Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Mini-Review Article

MIRNA146a And Diabetes-Related Complications: A Review

Author(s): Ni Putu Tesi Maratni*, Made Ratna Saraswati, Ni Nyoman Ayu Dewi and Ketut Suastika

Volume 19, Issue 9, 2023

Published on: 08 November, 2022

Article ID: e141022209958 Pages: 15

DOI: 10.2174/1573399819666221014095715

Price: $65

Abstract

Diabetes mellitus, defined as long-standing hyperglycemic conditions caused by a defect in insulin production and activity, has become a major healthcare burden as the number of catastrophic and life-threatening complications rises. Microvascular complications (neuropathy, retinopathy, and nephropathy), and also diabetes-related macrovascular complications are common problems that arise as the life expectancy of diabetic patients has increased despite improved treatment options. While it is impossible to pinpoint the specific crucial timing when the complications become fully entrenched, looking for novel sensitive biomarkers to identify physiological changes in the initial stages would be needed. An increasing amount of data shows that miRNAs, particularly miRNA146a, are stable in a range of body fluids and can be used to identify pathogenic changes at the cellular or tissue level. In this brief review, we highlight the important functioning of miRNA146a and its putative target of action in diabetic microvascular and cardiovascular complications. A decrease in miRNA146a levels may play a critical role in the onset and development of diabetes complications, whereas its anti-inflammatory properties were revealed to be associated with the pathogenesis of numerous diabetic complications, including diabetic nephropathy, retinopathy, neuropathy, and diabetes-related cardiovascular disorders, even tending to be a potential biomarker of the disease's inflammatory status.

[1]
Himanshu D, Ali W, Wamique M. Type 2 diabetes mellitus: Pathogenesis and genetic diagnosis. J Diabetes Metab Disord 2020; 19(2): 1959-66.
[http://dx.doi.org/10.1007/s40200-020-00641-x] [PMID: 33520871]
[2]
Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 2019; 15(11): 635-50.
[http://dx.doi.org/10.1038/s41574-019-0254-y] [PMID: 31534209]
[3]
Esposito S, Toni G, Tascini G, et al. Environmental factors associated with type 1 diabetes. Front Endocrinol 2019; 10: 592.
[http://dx.doi.org/10.3389/fendo.2019.00592]
[4]
Eizirik DL, Pasquali L, Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol 2020; 16(7): 349-62.
[http://dx.doi.org/10.1038/s41574-020-0355-7] [PMID: 32398822]
[5]
Duke L, Fereira de Moura A, de Lapertosa S, et al. International Diabetes Federation Diabetes Atlas, 9th edi, 2019. Available from: https://www.diabetesatlas.org/
[6]
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018; 14(2): 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[7]
Yahaya TO, Salisu TF. A review of type 2 diabetes mellitus predisposing genes. Curr Diabetes Rev 2019; 16(1): 52-61.
[http://dx.doi.org/10.2174/1573399815666181204145806] [PMID: 30514191]
[8]
Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 2020; 16(7): 377-90.
[http://dx.doi.org/10.1038/s41581-020-0278-5] [PMID: 32398868]
[9]
Gudmundsdottir V, Zaghlool SB, Emilsson V, et al. Circulating protein signatures and causal candidates for type 2 diabetes. Diabetes 2020; 69(8): 1843-53.
[http://dx.doi.org/10.2337/db19-1070] [PMID: 32385057]
[10]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 2018; 9: 402.
[http://dx.doi.org/10.3389/fendo.2018.00402]
[11]
Raffort J, Hinault C, Dumortier O, Van Obberghen E. Circulating microRNAs and diabetes: potential applications in medical practice. Diabetologia 2015; 58(9): 1978-92.
[http://dx.doi.org/10.1007/s00125-015-3680-y] [PMID: 26155747]
[12]
Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010; 56(11): 1733-41.
[http://dx.doi.org/10.1373/clinchem.2010.147405] [PMID: 20847327]
[13]
Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: A new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 2010; 101(10): 2087-92.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01650.x] [PMID: 20624164]
[14]
Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids-the mix of hormones and biomarkers. Nat Rev Clin Oncol 2011; 8(8): 467-77.
[http://dx.doi.org/10.1038/nrclinonc.2011.76] [PMID: 21647195]
[15]
Kutty RK, Nagineni CN, Samuel W, et al. Differential regulation of microRNA-146a and microRNA-146b-5p in human retinal pigment epithelial cells by interleukin-1β tumor necrosis factor-α and interferon-γ. Mol Vis 2013; 19: 737-50.
[PMID: 23592910]
[16]
Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V. Anti-inflammatory MicroRNAs and their potential for inflammatory diseases treatment. Vol. 9. Front Immunol 2018; 9: 1377.
[http://dx.doi.org/10.3389/fimmu.2018.01377] [PMID: 29988529]
[17]
Alipoor B, Ghaedi H, Meshkani R, et al. Association of MiR-146a expression and type 2 diabetes mellitus: A meta-analysis. Int J Mol Cell Med 2017; 6(3): 156-63.
[PMID: 29682487]
[18]
Feng B, Chen S, McArthur K, et al. miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications. Diabetes 2011; 60(11): 2975-84.
[http://dx.doi.org/10.2337/db11-0478] [PMID: 21885871]
[19]
Kim VN. MicroRNA biogenesis: Coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005; 6(5): 376-85.
[http://dx.doi.org/10.1038/nrm1644] [PMID: 15852042]
[20]
Flynt AS, Lai EC. Biological principles of microRNA-mediated regulation: Shared themes amid diversity. Nat Rev Genet 2008; 9(11): 831-42.
[http://dx.doi.org/10.1038/nrg2455] [PMID: 18852696]
[21]
Lin SL, Miller JD, Ying SY. Intronic microRNA (miRNA). J Biomed Biotechnol 2006; 2006(4): 26818.
[PMID: 17057362]
[22]
Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23(20): 4051-60.
[http://dx.doi.org/10.1038/sj.emboj.7600385] [PMID: 15372072]
[23]
Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004; 18(24): 3016-27.
[http://dx.doi.org/10.1101/gad.1262504] [PMID: 15574589]
[24]
Zeng Y, Yi R, Cullen BR. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 2005; 24(1): 138-48.
[http://dx.doi.org/10.1038/sj.emboj.7600491] [PMID: 15565168]
[25]
Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 2010; 38(3): 323-32.
[http://dx.doi.org/10.1016/j.molcel.2010.03.013] [PMID: 20471939]
[26]
Kolfschoten IGM, Roggli E, Nesca V, Regazzi R. Role and therapeutic potential of microRNAs in diabetes. Diabetes Obes Metab 2009; 11(S4): 118-29.
[http://dx.doi.org/10.1111/j.1463-1326.2009.01118.x] [PMID: 19817794]
[27]
Cifuentes D, Xue H, Taylor DW, et al. A novel miRNA processing pathway independent of dicer requires argonaute2 catalytic activity. Science 2010; 328(5986): 1694-8.
[http://dx.doi.org/10.1126/science.1190809]
[28]
Simpson K, Wonnacott A, Fraser DJ, Bowen T. MicroRNAs in diabetic nephropathy: From biomarkers to therapy. Curr Diab Rep 2016; 16(3): 35.
[http://dx.doi.org/10.1007/s11892-016-0724-8] [PMID: 26973290]
[29]
Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ 2015; 22(1): 22-33.
[http://dx.doi.org/10.1038/cdd.2014.112] [PMID: 25190144]
[30]
Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y. Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol Cancer 2018; 17(1): 64.
[http://dx.doi.org/10.1186/s12943-018-0765-5] [PMID: 29471827]
[31]
Westholm JO, Lai EC. Mirtrons: microRNA biogenesis via splicing. Biochimie 2011; 93(11): 1897-904.
[http://dx.doi.org/10.1016/j.biochi.2011.06.017] [PMID: 21712066]
[32]
Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. Nature 2007; 448(7149): 83-6.
[http://dx.doi.org/10.1038/nature05983] [PMID: 17589500]
[33]
Dupuis-Sandoval F, Poirier M, Scott MS. The emerging landscape of small nucleolar RNAs in cell biology. Wiley Interdiscip Rev RNA 2015; 6(4): 381-97.
[http://dx.doi.org/10.1002/wrna.1284] [PMID: 25879954]
[34]
Abdelfattah AM, Park C, Choi MY. Update on non-canonical microRNAs. Biomol Concepts 2014; 5(4): 275-87.
[http://dx.doi.org/10.1515/bmc-2014-0012] [PMID: 25372759]
[35]
Mo D, Jiang P, Yang Y, et al. A tRNA fragment, 5′-tiRNAVal, suppresses the Wnt/β-catenin signaling pathway by targeting FZD3 in breast cancer. Cancer Lett 2019; 457: 60-73.
[http://dx.doi.org/10.1016/j.canlet.2019.05.007] [PMID: 31078732]
[36]
Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009; 11(3): 228-34.
[http://dx.doi.org/10.1038/ncb0309-228] [PMID: 19255566]
[37]
Ozsolak F, Poling LL, Wang Z, et al. Chromatin structure analyses identify miRNA promoters. Genes Dev 2008; 22(22): 3172-83.
[http://dx.doi.org/10.1101/gad.1706508] [PMID: 19056895]
[38]
Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J 2002; 21(17): 4663-70.
[http://dx.doi.org/10.1093/emboj/cdf476] [PMID: 12198168]
[39]
Trabucchi M, Briata P, Garcia-Mayoral M, et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 2009; 459(7249): 1010-4.
[http://dx.doi.org/10.1038/nature08025] [PMID: 19458619]
[40]
Newman MA, Thomson JM, Hammond SM. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 2008; 14(8): 1539-49.
[http://dx.doi.org/10.1261/rna.1155108] [PMID: 18566191]
[41]
Yang W, Chendrimada TP, Wang Q, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 2006; 13(1): 13-21.
[http://dx.doi.org/10.1038/nsmb1041] [PMID: 16369484]
[42]
Fukuda T, Yamagata K, Fujiyama S, et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 2007; 9(5): 604-11.
[http://dx.doi.org/10.1038/ncb1577] [PMID: 17435748]
[43]
Cheng TL, Wang Z, Liao Q, et al. MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev Cell 2014; 28(5): 547-60.
[http://dx.doi.org/10.1016/j.devcel.2014.01.032] [PMID: 24636259]
[44]
Upton JP, Wang L, Han D, et al. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic caspase-2. Science 2012; 338(6108): 818-22.
[http://dx.doi.org/10.1126/science.1226191]
[45]
Suzuki HI, Arase M, Matsuyama H, et al. MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell 2011; 44(3): 424-36.
[http://dx.doi.org/10.1016/j.molcel.2011.09.012] [PMID: 22055188]
[46]
Xhemalce B, Robson SC, Kouzarides T. Human RNA methyltransferase BCDIN3D regulates microRNA processing. Cell 2012; 151(2): 278-88.
[http://dx.doi.org/10.1016/j.cell.2012.08.041] [PMID: 23063121]
[47]
Heo I, Joo C, Cho J, Ha M, Han J, Kim VN. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 2008; 32(2): 276-84.
[http://dx.doi.org/10.1016/j.molcel.2008.09.014] [PMID: 18951094]
[48]
Lee HY, Doudna JA. TRBP alters human precursor microRNA processing in vitro. RNA 2012; 18(11): 2012-9.
[http://dx.doi.org/10.1261/rna.035501.112] [PMID: 23006623]
[49]
Paroo Z, Ye X, Chen S, Liu Q. Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell 2009; 139(1): 112-22.
[http://dx.doi.org/10.1016/j.cell.2009.06.044] [PMID: 19804757]
[50]
Chatterjee S, Großhans H. Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 2009; 461(7263): 546-9.
[http://dx.doi.org/10.1038/nature08349] [PMID: 19734881]
[51]
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15(8): 509-24.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[52]
Leung AKL, Vyas S, Rood JE, Bhutkar A, Sharp PA, Chang P. Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell 2011; 42(4): 489-99.
[http://dx.doi.org/10.1016/j.molcel.2011.04.015] [PMID: 21596313]
[53]
Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RHA, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005; 120(1): 21-4.
[http://dx.doi.org/10.1016/j.cell.2004.12.031] [PMID: 15652478]
[54]
Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006; 126(6): 1203-17.
[http://dx.doi.org/10.1016/j.cell.2006.07.031] [PMID: 16990141]
[55]
Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes Dev 2004; 18(5): 504-11.
[http://dx.doi.org/10.1101/gad.1184404] [PMID: 15014042]
[56]
Geekiyanage H, Rayatpisheh S, Wohlschlegel JA, Brown R Jr, Ambros V. Extracellular microRNAs in human circulation are associated with miRISC complexes that are accessible to anti-AGO2 antibody and can bind target mimic oligonucleotides. Proc Natl Acad Sci 2020; 117(39): 24213-23.
[http://dx.doi.org/10.1073/pnas.2008323117] [PMID: 32929008]
[57]
Turchinovich A, Weiz L, Burwinkel B. Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci 2012; 37(11): 460-5.
[http://dx.doi.org/10.1016/j.tibs.2012.08.003] [PMID: 22944280]
[58]
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[59]
Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci 2008; 105(30): 10513-8.
[http://dx.doi.org/10.1073/pnas.0804549105] [PMID: 18663219]
[60]
Mraz M, Malinova K, Mayer J, Pospisilova S. MicroRNA isolation and stability in stored RNA samples. Biochem Biophys Res Commun 2009; 390(1): 1-4.
[http://dx.doi.org/10.1016/j.bbrc.2009.09.061] [PMID: 19769940]
[61]
Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 2010; 50(4): 298-301.
[http://dx.doi.org/10.1016/j.ymeth.2010.01.032] [PMID: 20146939]
[62]
Lebovitz H. Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes 2001; 109(S2): S135-48.
[http://dx.doi.org/10.1055/s-2001-18576] [PMID: 11460565]
[63]
Van Obberghen E, Baron V, Delahaye L, et al. Surfing the insulin signaling web. Eur J Clin Invest 2001; 31(11): 966-77.
[http://dx.doi.org/10.1046/j.1365-2362.2001.00896.x] [PMID: 11737239]
[64]
Manning BD. Insulin signaling: inositol phosphates get into the Akt. Cell 2010; 143(6): 861-3.
[http://dx.doi.org/10.1016/j.cell.2010.11.040] [PMID: 21145450]
[65]
Kohn AD, Summers SA, Birnbaum MJ, Roth RA. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 1996; 271(49): 31372-8.
[http://dx.doi.org/10.1074/jbc.271.49.31372] [PMID: 8940145]
[66]
Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 1980; 107(2): 519-27.
[http://dx.doi.org/10.1111/j.1432-1033.1980.tb06059.x] [PMID: 6249596]
[67]
Greer EL, Banko MR, Brunet A. AMP-activated protein kinase and FoxO transcription factors in dietary restriction-induced longevity 2009.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04019.x]
[68]
Li X, Monks B, Ge Q, Birnbaum MJ. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator. Nature 2007; 447(7147): 1012-6.
[http://dx.doi.org/10.1038/nature05861] [PMID: 17554339]
[69]
Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002; 298(5600): 1911-2.
[http://dx.doi.org/10.1126/science.1072682] [PMID: 12471242]
[70]
Chakraborty C, Doss CGP, Bandyopadhyay S, Agoramoorthy G. Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role in type-2 diabetes. Wiley Interdiscip Rev RNA 2014; 5(5): 697-712.
[http://dx.doi.org/10.1002/wrna.1240] [PMID: 24944010]
[71]
Karolina DS, Armugam A, Tavintharan S, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 2011; 6(8): e22839.
[http://dx.doi.org/10.1371/journal.pone.0022839] [PMID: 21829658]
[72]
Yan ST, Li CL, Tian H, et al. MiR-199a is overexpressed in plasma of type 2 diabetes patients which contributes to type 2 diabetes by targeting GLUT4. Mol Cell Biochem 2014; 397(1-2): 45-51.
[http://dx.doi.org/10.1007/s11010-014-2170-8] [PMID: 25084986]
[73]
Labib DA, Shaker OG, El Refai RM, Ghoniem SA, Elmazny A. Association between miRNA-146a and polymorphisms of its target gene, IRAK1, regarding susceptibility to and clinical features of systemic lupus erythematous and multiple sclerosis. Lab Med 2019; 50(1): 34-41.
[http://dx.doi.org/10.1093/labmed/lmy033] [PMID: 30060033]
[74]
Xu WD, Lu MM, Pan HF, Ye DQ. Association of MicroRNA-146a with autoimmune diseases. Inflammation 2012; 35(4): 1525-9.
[http://dx.doi.org/10.1007/s10753-012-9467-0] [PMID: 22535496]
[75]
Adami B, Tabatabaeian H, Ghaedi K, Talebi A, Azadeh M, Dehdashtian E. miR-146a is deregulated in gastric cancer. J Cancer Res Ther 2019; 15(1): 108-14.
[PMID: 30880764]
[76]
Karakatsanis A, Papaconstantinou I, Gazouli M, Lyberopoulou A, Polymeneas G, Voros D. Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance. Mol Carcinog 2013; 52(4): 297-303.
[http://dx.doi.org/10.1002/mc.21864] [PMID: 22213236]
[77]
Sun M, Fang S, Li W, et al. Associations of miR-146a and miR-146b expression and clinical characteristics in papillary thyroid carcinoma. Cancer Biomark 2015; 15(1): 33-40.
[http://dx.doi.org/10.3233/CBM-140431] [PMID: 25524940]
[78]
Dong H, Li J, Huang L, et al. Serum MicroRNA profiles serve as novel biomarkers for the diagnosis of alzheimer’s disease. Dis Markers 2015; 2015: 1-11.
[http://dx.doi.org/10.1155/2015/625659] [PMID: 26078483]
[79]
Caggiu E, Paulus K, Mameli G, Arru G, Sechi GP, Sechi LA. Differential expression of miRNA 155 and miRNA 146a in Parkinson’s disease patients. ENeurologicalSci 2018; 13: 1-4.
[http://dx.doi.org/10.1016/j.ensci.2018.09.002] [PMID: 30255159]
[80]
Martí E, Pantano L, Bañez-Coronel M, et al. A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 2010; 38(20): 7219-35.
[http://dx.doi.org/10.1093/nar/gkq575] [PMID: 20591823]
[81]
Fan W, Liang C, Ou M, et al. MicroRNA-146a is a wide-reaching neuroinflammatory regulator and potential treatment target in neurological diseases. Front Mol Neurosci 2020; 13: 90.
[http://dx.doi.org/10.3389/fnmol.2020.00090] [PMID: 32581706]
[82]
Saba R, Gushue S, Huzarewich RLCH, et al. MicroRNA 146a (miR-146a) is over-expressed during prion disease and modulates the innate immune response and the microglial activation state. PLoS One 2012; 7(2): e30832.
[http://dx.doi.org/10.1371/journal.pone.0030832] [PMID: 22363497]
[83]
Tsalamandris S, Antonopoulos AS, Oikonomou E, et al. The role of inflammation in diabetes: Current concepts and future perspectives. Euro Cardiol Rev 2019; 14(1): 50-9.
[84]
Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011; 11(2): 98-107.
[http://dx.doi.org/10.1038/nri2925] [PMID: 21233852]
[85]
Rong Y, Bao W, Shan Z, et al. Increased microRNA-146a levels in plasma of patients with newly diagnosed type 2 diabetes mellitus. PLoS One 2013; 8(9): e73272.
[http://dx.doi.org/10.1371/journal.pone.0073272] [PMID: 24023848]
[86]
Kong L, Zhu J, Han W, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 2011; 48(1): 61-9.
[http://dx.doi.org/10.1007/s00592-010-0226-0] [PMID: 20857148]
[87]
García-Jacobo RE, Uresti-Rivera EE, Portales-Pérez DP, et al. Circulating miR-146a, miR-34a and miR-375 in type 2 diabetes patients, pre-diabetic and normal-glycaemic individuals in relation to β-cell function, insulin resistance and metabolic parameters. Clin Exp Pharmacol Physiol 2019; 46(12): 1092-100.
[http://dx.doi.org/10.1111/1440-1681.13147] [PMID: 31355469]
[88]
Balasubramanyam M, Aravind S, Gokulakrishnan K, et al. Impaired miR-146a expression links subclinical inflammation and insulin resistance in type 2 diabetes. Mol Cell Biochem 2011; 351(1-2): 197-205.
[http://dx.doi.org/10.1007/s11010-011-0727-3] [PMID: 21249428]
[89]
Baldeón RL, Weigelt K, de Wit H, et al. Decreased serum level of miR-146a as sign of chronic inflammation in type 2 diabetic patients. PLoS One 2014; 9(12): e115209.
[http://dx.doi.org/10.1371/journal.pone.0115209] [PMID: 25500583]
[90]
Roggli E, Britan A, Gattesco S, et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic β-cells. Diabetes 2010; 59(4): 978-86.
[http://dx.doi.org/10.2337/db09-0881] [PMID: 20086228]
[91]
Boden G. Fatty acid—induced inflammation and insulin resistance in skeletal muscle and liver. Curr Diab Rep 2006; 6(3): 177-81.
[http://dx.doi.org/10.1007/s11892-006-0031-x] [PMID: 16898568]
[92]
Oh YS, Bae GD, Baek DJ, Park EY, Jun HS. Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Vol. 9. Front Endocrinol 2018; 9: 384.
[http://dx.doi.org/10.3389/fendo.2018.00384]
[93]
Lovis P, Roggli E, Laybutt DR, et al. Alterations in microRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction. Diabetes 2008; 57(10): 2728-36.
[http://dx.doi.org/10.2337/db07-1252] [PMID: 18633110]
[94]
Nesca V, Guay C, Jacovetti C, et al. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 2013; 56(10): 2203-12.
[http://dx.doi.org/10.1007/s00125-013-2993-y] [PMID: 23842730]
[95]
Fenwick EK, Xie J, Ratcliffe J, et al. The impact of diabetic retinopathy and diabetic macular edema on health-related quality of life in type 1 and type 2 diabetes. Invest Ophthalmol Vis Sci 2012; 53(2): 677-84.
[http://dx.doi.org/10.1167/iovs.11-8992] [PMID: 22205611]
[96]
Barutta F, Bellini S, Mastrocola R, Bruno G, Gruden G. MicroRNA and microvascular complications of diabetes. Int J Endocrinol 2018; 2018: 1-20.
[http://dx.doi.org/10.1155/2018/6890501] [PMID: 29707000]
[97]
Gong Q, Xie J, Liu Y, Li Y, Su G. Differentially expressed microRNAs in the development of early diabetic retinopathy. J Diabetes Res 2017; 2017: 1-10.
[http://dx.doi.org/10.1155/2017/4727942] [PMID: 28706953]
[98]
Funari VA, Winkler M, Brown J, Dimitrijevich SD, Ljubimov AV, Saghizadeh M. Differentially expressed wound healing-related microRNAs in the human diabetic cornea. PLoS One 2013; 8(12): e84425.
[http://dx.doi.org/10.1371/journal.pone.0084425] [PMID: 24376808]
[99]
Ménard C, Rezende FA, Miloudi K, et al. MicroRNA signatures in vitreous humour and plasma of patients with exudative AMD. Oncotarget 2016; 7(15): 19171-84.
[http://dx.doi.org/10.18632/oncotarget.8280] [PMID: 27015561]
[100]
Ragusa M, Caltabiano R, Russo A, et al. MicroRNAs in vitreus humor from patients with ocular diseases. Mol Vis 2013; 19: 430-40.
[PMID: 23441115]
[101]
Watanabe T, Keino H, Kudo A, Sato Y, Okada AA. MicroRNAs in retina during development of experimental autoimmune uveoretinitis in rats. Br J Ophthalmol 2016; 100(3): 425-31.
[http://dx.doi.org/10.1136/bjophthalmol-2015-306924] [PMID: 26541434]
[102]
He J-F, Du Y, Jiang BL, He JF. Increased microRNA-155 and decreased microRNA-146a may promote ocular inflammation and proliferation in Graves’ ophthalmopathy. Med Sci Monit 2014; 20: 639-43.
[http://dx.doi.org/10.12659/MSM.890686] [PMID: 24743332]
[103]
Helal HG, Rashed MH, Abdullah OA, Salem TI, Daifalla A. MicroRNAs (−146a, −21 and −34a) are diagnostic and prognostic biomarkers for diabetic retinopathy. Biomed J 2020; 44(6): S242-51.
[PMID: 35304162]
[104]
Bierhaus A, Schiekofer S, Schwaninger M, et al. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 2001; 50(12): 2792-808.
[http://dx.doi.org/10.2337/diabetes.50.12.2792] [PMID: 11723063]
[105]
Kovacs B, Lumayag S, Cowan C, Xu S. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci 2011; 52(7): 4402-9.
[http://dx.doi.org/10.1167/iovs.10-6879] [PMID: 21498619]
[106]
Cowan C, Muraleedharan CK, O’Donnell JJ III, et al. MicroRNA-146 inhibits thrombin-induced NF-κB activation and subsequent inflammatory responses in human retinal endothelial cells. Invest Ophthalmol Vis Sci 2014; 55(8): 4944-51.
[http://dx.doi.org/10.1167/iovs.13-13631] [PMID: 24985472]
[107]
Zhuang P, Muraleedharan CK, Xu S. Intraocular delivery of miR-146 inhibits diabetes-induced retinal functional defects in diabetic rat model. Invest Ophthalmol Vis Sci 2017; 58(3): 1646-55.
[http://dx.doi.org/10.1167/iovs.16-21223] [PMID: 28297724]
[108]
Ye EA, Steinle JJ. miR-146a attenuates inflammatory pathways mediated by TLR4/NF- κ B and TNF α to protect primary human retinal microvascular endothelial cells grown in high glucose. Mediators Inflamm 2016; 2016: 1-9.
[http://dx.doi.org/10.1155/2016/3958453] [PMID: 26997759]
[109]
Ye EA, Steinle JJ. miR-146a suppresses STAT3/VEGF pathways and reduces apoptosis through IL-6 signaling in primary human retinal microvascular endothelial cells in high glucose conditions. Vision Res 2017; 139: 15-22.
[http://dx.doi.org/10.1016/j.visres.2017.03.009] [PMID: 28433754]
[110]
Wang Q, Bozack SN, Yan Y, Boulton ME, Grant MB, Busik JV. Regulation of retinal inflammation by rhythmic expression of MiR-146a in diabetic retina. Invest Ophthalmol Vis Sci 2014; 55(6): 3986-94.
[http://dx.doi.org/10.1167/iovs.13-13076] [PMID: 24867582]
[111]
Winkler MA, Dib C, Ljubimov AV, Saghizadeh M. Targeting miR-146a to treat delayed wound healing in human diabetic organ-cultured corneas. PLoS One 2014; 9(12): e114692.
[http://dx.doi.org/10.1371/journal.pone.0114692] [PMID: 25490205]
[112]
Schreiber AK, Nones CF, Reis RC, Chichorro JG, Cunha JM. Diabetic neuropathic pain: Physiopathology and treatment. World J Diabetes 2015; 6(3): 432-44.
[http://dx.doi.org/10.4239/wjd.v6.i3.432] [PMID: 25897354]
[113]
Gore M, Brandenburg NA, Dukes E, Hoffman DL, Tai KS, Stacey B. Pain severity in diabetic peripheral neuropathy is associated with patient functioning, symptom levels of anxiety and depression, and sleep. J Pain Symptom Manage 2005; 30(4): 374-85.
[http://dx.doi.org/10.1016/j.jpainsymman.2005.04.009] [PMID: 16256902]
[114]
Wang Y, Schmeichel AM, Iida H, Schmelzer JD, Low PA. Enhanced inflammatory response via activation of NF-κB in acute experimental diabetic neuropathy subjected to ischemia–reperfusion injury. J Neurol Sci 2006; 247(1): 47-52.
[http://dx.doi.org/10.1016/j.jns.2006.03.011] [PMID: 16631800]
[115]
Pop-Busui R, Ang L, Holmes C, Gallagher K, Feldman EL. Inflammation as a therapeutic target for diabetic neuropathies. Curr Diab Rep 2016; 16(3): 29.
[http://dx.doi.org/10.1007/s11892-016-0727-5] [PMID: 26897744]
[116]
Yousefzadeh N, Alipour MR, Ghadiri SF. Deregulation of NF-кB–miR-146a negative feedback loop may be involved in the pathogenesis of diabetic neuropathy. J Physiol Biochem 2015; 71(1): 51-8.
[http://dx.doi.org/10.1007/s13105-014-0378-4] [PMID: 25567745]
[117]
Wang L, Chopp M, Szalad A, et al. The role of miR-146a in dorsal root ganglia neurons of experimental diabetic peripheral neuropathy. Neuroscience 2014; 259: 155-63.
[http://dx.doi.org/10.1016/j.neuroscience.2013.11.057] [PMID: 24316060]
[118]
Liu XS, Fan B, Szalad A, et al. MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice. Diabetes 2017; 66(12): 3111-21.
[http://dx.doi.org/10.2337/db16-1182] [PMID: 28899883]
[119]
Luo Q, Feng Y, Xie Y, Shao Y, Wu M, Deng X, et al. Nanoparticle–microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis. Nanomedicine Nanotechnology. Biol Med 2019; 17: 188-97.
[120]
Feng Y, Chen L, Luo Q, Wu M, Chen Y, Shi X. Involvement of microRNA-146a in diabetic peripheral neuropathy through the regulation of inflammation. Drug Des Devel Ther 2018; 12: 171-7.
[http://dx.doi.org/10.2147/DDDT.S157109] [PMID: 29398906]
[121]
Meffert MK, Baltimore D. Physiological functions for brain NF-κ. B Trends Neurosci 2005; 28(1): 37-43.
[http://dx.doi.org/10.1016/j.tins.2004.11.002] [PMID: 15626495]
[122]
Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 2011; 50(5): 567-75.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.12.006] [PMID: 21163346]
[123]
Palomer X, Capdevila-Busquets E, Álvarez-Guardia D, et al. Resveratrol induces nuclear factor-κB activity in human cardiac cells. Int J Cardiol 2013; 167(6): 2507-16.
[http://dx.doi.org/10.1016/j.ijcard.2012.06.006] [PMID: 22748497]
[124]
Mattson MP, Camandola S NF. -κB in neuronal plasticity and neurodegenerative disorders. J Clin Invest 2001; 107(3): 247-54.
[http://dx.doi.org/10.1172/JCI11916] [PMID: 11160145]
[125]
Lim A. Diabetic nephropathy – complications and treatment. Int J Nephrol Renovasc Dis 2014; 7: 361-81.
[http://dx.doi.org/10.2147/IJNRD.S40172] [PMID: 25342915]
[126]
Said SM, Nasr SH. Silent diabetic nephropathy. Kidney Int 2016; 90(1): 24-6.
[http://dx.doi.org/10.1016/j.kint.2016.02.042] [PMID: 27312444]
[127]
Thrailkill KM, Clay BR, Fowlkes JL. Matrix metalloproteinases: their potential role in the pathogenesis of diabetic nephropathy. Endocrine 2009; 35(1): 1-10.
[http://dx.doi.org/10.1007/s12020-008-9114-6] [PMID: 18972226]
[128]
Wang G, Kwan BCH, Lai FMM, Chow KM, Li PKT, Szeto CC. Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy. Dis Markers 2011; 30(4): 171-9.
[http://dx.doi.org/10.1155/2011/304852] [PMID: 21694443]
[129]
Huang Y, Liu Y, Li L, et al. Involvement of inflammation-related miR-155 and miR-146a in diabetic nephropathy: implications for glomerular endothelial injury. BMC Nephrol 2014; 15(1): 142.
[http://dx.doi.org/10.1186/1471-2369-15-142] [PMID: 25182190]
[130]
Alipour MR, Khamaneh AM, Yousefzadeh N, Mohammad-nejad D, Soufi FG. Upregulation of microRNA-146a was not accompanied by downregulation of pro-inflammatory markers in diabetic kidney. Mol Biol Rep 2013; 40(11): 6477-83.
[http://dx.doi.org/10.1007/s11033-013-2763-4] [PMID: 24057185]
[131]
Lee HW, Khan SQ, Khaliqdina S, et al. Absence of miR-146a in podocytes increases risk of diabetic glomerulopathy via up-regulation of ErbB4 and Notch-1. J Biol Chem 2017; 292(2): 732-47.
[http://dx.doi.org/10.1074/jbc.M116.753822] [PMID: 27913625]
[132]
Bhatt K, Lanting LL, Jia Y, et al. Anti-inflammatory role of microrna-146a in the pathogenesis of diabetic nephropathy. J Am Soc Nephrol 2016; 27(8): 2277-88.
[http://dx.doi.org/10.1681/ASN.2015010111] [PMID: 26647423]
[133]
Wan RJ, Li YH. MicroRNA 146a/NAPDH oxidase4 decreases reactive oxygen species generation and inflammation in a diabetic nephropathy model. Mol Med Rep 2018; 17(3): 4759-66.
[http://dx.doi.org/10.3892/mmr.2018.8407] [PMID: 29328400]
[134]
Chen S, Feng B, Thomas AA, Chakrabarti S. miR-146a regulates glucose induced upregulation of inflammatory cytokines extracellular matrix proteins in the retina and kidney in diabetes. PLoS One 2017; 12(3): e0173918.
[http://dx.doi.org/10.1371/journal.pone.0173918] [PMID: 28301595]
[135]
Matheus ASM, Tannus LRM, Cobas RA, Palma CCS, Negrato CA, Gomes MB. Impact of diabetes on cardiovascular disease: an update. Int J Hypertens 2013; 2013: 1-15.
[http://dx.doi.org/10.1155/2013/653789] [PMID: 23533715]
[136]
Vamos EP, Millett C, Parsons C, Aylin P, Majeed A, Bottle A. Nationwide study on trends in hospital admissions for major cardiovascular events and procedures among people with and without diabetes in England, 2004-2009. Diabetes Care 2012; 35(2): 265-72.
[http://dx.doi.org/10.2337/dc11-1682] [PMID: 22210568]
[137]
Dei Cas A, Khan SS, Butler J, et al. Impact of diabetes on epidemiology, treatment, and outcomes of patients with heart failure. JACC Heart Fail 2015; 3(2): 136-45.
[http://dx.doi.org/10.1016/j.jchf.2014.08.004] [PMID: 25660838]
[138]
Ashraf H, Boroumand MA, Amirzadegan A, Talesh SA, Davoodi G. Hemoglobin A1C in non-diabetic patients: An independent predictor of coronary artery disease and its severity. Diabetes Res Clin Pract 2013; 102(3): 225-32.
[http://dx.doi.org/10.1016/j.diabres.2013.10.011] [PMID: 24176244]
[139]
Kin K, Miyagawa S, Fukushima S, et al. Tissue- and plasma-specific MicroRNA signatures for atherosclerotic abdominal aortic aneurysm. J Am Heart Assoc 2012; 1(5): e000745.
[http://dx.doi.org/10.1161/JAHA.112.000745] [PMID: 23316282]
[140]
Simsek S, Van Den Oever IAM, Raterman HG, Nurmohamed MT. Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus. Vol. 2010. Mediators Inflamm 2010; 792: 393.
[141]
Cheng HS, Sivachandran N, Lau A, et al. Micro RNA -146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med 2013; 5(7): 1017-34.
[http://dx.doi.org/10.1002/emmm.201202318] [PMID: 23733368]
[142]
Emadi SS, Soufi FG, Khamaneh AM, Alipour MR. MicroRNA-146a expression and its intervention in NF-кB signaling pathway in diabetic rat aorta. Endocr Regul 2014; 48(2): 103-8.
[http://dx.doi.org/10.4149/endo_2014_02_103] [PMID: 24824805]
[143]
Feng B, Chen S, Gordon AD, Chakrabarti S. miR-146a mediates inflammatory changes and fibrosis in the heart in diabetes. J Mol Cell Cardiol 2017; 105: 70-6.
[http://dx.doi.org/10.1016/j.yjmcc.2017.03.002] [PMID: 28279663]
[144]
Wang J, Yan Y, Song D, Liu B. Reduced Plasma miR-146a Is a Predictor of Poor Coronary Collateral Circulation in Patients with Coronary Artery Disease. BioMed Res Int 2016; 2016: 1-6.
[http://dx.doi.org/10.1155/2016/4285942] [PMID: 28050558]
[145]
Eftekhar E, Zaboli MD, Katebi M, Soufi FG. MicroRNA-146a and its adapter proteins are affected by diabetes in rat’s heart. Bratisl Med J 2016; 116(3): 166-70.
[http://dx.doi.org/10.4149/BLL_2016_031] [PMID: 26925748]
[146]
Kamali K, Korjan ES, Eftekhar E, Malekzadeh K, Soufi FG. The role of miR-146a on NF-κB expression level in human umbilical vein endothelial cells under hyperglycemic condition. Bratisl Med J 2016; 117(7): 376-80.
[http://dx.doi.org/10.4149/BLL_2016_074] [PMID: 27546538]
[147]
Wang HJ, Huang YL, Shih YY, Wu HY, Peng CT, Lo WY. MicroRNA-146a decreases high glucose/thrombin-induced endothelial inflammation by inhibiting NAPDH oxidase 4 expression. Mediators Inflamm 2014; 2014: 1-12.
[http://dx.doi.org/10.1155/2014/379537] [PMID: 25298619]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy