Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Atorvastatin's Reduction of Alzheimer's Disease and Possible Alteration of Cognitive Function in Midlife as well as its Treatment

Author(s): Umang Shah*, Aneri Shah, Sandip Patel, Alkesh Patel, Mehul Patel, Nilay Solanki, Swayamprakash Patel, Ashish Patel, Veena Patel and Bhavesh Patel

Volume 22, Issue 10, 2023

Published on: 03 November, 2022

Page: [1462 - 1471] Pages: 10

DOI: 10.2174/1871527322666221005124808

open access plus

Abstract

Over the past 20 years, advances in the field of pathogenesis have inspired researchers to look into novel pharmacological therapeutics that are more focused on the pathophysiological events of the disease (AD). This review article discussed the prior use of statins for the prevention of Alzheimer's disease, which can help prevent the disease. Other drugs, such as memantine and donepezil, are available, but they cannot prevent the onset of AD in middle age. Based on available clinical data, the valuable effects of statins are mediated by alteration of β-amyloid (Aβ) and tau metabolism, genetic and lifestyle risk factors, along with other clinical aspects of AD. These findings suggested that using statins in middle age may help to prevent Alzheimer's disease by modifying genetic and non-genetic risk factors in later stages of life. In the present review, we elaborated upon the modification of risk factors and amyloid metabolism in the development and progression of AD and their modulation through atorvastatin. Future directions in the research and treatment of Alzheimer's disease patients include the use of antisense oligonucleotides (ASO) to change target expression, and researchers discovered decreased markers of oxidative stress in tissues affected by tau pathology in response to RNA interference treatment.

Keywords: Alzheimer's disease, Antisense oligonucleotides, Atorvastatin, HMG-CoA reductase, LDL, Senile plaques

Graphical Abstract

[1]
Singh SK, Srivastav S, Yadav AK, Srikrishna S, Perry G. Overview of Alzheimer’s disease and some therapeutic approaches targeting Aβ by using several synthetic and herbal compounds. Oxid Med Cell Longev 2016; 2016: 1-22.
[http://dx.doi.org/10.1155/2016/7361613] [PMID: 27034741]
[2]
Shah H, Patel A, Parikh V, et al. The β-Secretase Enzyme BACE1: A biochemical enigma for Alzheimer’s Disease. CNS Neurol Disord Drug Targets 2020; 19(3): 184-94.
[http://dx.doi.org/10.2174/1871527319666200526144141] [PMID: 32452328]
[3]
2022 Alzheimer’s disease facts and figures. Alzheimers Dement 2022; 18(4): 700-89.
[4]
Agarwal M, Alam MR, Haider MK, Malik MZ, Kim DK. Alzheimer’s Disease: An overview of major hypotheses and therapeutic options in nanotechnology. Nanomaterials 2020; 11(1): 59.
[http://dx.doi.org/10.3390/nano11010059] [PMID: 33383712]
[5]
Riekse RG, Li G, Petrie EC, et al. Effect of statins on Alzheimer’s disease biomarkers in cerebrospinal fluid. J Alzheimers Dis 2006; 10(4): 399-406.
[http://dx.doi.org/10.3233/JAD-2006-10408] [PMID: 17183151]
[6]
Endo A. A gift from nature: The birth of the statins. Nat Med 2008; 14(10): 1050-2.
[http://dx.doi.org/10.1038/nm1008-1050] [PMID: 18841147]
[7]
Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics. (Review). Mol Med Rep 2019; 20(2): 1479-87.
[PMID: 31257471]
[8]
Kumar A, Singh A. Ekavali. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 2015; 67(2): 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[9]
AlFadly ED, Elzahhar PA, Tramarin A, et al. Tackling neuroinflammation and cholinergic deficit in Alzheimer’s disease: Multi-target inhibitors of cholinesterases, cyclooxygenase-2 and 15-lipoxygenase. Eur J Med Chem 2019; 167: 161-86.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.012] [PMID: 30771604]
[10]
Kocahan S, Doğan Z. Mechanisms of Alzheimer’s disease pathogenesis and prevention: The brain, neural pathology, N-methyl-D-aspartate receptors, tau protein and other risk factors. Clin Psychopharmacol Neurosci 2017; 15(1): 1-8.
[http://dx.doi.org/10.9758/cpn.2017.15.1.1] [PMID: 28138104]
[11]
Mshimesh BAR, Al-Sudani BT, Jasim SY. Correlation between biochemical and immunological alterations with updated therapies in Alzheimer’s disease: A review article. Pharm Biosci J 2019; 7(1): 31-41.
[http://dx.doi.org/10.20510/ukjpb/7/i1/182376]
[12]
Fakhoury M. Microglia and astrocytes in Alzheimer’s disease: Implications for therapy. Curr Neuropharmacol 2018; 16(5): 508-18.
[http://dx.doi.org/10.2174/1570159X15666170720095240] [PMID: 28730967]
[13]
O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 2011; 34(1): 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613] [PMID: 21456963]
[14]
MacLeod R, Hillert EK, Cameron RT, Baillie GS. The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer’s disease. Future Sci OA 2015; 1(3): fso.15.9.
[http://dx.doi.org/10.4155/fso.15.9] [PMID: 28031886]
[15]
Scheuermann S, Hambsch B, Hesse L, et al. Homodimerization of amyloid precursor protein and its implication in the amyloidogenic pathway of Alzheimer’s disease. J Biol Chem 2001; 276(36): 33923-9.
[http://dx.doi.org/10.1074/jbc.M105410200] [PMID: 11438549]
[16]
Kametani F, Hasegawa M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s Disease. Front Neurosci 2018; 12(25): 25.
[http://dx.doi.org/10.3389/fnins.2018.00025] [PMID: 29440986]
[17]
Popp J, Meichsner S, Kölsch H, et al. Cerebral and extracerebral cholesterol metabolism and CSF markers of Alzheimer’s disease. Biochem Pharmacol 2013; 86(1): 37-42.
[http://dx.doi.org/10.1016/j.bcp.2012.12.007] [PMID: 23291240]
[18]
Fassbender K, Simons M, Bergmann C, et al. Simvastatin strongly reduces levels of Alzheimer’s disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proc Natl Acad Sci 2001; 98(10): 5856-61.
[http://dx.doi.org/10.1073/pnas.081620098] [PMID: 11296263]
[19]
Grimm MOW, Grimm HS, Pätzold AJ, et al. Regulation of cholesterol and sphingomyelin metabolism by amyloid-β and presenilin. Nat Cell Biol 2005; 7(11): 1118-23.
[http://dx.doi.org/10.1038/ncb1313] [PMID: 16227967]
[20]
Canepa E, Borghi R, Viña J, et al. Cholesterol and amyloid-β: Evidence for a cross-talk between astrocytes and neuronal cells. J Alzheimers Dis 2011; 25(4): 645-53.
[http://dx.doi.org/10.3233/JAD-2011-110053] [PMID: 21483097]
[21]
Thirumangalakudi L, Prakasam A, Zhang R, et al. High cholesterol-induced neuroinflammation and amyloid precursor protein pro-cessing correlate with loss of working memory in mice. J Neurochem 2008; 106(1): 475-85.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05415.x] [PMID: 18410513]
[22]
Ong WY, Kim JH, He X, Chen P, Farooqui AA, Jenner AM. Changes in brain cholesterol metabolome after excitotoxicity. Mol Neurobiol 2010; 41(2-3): 299-313.
[http://dx.doi.org/10.1007/s12035-010-8099-3] [PMID: 20140539]
[23]
Ullrich C, Pirchl M, Humpel C. Hypercholesterolemia in rats impairs the cholinergic system and leads to memory deficits. Mol Cell Neurosci 2010; 45(4): 408-17.
[http://dx.doi.org/10.1016/j.mcn.2010.08.001] [PMID: 20696249]
[24]
Glöckner F, Meske V, Lütjohann D, Ohm TG. Dietary cholesterol and its effect on tau protein: A study in apolipoprotein E-deficient and P301L human tau mice. J Neuropathol Exp Neurol 2011; 70(4): 292-301.
[http://dx.doi.org/10.1097/NEN.0b013e318212f185] [PMID: 21412171]
[25]
Rahman A, Akterin S, Flores-Morales A, et al. High cholesterol diet induces tau hyperphosphorylation in apolipoprotein E deficient mice. FEBS Lett 2005; 579(28): 6411-6.
[http://dx.doi.org/10.1016/j.febslet.2005.10.024] [PMID: 16288750]
[26]
Cutler RG, Kelly J, Storie K, et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci 2004; 101(7): 2070-5.
[http://dx.doi.org/10.1073/pnas.0305799101] [PMID: 14970312]
[27]
Belkouch M, Hachem M, Elgot A, et al. The pleiotropic effects of omega-3 docosahexaenoic acid on the hallmarks of Alzheimer’s dis-ease. J Nutr Biochem 2016; 38: 1-11.
[http://dx.doi.org/10.1016/j.jnutbio.2016.03.002] [PMID: 27825512]
[28]
Sarrafpour S, Ormseth C, Chiang A, Arakaki X, Harrington M, Fonteh A. Lipid metabolism in late-onset Alzheimer’s disease differs from patients presenting with other dementia phenotypes. Int J Environ Res Public Health 2019; 16(11): 1995.
[http://dx.doi.org/10.3390/ijerph16111995] [PMID: 31195602]
[29]
Fonteh AN, Cipolla M, Chiang J, Arakaki X, Harrington MG. Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions, and are altered in Alzheimer’s disease. PLoS One 2014; 9(6)e100519
[http://dx.doi.org/10.1371/journal.pone.0100519] [PMID: 24956173]
[30]
Carrano A, Hoozemans JJM, van der Vies SM, Rozemuller AJM, van Horssen J, de Vries HE. Amyloid Beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy. Antioxid Redox Signal 2011; 15(5): 1167-78.
[http://dx.doi.org/10.1089/ars.2011.3895] [PMID: 21294650]
[31]
de Wit NM, Vanmol J, Kamermans A, Hendriks JJA, de Vries HE. Inflammation at the blood-brain barrier: The role of liver X receptors. Neurobiol Dis 2017; 107: 57-65.
[http://dx.doi.org/10.1016/j.nbd.2016.09.015] [PMID: 27659108]
[32]
Edwards GA III, Gamez N, Escobedo G Jr, Calderon O, Moreno-Gonzalez I. Modifiable risk factors for Alzheimer’s disease. Front Aging Neurosci 2019; 11: 146.
[http://dx.doi.org/10.3389/fnagi.2019.00146] [PMID: 31293412]
[33]
Nakamura A, Kaneko N, Villemagne VL, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 2018; 554(7691): 249-54.
[http://dx.doi.org/10.1038/nature25456] [PMID: 29420472]
[34]
Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer’s amyloid-β1-40 peptide from brain by LDL receptor–related protein-1 at the blood-brain barrier. J Clin Invest 2000; 106(12): 1489-99.
[http://dx.doi.org/10.1172/JCI10498] [PMID: 11120756]
[35]
Lam V, Takechi R, Hackett MJ, et al. Synthesis of human amyloid restricted to liver results in an Alzheimer disease–like neurodegenera-tive phenotype. PLoS Biol 2021; 19(9)e3001358
[http://dx.doi.org/10.1371/journal.pbio.3001358] [PMID: 34520451]
[36]
Postic C, Shiota M, Niswender KD, et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem 1999; 274(1): 305-15.
[http://dx.doi.org/10.1074/jbc.274.1.305] [PMID: 9867845]
[37]
Endo A. The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res 1992; 33(11): 1569-82.
[http://dx.doi.org/10.1016/S0022-2275(20)41379-3] [PMID: 1464741]
[38]
Endo A. The origin of the statins. Atheroscler Suppl 2004; 5(3): 125-30.
[http://dx.doi.org/10.1016/j.atherosclerosissup.2004.08.033] [PMID: 15531285]
[39]
Jiang SY, Li H, Tang JJ, et al. Discovery of a potent HMG-CoA reductase degrader that eliminates statin-induced reductase accumulation and lowers cholesterol. Nat Commun 2018; 9(1): 5138.
[http://dx.doi.org/10.1038/s41467-018-07590-3] [PMID: 30510211]
[40]
Goldstein JL, Brown MS. The LDL Receptor. Arterioscler Thromb Vasc Biol 2009; 29(4): 431-8.
[http://dx.doi.org/10.1161/ATVBAHA.108.179564] [PMID: 19299327]
[41]
Aravindan R, Viruthagiri T, Seenivasan A, Subhagar S. Microbial production and biomedical applications of lovastatin. Indian J Pharm Sci 2008; 70(6): 701-9.
[http://dx.doi.org/10.4103/0250-474X.49087] [PMID: 21369428]
[42]
Shepardson NE, Shankar GM, Selkoe DJ. Cholesterol level and statin use in Alzheimer disease: II. Review of human trials and recom-mendations. Arch Neurol 2011; 68(11): 1385-92.
[http://dx.doi.org/10.1001/archneurol.2011.242] [PMID: 22084122]
[43]
Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 2000; 57(10): 1439-43.
[http://dx.doi.org/10.1001/archneur.57.10.1439] [PMID: 11030795]
[44]
Cramer C, Haan MN, Galea S, Langa KM, Kalbfleisch JD. Use of statins and incidence of dementia and cognitive impairment without dementia in a cohort study. Neurology 2008; 71(5): 344-50.
[http://dx.doi.org/10.1212/01.wnl.0000319647.15752.7b] [PMID: 18663180]
[45]
Feldman HH, Doody RS, Kivipelto M, et al. Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease: LEADe. Neurology 2010; 74(12): 956-64.
[http://dx.doi.org/10.1212/WNL.0b013e3181d6476a] [PMID: 20200346]
[46]
Moghadasian MH. Clinical pharmacology of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Life Sci 1999; 65(13): 1329-37.
[http://dx.doi.org/10.1016/S0024-3205(99)00199-X] [PMID: 10503952]
[47]
Adams SP, Tsang M, Wright JM. Lipid-lowering efficacy of atorvastatin. Cochrane Database Syst Rev 2015; 2015(3)CD008226
[PMID: 25760954]
[48]
Feingold KR. Cholesterol Lowering Drugs. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, Eds. Endotext. South Dartmouth (MA): MDText.com, Inc. 2000.
[49]
McIver LA, Siddique MS. AtorvastatinStatPearls. Treasure Island, FL: StatPearls Publishing 2022.
[50]
Sabbagh MN, Thind K, Sparks DL. On cholesterol levels and statins in cognitive decline and Alzheimer disease: progress and setbacks. Alzheimer Dis Assoc Disord 2009; 23(4): 303-5.
[http://dx.doi.org/10.1097/WAD.0b013e3181a80242] [PMID: 19935144]
[51]
Yaffe K, Weston A, Graff-Radford NR, et al. Association of plasma beta-amyloid level and cognitive reserve with subsequent cognitive decline. JAMA 2011; 305(3): 261-6.
[http://dx.doi.org/10.1001/jama.2010.1995] [PMID: 21245181]
[52]
Sun Y, Wang G, Pan Z, Chen S. Systematic review of atorvastatin for the treatment of Alzheimer’s disease. Neural Regen Res 2012; 7(17): 1344-51.
[PMID: 25657666]
[53]
McGuinness B, Craig D, Bullock R, Passmore P. Statins for the prevention of dementia. Cochrane Database Syst Rev 2016; (1): CD003160
[PMID: 26727124]
[54]
Wanamaker BL, Swiger KJ, Blumenthal RS, Martin SS. Cholesterol, statins, and dementia: what the cardiologist should know. Clin Cardiol 2015; 38(4): 243-50.
[http://dx.doi.org/10.1002/clc.22361] [PMID: 25869997]
[55]
Björkhem I, Cedazo-Minguez A, Leoni V, Meaney S. Oxysterols and neurodegenerative diseases. Mol Aspects Med 2009; 30(3): 171-9.
[http://dx.doi.org/10.1016/j.mam.2009.02.001] [PMID: 19248803]
[56]
Zhu X, Lee H, Perry G, Smith MA. Alzheimer disease, the two-hit hypothesis: An update. Biochim Biophys Acta Mol Basis Dis 2007; 1772(4): 494-502.
[http://dx.doi.org/10.1016/j.bbadis.2006.10.014]
[57]
Praticò D. Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy: lights and shadows. Ann N Y Acad Sci 2008; 1147(1): 70-8.
[http://dx.doi.org/10.1196/annals.1427.010] [PMID: 19076432]
[58]
Heneka MT, O’Banion MK, Terwel D, Kummer MP. Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm 2010; 117(8): 919-47.
[http://dx.doi.org/10.1007/s00702-010-0438-z] [PMID: 20632195]
[59]
Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s disease cooperative study. N Engl J Med 1997; 336(17): 1216-22.
[http://dx.doi.org/10.1056/NEJM199704243361704] [PMID: 9110909]
[60]
Nakagami H, Jensen K, Liao J. A novel pleiotropic effect of statins: prevention of cardiac hypertrophy by cholesterol-independent mech-anisms. Ann Med 2003; 35(6): 398-403.
[http://dx.doi.org/10.1080/07853890310001294] [PMID: 14572163]
[61]
Paumelle R, Staels B. Peroxisome proliferator-activated receptors mediate pleiotropic actions of statins. Circ Res 2007; 100(10): 1394-5.
[http://dx.doi.org/10.1161/01.RES.0000269334.42814.d2] [PMID: 17525375]
[62]
Liao JK, Laufs U. Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 2005; 45(1): 89-118.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095748] [PMID: 15822172]
[63]
Thal DR, Griffin WST, de Vos RAI, Ghebremedhin E. Cerebral amyloid angiopathy and its relationship to Alzheimer’s disease. Acta Neuropathol 2008; 115(6): 599-609.
[http://dx.doi.org/10.1007/s00401-008-0366-2] [PMID: 18369648]
[64]
Weller RO, Preston SD, Subash M, Carare RO. Cerebral amyloid angiopathy in the aetiology and immunotherapy of Alzheimer disease. Alzheimers Res Ther 2009; 1(2): 6.
[http://dx.doi.org/10.1186/alzrt6] [PMID: 19822028]
[65]
Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 2004; 5(5): 347-60.
[http://dx.doi.org/10.1038/nrn1387] [PMID: 15100718]
[66]
Bayorh M, Ganafa A, Eatman D, Walton M, Feuerstein G. Simvastatin and losartan enhance nitric oxide and reduce oxidative stress in salt-induced hypertension. Am J Hypertens 2005; 18(11): 1496-502.
[http://dx.doi.org/10.1016/j.amjhyper.2005.05.022] [PMID: 16280288]
[67]
McKee AC, Kosik KS, Kowall NW. Neuritic pathology and dementia in alzheimer’s disease. Ann Neurol 1991; 30(2): 156-65.
[http://dx.doi.org/10.1002/ana.410300206] [PMID: 1910274]
[68]
Rudrabhatla P, Jaffe H, Pant HC. Direct evidence of phosphorylated neuronal intermediate filament proteins in Neuro Fibrillary Tangles (NFTs): Phosphoproteomics of Alzheimer’s NFTs. FASEB J 2011; 25(11): 3896-905.
[http://dx.doi.org/10.1096/fj.11-181297] [PMID: 21828286]
[69]
Jack CR Jr, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical mod-el of dynamic biomarkers. Lancet Neurol 2013; 12(2): 207-16.
[http://dx.doi.org/10.1016/S1474-4422(12)70291-0] [PMID: 23332364]
[70]
Vergouwen MD. Statin treatment and the occurrence of hemorrhagic stroke in patients with a history of cerebrovascular disease.In: Database of Abstracts of Reviews of Effects (DARE): Quality-assessed Reviews York (UK). Centre for Reviews and Dissemination (UK) 2008.
[71]
Vergouwen MDI, de Haan RJ, Vermeulen M, Roos YBWEM. Statin treatment and the occurrence of hemorrhagic stroke in patients with a history of cerebrovascular disease. Stroke 2008; 39(2): 497-502.
[http://dx.doi.org/10.1161/STROKEAHA.107.488791] [PMID: 18174491]
[72]
Sturgeon JD, Folsom AR, Longstreth WT Jr, Shahar E, Rosamond WD, Cushman M. Risk factors for intracerebral hemorrhage in a pooled prospective study. Stroke 2007; 38(10): 2718-25.
[http://dx.doi.org/10.1161/STROKEAHA.107.487090] [PMID: 17761915]
[73]
Michikawa M, Yanagisawa K. Apolipoprotein E4 induces neuronal cell death under conditions of suppressed de novo cholesterol syn-thesis. J Neurosci Res 1998; 54(1): 58-67.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19981001)54:1<58:AID-JNR7>3.0.CO;2-G] [PMID: 9778150]
[74]
Meske V, Albert F, Richter D, Schwarze J, Ohm TG. Blockade of HMG-CoA reductase activity causes changes in microtubule-stabilizing protein tau via suppression of geranylgeranylpyrophosphate formation: implications for Alzheimer’s disease. Eur J Neurosci 2003; 17(1): 93-102.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02433.x] [PMID: 12534972]
[75]
Jeong SM, Shin DW, Yoo TG, et al. Association between statin use and Alzheimer’s disease with dose response relationship. Sci Rep 2021; 11(1): 15280.
[http://dx.doi.org/10.1038/s41598-021-94803-3] [PMID: 34315986]
[76]
Ramkumar S, Raghunath A, Raghunath S. Statin therapy: Review of safety and potential side effects. Zhonghua Minguo Xinzangxue Hui Zazhi 2016; 32(6): 631-9.
[PMID: 27899849]
[77]
Rowan CG, Brunelli SM, Munson J, et al. Clinical importance of the drug interaction between statins and CYP3A4 inhibitors: a retrospec-tive cohort study in The Health Improvement Network. Pharmacoepidemiol Drug Saf 2012; 21(5): 494-506.
[http://dx.doi.org/10.1002/pds.3199] [PMID: 22422642]
[78]
The effect of aggressive versus standard lipid lowering by atorvastatin on diabetic dyslipidemia: the DALI study: a double-blind, ran-domized, placebo-controlled trial in patients with type 2 diabetes and diabetic dyslipidemia. Diabetes Care 2001; 24(8): 1335-41.
[http://dx.doi.org/10.2337/diacare.24.8.1335] [PMID: 11473066]
[79]
Sadeghi R, Asadpour-Piranfar M, Asadollahi M, Taherkhani M, Baseri F. The effects of different doses of atorvastatin on serum lipid profile, glycemic control, and liver enzymes in patients with ischemic cerebrovascular accident. ARYA Atheroscler 2014; 10(6): 298-304.
[PMID: 25815019]
[80]
Jackevicius CA, Tu JV, Krumholz HM, et al. Comparative effectiveness of generic Atorvastatin and Lipitor ® in patients hospitalized with an acute coronary syndrome. J Am Heart Assoc 2016; 5(4)e003350
[http://dx.doi.org/10.1161/JAHA.116.003350] [PMID: 27098970]
[81]
Carlsson CM, Xu G, Wen Z, et al. Effects of atorvastatin on cerebral blood flow in middle-aged adults at risk for Alzheimer’s disease: A pilot study. Curr Alzheimer Res 2012; 9(8): 990-7.
[http://dx.doi.org/10.2174/156720512803251075] [PMID: 22175654]
[82]
Sparks DL, Sabbagh MN, Connor DJ, et al. Atorvastatin for the treatment of mild to moderate Alzheimer disease: Preliminary results. Arch Neurol 2005; 62(5): 753-7.
[http://dx.doi.org/10.1001/archneur.62.5.753] [PMID: 15883262]
[83]
To evaluate the safety and effectiveness of atorvastatin plus a cholinesterase inhibitor in AD Patients. Available from: https://clinicaltrials.gov/ct2/show/results/NCT00151502
[84]
(NIMH), The effect of short-term statin and NSAID treatment on CSF beta-amyloid. Available from: https://clinicaltrials.gov/ct2/show/NCT00046358
[85]
Vogt NM, Hunt JFV, Ma Y, et al. Effects of simvastatin on white matter integrity in healthy middle‐aged adults. Ann Clin Transl Neurol 2021; 8(8): 1656-67.
[http://dx.doi.org/10.1002/acn3.51421] [PMID: 34275209]
[86]
Gepner AD, Lazar K, Hulle CV, Korcarz CE, Asthana S, Carlsson CM. Effects of simvastatin on augmentation index are transient: out-comes from a randomized controlled trial. J Am Heart Assoc 2019; 8(20)e009792
[http://dx.doi.org/10.1161/JAHA.118.009792] [PMID: 31607205]
[87]
Dhuri K, Bechtold C, Quijano E, et al. Antisense oligonucleotides: An emerging area in drug discovery and development. J Clin Med 2020; 9(6): 2004.
[http://dx.doi.org/10.3390/jcm9062004] [PMID: 32604776]
[88]
Bennett CF, Krainer AR, Cleveland DW. Antisense oligonucleotide therapies for neurodegenerative diseases. Annu Rev Neurosci 2019; 42(1): 385-406.
[http://dx.doi.org/10.1146/annurev-neuro-070918-050501] [PMID: 31283897]
[89]
Farr SA, Ripley JL, Sultana R, et al. Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease. Free Radic Biol Med 2014; 67: 387-95.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.11.014] [PMID: 24355211]
[90]
Oxford AE, Stewart ES, Rohn TT. Clinical trials in Alzheimer’s disease: A hurdle in the path of remedy. Int J Alzheimers Dis 2020; 2020: 1-13.
[http://dx.doi.org/10.1155/2020/5380346] [PMID: 32308993]
[91]
Gellad WF, Kesselheim AS. Accelerated approval and expensive drugs-a challenging combination. N Engl J Med 2017; 376(21): 2001-4.
[http://dx.doi.org/10.1056/NEJMp1700446] [PMID: 28538133]
[92]
Wurster CD, Ludolph AC. Antisense oligonucleotides in neurological disorders. Ther Adv Neurol Disord 2018; 11: 1-19.
[http://dx.doi.org/10.1177/1756286418776932] [PMID: 29854003]
[93]
Lee J, Park S, Kim Y, Kim HM, Oh CM. Exploring the genetic associations between the use of statins and Alzheimer’s disease. J Lipid Atheroscler 2022; 11(2): 133-46.
[http://dx.doi.org/10.12997/jla.2022.11.2.133] [PMID: 35656152]

© 2024 Bentham Science Publishers | Privacy Policy