acts as a bimodal switch that regulates breast cancer stem cell fate through wnt signaling. Cell Rep., 2017, 18(9), 2256-2268.
[http://dx.doi.org/10.1016/j.celrep.2017.02.016] [PMID: 28249169]
[116]
Majumder, M.; Dunn, L.; Liu, L.; Hasan, A.; Vincent, K.; Brackstone, M.; Hess, D.; Lala, P.K. COX-2 induces oncogenic micro RNA miR655 in human breast cancer. Sci. Rep., 2018, 8(1), 327.
[http://dx.doi.org/10.1038/s41598-017-18612-3] [PMID: 29321644]
[117]
Cao, T.; Xiao, T.; Huang, G.; Xu, Y.; Zhu, J.J.; Wang, K.; Ye, W.; Guan, H.; He, J.; Zheng, D. CDK3, target of miR-4469, suppresses breast cancer metastasis via inhibiting Wnt/β-catenin pathway. Oncotarget, 2017, 8(49), 84917-84927.
[http://dx.doi.org/10.18632/oncotarget.18171] [PMID: 29156693]
[118]
Liu, G.; Wang, P.; Zhang, H. MiR-6838-5p suppresses cell metastasis and the EMT process in triple-negative breast cancer by targeting WNT3A to inhibit the Wnt pathway. J. Gene Med., 2019, 21(12), e3129.
[http://dx.doi.org/10.1002/jgm.3129] [PMID: 31693779]
[119]
Cai, W.Y.; Wei, T.Z.; Luo, Q.C.; Wu, Q.W.; Liu, Q.F.; Yang, M.; Ye, G.D.; Wu, J.F.; Chen, Y.Y.; Sun, G.B.; Liu, Y.J.; Zhao, W.X.; Zhang, Z.M.; Li, B.A. The Wnt-β-catenin pathway represses let-7 microRNA expression through transactivation of Lin28 to augment breast cancer stem cell expansion. J. Cell Sci., 2013, 126(Pt 13), 2877-2889.
[PMID: 23613467]
[120]
Fanale, D.; Amodeo, V.; Bazan, V.; Insalaco, L.; Incorvaia, L.; Barraco, N.; Castiglia, M.; Rizzo, S.; Santini, D.; Giordano, A.; Castorina, S.; Russo, A. Can the microRNA expression profile help to identify novel targets for zoledronic acid in breast cancer? Oncotarget, 2016, 7(20), 29321-29332.
[http://dx.doi.org/10.18632/oncotarget.8722] [PMID: 27081088]
[121]
Yazdani, E.; Talebi, M.; Zarshenas, M.M.; Moein, M. Evaluation of possible antioxidant activities of barberry solid formulation, a selected formulation from Traditional Persian Medicine (TPM) via various procedures. Biointerface Res. Appl. Chem., 2019, 9(6), 4517-4521.
[http://dx.doi.org/10.33263/BRIAC96.517521]
[122]
Farkhondeh, T.; Pourbagher-Shahri, A.M.; Azimi-Nezhad, M.; Forouzanfar, F.; Brockmueller, A.; Ashrafizadeh, M.; Talebi, M.; Shakibaei, M.; Samarghandian, S. Roles of NRF2 in gastric cancer: targeting for therapeutic strategies. Molecules, 2021, 26(11), 3157.
[http://dx.doi.org/10.3390/molecules26113157] [PMID: 34070502]
[123]
Gong, L.G.; Shi, J.C.; Shang, J.; Hao, J.G.; Du, X. Effect of miR-34a on resistance to sunitinib in breast cancer by regulating the Wnt/β-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(3), 1151-1157.
[PMID: 30779084]
[124]
Jia, Z.; Zhu, H.; Sun, H.; Hua, Y.; Zhang, G.; Jiang, J.; Wang, X. Adipose mesenchymal stem cell-derived exosomal microrna-1236 reduces resistance of breast cancer cells to cisplatin by suppressing SLC9a1 and the wnt/β-catenin signaling. Cancer Manag. Res., 2020, 12, 8733-8744.
[http://dx.doi.org/10.2147/CMAR.S270200] [PMID: 33061571]
[125]
Kim, S.J.; Oh, J.S.; Shin, J.Y.; Lee, K.D.; Sung, K.W.; Nam, S.J.; Chun, K.H. Development of microRNA-145 for therapeutic application in breast cancer. J. Control. Release, 2011, 155(3), 427-434.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.026] [PMID: 21723890]
[126]
Cheng, S.; Huang, Y.; Lou, C.; He, Y.; Zhang, Y.; Zhang, Q. FSTL1 enhances chemoresistance and maintains stemness in breast cancer cells via integrin β3/Wnt signaling under miR-137 regulation. Cancer Biol. Ther., 2019, 20(3), 328-337.
[http://dx.doi.org/10.1080/15384047.2018.1529101] [PMID: 30336071]
[127]
Eterno, V.; Zambelli, A.; Villani, L.; Tuscano, A.; Manera, S.; Spitaleri, A.; Pavesi, L.; Amato, A. AurkA controls self-renewal of breast cancer-initiating cells promoting WNT3a stabilization through suppression of miR-128. Sci. Rep., 2016, 6(1), 28436.
[http://dx.doi.org/10.1038/srep28436] [PMID: 27341528]
[128]
Gao, X.; Lai, Y.; Zhang, Z.; Ma, Y.; Luo, Z.; Li, Y.; Yang, C.; Lu, G.; Li, J. long non-coding rna rp11-480i12.5 promotes the proliferation, migration, and invasion of breast cancer cells through the mir-490-3p-aurka-wnt/β-catenin axis. Front. Oncol., 2020, 10, 948.
[http://dx.doi.org/10.3389/fonc.2020.00948] [PMID: 32733789]
[129]
Han, L.; Yan, Y.; Zhao, L.; Liu, Y.; Lv, X.; Zhang, L.; Zhao, Y.; Zhao, H.; He, M.; Wei, M. LncRNA HOTTIP facilitates the stemness of breast cancer via regulation of miR-148a-3p/WNT1 pathway. J. Cell. Mol. Med., 2020, 24(11), 6242-6252.
[http://dx.doi.org/10.1111/jcmm.15261] [PMID: 32307830]
[130]
Huan, J.; Xing, L.; Lin, Q.; Xui, H.; Qin, X. Long noncoding RNA CRNDE activates Wnt/β-catenin signaling pathway through acting as a molecular sponge of microRNA-136 in human breast cancer. Am. J. Transl. Res., 2017, 9(4), 1977-1989.
[PMID: 28469804]
[131]
Pan, Z.; Ding, J.; Yang, Z.; Li, H.; Ding, H.; Chen, Q. LncRNA FLVCR1-AS1 promotes proliferation, migration and activates Wnt/β-catenin pathway through miR-381-3p/CTNNB1 axis in breast cancer. Cancer Cell Int., 2020, 20(1), 214.
[http://dx.doi.org/10.1186/s12935-020-01247-2] [PMID: 32518523]
[132]
Li, P.; Guo, Y.; Bledsoe, G.; Yang, Z.; Chao, L.; Chao, J. Kallistatin induces breast cancer cell apoptosis and autophagy by modulating Wnt signaling and microRNA synthesis. Exp. Cell Res., 2016, 340(2), 305-314.
[http://dx.doi.org/10.1016/j.yexcr.2016.01.004] [PMID: 26790955]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy