Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Neuroprotective and Anti-Inflammatory Effects of Pioglitazone on Parkinson's Disease: A Comprehensive Narrative Review of Clinical and Experimental Findings

Author(s): Mohammad Yassin Zamanian, Ermias Mergia Terefe, Niloofar Taheri, Małgorzata Kujawska, Yekta Jahedi Tork, Walid Kamal Abdelbasset, Shehla Shoukat, Maria Jade Catalan Opulencia, Mahsa Heidari and Samira Alesaeidi*

Volume 22, Issue 10, 2023

Published on: 02 November, 2022

Page: [1453 - 1461] Pages: 9

DOI: 10.2174/1871527322666221005122408

open access plus

Abstract

Parkinson's disease (PD) is a chronic and progressive neurological disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). The pathogenesis of PD is strongly related to mitochondrial dysfunction, oxidative stress, and neuroinflammation. This indicates that PD can be treated with anti-oxidative substitutes and anti-inflammatory compounds. The neuroprotective and anti-inflammatory effects of peroxisome proliferator-activated receptor γ (PPAR-γ) agonists decrease cell death and halt the increase in neurodegeneration, which is why they have been given a lot of importance in research. Antidiabetic and anti-inflammatory effects have been observed to be generated by pioglitazone (PG), a selective peroxisome proliferator-activated receptor γ (PPAR-γ) agonist that regulates neural plasticity in various neurodegenerative disorders. The neuroprotective and anti-inflammatory effects of PG are assessed in this article. It was found that the patients with DM who received PG treatment were noticeably at a lower risk of PD. However, some clinical studies have not proven a strong link between the therapeutic effects of PG on PD. As per suggestions of preclinical studies, the therapeutic effects of PG treatment include; increased life expectancy of neurons, decreased oxidative stress, halted microglial activity, lower inflammation (reduced NF-κB, COX-2, and iNOS), reduced mitochondrial dysfunction, rise in motor function (motor agility) and non-motor function (lowered cognitive dysfunction). In conclusion, we determined that PG exerts neuroprotective and anti-inflammatory effects in PD models and it can be considered a potential therapeutic candidate for PD.

Keywords: Inflammation, Oxidative Stress, Neuroprotective, NF-κB, Parkinson’s disease, Pioglitazone

[1]
Sveinbjornsdottir S. The clinical symptoms of Parkinson’s disease. J Neurochem 2016; 139(S1): 318-24.
[http://dx.doi.org/10.1111/jnc.13691] [PMID: 27401947]
[2]
Sun P, Lun P, Ji T, et al. HOTTIP downregulation reduces neuronal damage and microglial activation in Parkinson’s disease cell and mouse models. Neural Regen Res 2022; 17(4): 887-97.
[http://dx.doi.org/10.4103/1673-5374.322475] [PMID: 34472490]
[3]
Schneider RB, Iourinets J, Richard IH. Parkinson’s disease psychosis: presentation, diagnosis and management. Neurodegener Dis Manag 2017; 7(6): 365-76.
[http://dx.doi.org/10.2217/nmt-2017-0028] [PMID: 29160144]
[4]
Kujawska M, Jourdes M, Witucki Ł, et al. Pomegranate juice ameliorates dopamine release and behavioral deficits in a rat model of Par-kinson’s disease. Brain Sci 2021; 11(9): 1127.
[http://dx.doi.org/10.3390/brainsci11091127] [PMID: 34573149]
[5]
Marras C, Beck JC, Bower JH, et al. Prevalence of Parkinson’s disease across north America. NPJ Parkinsons Dis 2018; 4(1): 21.
[http://dx.doi.org/10.1038/s41531-018-0058-0] [PMID: 30003140]
[6]
Olanow CW, Schapira AHV. Therapeutic prospects for Parkinson disease. Ann Neurol 2013; 74(3): 337-47.
[http://dx.doi.org/10.1002/ana.24011] [PMID: 24038341]
[7]
Wu HF, Kao LT, Shih JH, et al. Pioglitazone use and Parkinson’s disease: a retrospective cohort study in Taiwan. BMJ Open 2018; 8(8): e023302.
[http://dx.doi.org/10.1136/bmjopen-2018-023302] [PMID: 30158237]
[8]
Agnieszka W, Paweł P, Małgorzata K. How to optimize the effectiveness and safety of Parkinson’s disease therapy? a systematic review of drugs interactions with food and dietary supplements. Curr Neuropharmacol 2021; 20(7): 1427-47.
[PMID: 34784871]
[9]
Prakash S, Carter WG. The neuroprotective effects of cannabis-derived phytocannabinoids and resveratrol in parkinson’s disease: a systematic literature review of pre-clinical studies. Brain Sci 2021; 11(12): 1573.
[http://dx.doi.org/10.3390/brainsci11121573] [PMID: 34942876]
[10]
Kujawska M, Bhardwaj SK, Mishra YK, Kaushik A. Using graphene-based biosensors to detect dopamine for efficient parkinson’s dis-ease diagnostics. Biosensors 2021; 11(11): 433.
[http://dx.doi.org/10.3390/bios11110433] [PMID: 34821649]
[11]
Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease. Neurobiol Dis 2018; 109(Pt B): 249-57.
[12]
Surmeier DJ. Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J 2018; 285(19): 3657-68.
[http://dx.doi.org/10.1111/febs.14607] [PMID: 30028088]
[13]
Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in Parkinson’s disease. Adv Protein Chem Struct Biol 2012; 88: 69-132.
[http://dx.doi.org/10.1016/B978-0-12-398314-5.00004-0] [PMID: 22814707]
[14]
Hong H, Kim BS, Im HI. Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. Int Neurourol J 2016; 20(S1): S2-7.
[http://dx.doi.org/10.5213/inj.1632604.302] [PMID: 27230456]
[15]
Williams GP, Schonhoff AM, Jurkuvenaite A, Gallups NJ, Standaert DG, Harms AS. CD4 T cells mediate brain inflammation and neuro-degeneration in a mouse model of Parkinson’s disease. Brain 2021; 144(7): 2047-59.
[http://dx.doi.org/10.1093/brain/awab103] [PMID: 33704423]
[16]
Brochard V, Combadière B, Prigent A, et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 2009; 119(1): 182-92.
[PMID: 19104149]
[17]
Rocha NP, de Miranda AS, Teixeira AL. Insights into neuroinflammation in parkinson’s disease: from biomarkers to anti-inflammatory based therapies. BioMed Res Int 2015; 2015: 1-12.
[http://dx.doi.org/10.1155/2015/628192] [PMID: 26295044]
[18]
Swanson CR, Joers V, Bondarenko V, et al. The PPAR-γ agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys. J Neuroinflammation 2011; 8(1): 91.
[http://dx.doi.org/10.1186/1742-2094-8-91] [PMID: 21819568]
[19]
Machado MMF, Bassani TB, Cóppola-Segovia V, et al. PPAR-γ agonist pioglitazone reduces microglial proliferation and NF-κB activa-tion in the substantia nigra in the 6-hydroxydopamine model of Parkinson’s disease. Pharmacol Rep 2019; 71(4): 556-64.
[http://dx.doi.org/10.1016/j.pharep.2018.11.005] [PMID: 31132685]
[20]
Li X, Weber NC, Cohn DM, Hollmann MW, DeVries JH, Hermanides J, et al. Effects of hyperglycemia and diabetes mellitus on coagula-tion and hemostasis 2021; 10(11): 2419.
[http://dx.doi.org/10.3390/jcm10112419]
[21]
Bohnen NI, Kotagal V, Müller ML, et al. Diabetes mellitus is independently associated with more severe cognitive impairment in Parkin-son disease 2014; 20(12): 1394-8.
[http://dx.doi.org/10.1016/j.parkreldis.2014.10.008]
[22]
De Pablo-Fernandez E, Goldacre R, Pakpoor J, Noyce AJ, Warner TTJN. Association between diabetes and subsequent Parkinson dis-ease: a record-linkage cohort study 2018; 91(2): e139-42.
[http://dx.doi.org/10.1212/WNL.0000000000005771]
[23]
Schernhammer E, Hansen J, Rugbjerg K, Wermuth L. Diabetes and the risk of developing Parkinson’s disease in Denmark. Diabetes Care 2011; 34(5): 1102-8.
[24]
Sakamoto J, Kimura H, Moriyama S, et al. Activation of human Peroxisome Proliferator-Activated Receptor (PPAR) subtypes by pioglitazone. Biochem Biophys Res Commun 2000; 278(3): 704-11.
[http://dx.doi.org/10.1006/bbrc.2000.3868] [PMID: 11095972]
[25]
Pinto M, Nissanka N, Peralta S, Brambilla R, Diaz F, Moraes CT. Pioglitazone ameliorates the phenotype of a novel Parkinson’s disease mouse model by reducing neuroinflammation. Mol Neurodegener 2016; 11(1): 25.
[http://dx.doi.org/10.1186/s13024-016-0090-7] [PMID: 27038906]
[26]
Wan Z, Shi W, Shao B, et al. Peroxisome proliferator-activated receptor γ agonist pioglitazone inhibits β-catenin-mediated glioma cell growth and invasion. Mol Cell Biochem 2011; 349(1-2): 1-10.
[http://dx.doi.org/10.1007/s11010-010-0637-9] [PMID: 21221726]
[27]
Maeshiba Y, Kiyota Y, Yamashita K, Yoshimura Y, Motohashi M, Tanayama S. Disposition of the new antidiabetic agent pioglitazone in rats, dogs, and monkeys. Arzneimittelforschung 1997; 47(1): 29-35.
[PMID: 9037440]
[28]
Ulusoy GK, Celik T, Kayir H, Gürsoy M, Isik AT, Uzbay TI. Effects of pioglitazone and retinoic acid in a rotenone model of Parkin-son’s disease. Brain Res Bull 2011; 85(6): 380-4.
[http://dx.doi.org/10.1016/j.brainresbull.2011.05.001] [PMID: 21600965]
[29]
Wang Y, Zhao W, Li G, et al. Neuroprotective effect and mechanism of thiazolidinedione on dopaminergic neurons in vivo and in vitro in parkinson’s disease. PPAR Res 2017; 2017: 1-12.
[http://dx.doi.org/10.1155/2017/4089214] [PMID: 28356907]
[30]
Zhang WY, Schwartz EA, Permana PA, Reaven PD. Pioglitazone inhibits the expression of inflammatory cytokines from both monocytes and lymphocytes in patients with impaired glucose tolerance. Arterioscler Thromb Vasc Biol 2008; 28(12): 2312-8.
[http://dx.doi.org/10.1161/ATVBAHA.108.175687] [PMID: 18818415]
[31]
Wu Z, Zhao S, Chu L, Ye H. Pioglitazone reduces tumor necrosis factor-α serum concentration and mRNA expression of adipose tissue in hypercholesterolemic rabbits. Int J Cardiol 2010; 138(2): 151-6.
[http://dx.doi.org/10.1016/j.ijcard.2008.08.009] [PMID: 18809217]
[32]
Park JS, Cho MH, Nam JS, et al. Effect of pioglitazone on serum concentrations of osteoprotegerin in patients with type 2 diabetes melli-tus. Eur J Endocrinol 2011; 164(1): 69-74.
[http://dx.doi.org/10.1530/EJE-10-0875] [PMID: 20961967]
[33]
Bordet R, Ouk T, Petrault O, et al. PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans 2006; 34(6): 1341-6.
[http://dx.doi.org/10.1042/BST0341341] [PMID: 17073815]
[34]
de Oliveira LG, Angelo YS, Iglesias AH, Peron JPS. Unraveling the link between mitochondrial dynamics and neuroinflammation. Front Immunol 2021; 12: 624919.
[http://dx.doi.org/10.3389/fimmu.2021.624919] [PMID: 33796100]
[35]
Aviles-Olmos I, Limousin P, Lees A, Foltynie T. Parkinson’s disease, insulin resistance and novel agents of neuroprotection. Brain 2013; 136(2): 374-84.
[http://dx.doi.org/10.1093/brain/aws009] [PMID: 22344583]
[36]
Schapira AHV, Olanow CW, Greenamyre JT, Bezard E. Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: future therapeutic perspectives. Lancet 2014; 384(9942): 545-55.
[http://dx.doi.org/10.1016/S0140-6736(14)61010-2] [PMID: 24954676]
[37]
Morató L, Galino J, Ruiz M, et al. Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy. Brain 2013; 136(8): 2432-43.
[http://dx.doi.org/10.1093/brain/awt143] [PMID: 23794606]
[38]
Hunter RL, Choi DY, Ross SA, Bing G. Protective properties afforded by pioglitazone against intrastriatal LPS in sprague–dawley rats. Neurosci Lett 2008; 432(3): 198-201.
[http://dx.doi.org/10.1016/j.neulet.2007.12.019] [PMID: 18207323]
[39]
Chang YH, Yen SJ, Chang YH, Wu WJ, Lin KD. Pioglitazone and statins lower incidence of Parkinson disease in patients with diabetes mellitus. Eur J Neurol 2021; 28(2): 430-7.
[http://dx.doi.org/10.1111/ene.14542] [PMID: 32969141]
[40]
Yang YW, Hsieh TF, Li CI, et al. Increased risk of Parkinson disease with diabetes mellitus in a population-based study. Medicine 2017; 96(3): e5921.
[http://dx.doi.org/10.1097/MD.0000000000005921] [PMID: 28099356]
[41]
Cereda E, Barichella M, Pedrolli C, et al. Diabetes and risk of Parkinson’s disease: a systematic review and meta-analysis. Diabetes Care 2011; 34(12): 2614-23.
[http://dx.doi.org/10.2337/dc11-1584] [PMID: 22110170]
[42]
Brauer R, Bhaskaran K, Chaturvedi N, Dexter DT, Smeeth L, Douglas I. Glitazone treatment and incidence of parkinson’s disease among people with diabetes: A retrospective cohort study. PLoS Med 2015; 12(7): e1001854.
[http://dx.doi.org/10.1371/journal.pmed.1001854] [PMID: 26196151]
[43]
Kalia LV, Kalia SK, Lang AE. Disease-modifying strategies for Parkinson’s disease. Mov Disord 2015; 30(11): 1442-50.
[http://dx.doi.org/10.1002/mds.26354] [PMID: 26208210]
[44]
Carta AR. PPAR-γ: therapeutic prospects in Parkinson’s disease. Curr Drug Targets 2013; 14(7): 743-51.
[http://dx.doi.org/10.2174/1389450111314070004] [PMID: 23469878]
[45]
Eschbach J, von Einem B, Müller K, et al. Mutual exacerbation of peroxisome proliferator-activated receptor γ coactivator 1α deregula-tion and α-synuclein oligomerization. Ann Neurol 2015; 77(1): 15-32.
[http://dx.doi.org/10.1002/ana.24294] [PMID: 25363075]
[46]
Swanson C, Emborg M. Expression of peroxisome proliferator-activated receptor-gamma in the substantia nigra of hemiparkinsonian nonhuman primates. Neurol Res 2014; 36(7): 634-46.
[http://dx.doi.org/10.1179/1743132813Y.0000000305] [PMID: 24620964]
[47]
Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB. Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with IκBα induction and block of NFκB and iNOS activation. J Neurochem 2004; 88(2): 494-501.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02210.x] [PMID: 14690537]
[48]
NINDS Exploratory Trials. in Parkinson Disease (NET-PD) FS-ZONE Investigators. Pioglitazone in early Parkinson’s disease: a phase 2, multicentre, double-blind, randomised trial. Lancet Neurol 2015; 14(8): 795-803.
[http://dx.doi.org/10.1016/S1474-4422(15)00144-1] [PMID: 26116315]
[49]
Connolly JG, Bykov K, Gagne JJ. Thiazolidinediones and Parkinson disease: A cohort study. Am J Epidemiol 2015; 182(11): 936-44.
[http://dx.doi.org/10.1093/aje/kwv109] [PMID: 26493264]
[50]
Campos AC, Ortega Z, Palazuelos J, et al. The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis: involvement of the endocannabinoid system. Int J Neuropsychopharmacol 2013; 16(6): 1407-19.
[http://dx.doi.org/10.1017/S1461145712001502] [PMID: 23298518]
[51]
Marsh L. Depression and Parkinson’s disease: current knowledge. Curr Neurol Neurosci Rep 2013; 13(12): 409.
[http://dx.doi.org/10.1007/s11910-013-0409-5] [PMID: 24190780]
[52]
Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S. Time course and morphology of dopaminergic neuronal death caused] by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 1995; 4(3): 257-69.
[http://dx.doi.org/10.1016/1055-8330(95)90015-2] [PMID: 8581558]
[53]
Quinn LP, Crook B, Hows ME, et al. The PPARγ agonist pioglitazone is effective in the MPTP mouse model of Parkinson’s disease through inhibition of monoamine oxidase B. Br J Pharmacol 2008; 154(1): 226-33.
[http://dx.doi.org/10.1038/bjp.2008.78] [PMID: 18332857]
[54]
Barbiero JK, Santiago RM, Persike DS, et al. Neuroprotective effects of peroxisome proliferator-activated receptor alpha and gamma agonists in model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine. Behav Brain Res 2014; 274: 390-9.
[http://dx.doi.org/10.1016/j.bbr.2014.08.014] [PMID: 25127682]
[55]
Bonato JM, Bassani TB, Milani H, Vital MABF, de Oliveira RMW. Pioglitazone reduces mortality, prevents depressive-like behavior, and impacts hippocampal neurogenesis in the 6-OHDA model of Parkinson’s disease in rats. Exp Neurol 2018; 300: 188-200.
[http://dx.doi.org/10.1016/j.expneurol.2017.11.009] [PMID: 29162435]
[56]
Breidert T, Callebert J, Heneka MT, Landreth G, Launay JM, Hirsch EC. Protective action of the peroxisome proliferator-activated recep-tor-γ agonist pioglitazone in a mouse model of Parkinson’s disease. J Neurochem 2002; 82(3): 615-24.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00990.x] [PMID: 12153485]
[57]
Gerhard A, Pavese N, Hotton G, et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 2006; 21(2): 404-12.
[http://dx.doi.org/10.1016/j.nbd.2005.08.002] [PMID: 16182554]
[58]
Bortolanza M, Cavalcanti-Kiwiatkoski R, Padovan-Neto FE, et al. Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson’s disease. Neurobiol Dis 2015; 73: 377-87.
[http://dx.doi.org/10.1016/j.nbd.2014.10.017] [PMID: 25447229]
[59]
McGeer PL, Schwab C, Parent A, Doudet D. Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol 2003; 54(5): 599-604.
[http://dx.doi.org/10.1002/ana.10728] [PMID: 14595649]
[60]
Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 2002; 81(6): 1285-97.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00928.x] [PMID: 12068076]
[61]
Kim YS, Joh TH. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 2006; 38(4): 333-47.
[http://dx.doi.org/10.1038/emm.2006.40] [PMID: 16953112]
[62]
Hou Y, Li X, Liu C, et al. Neuroprotective effects of short-chain fatty acids in MPTP induced mice model of Parkinson’s disease. Exp Gerontol 2021; 150: 111376.
[http://dx.doi.org/10.1016/j.exger.2021.111376] [PMID: 33905875]
[63]
Reksidler AB, Lima MMS, Dombrowski P, et al. Repeated intranigral MPTP administration: A new protocol of prolonged locomotor impairment mimicking Parkinson’s disease. J Neurosci Methods 2008; 167(2): 268-77.
[http://dx.doi.org/10.1016/j.jneumeth.2007.08.024] [PMID: 17931705]
[64]
Reksidler AB, Lima M, Dombrowski PA, et al. Distinct effects of intranigral L-DOPA infusion in the MPTP rat model of Parkinson’s disease birth, life and death of dopaminergic neurons in the substantia nigra. Springer 2009; pp. 259-68.
[65]
Lima MMS, Reksidler ABB, Vital MABF. The neurobiology of the substantia nigra pars compacta: from motor to sleep regulation. J Neural Transm Suppl 2009; (73): 135-45.
[http://dx.doi.org/10.1007/978-3-211-92660-4_11] [PMID: 20411774]
[66]
Barbiero JK, Santiago RM, Lima MMS, et al. Acute but not chronic administration of pioglitazone promoted behavioral and neurochemi-cal protective effects in the MPTP model of Parkinson’s disease. Behav Brain Res 2011; 216(1): 186-92.
[http://dx.doi.org/10.1016/j.bbr.2010.07.033] [PMID: 20688106]
[67]
Laloux C, Petrault M, Lecointe C, Devos D, Bordet R. Differential susceptibility to the PPAR-γ agonist pioglitazone in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine rodent models of Parkinson’s disease. Pharmacol Res 2012; 65(5): 514-22.
[http://dx.doi.org/10.1016/j.phrs.2012.02.008] [PMID: 22391246]
[68]
Smeyne RJ, Jackson-Lewis V. The MPTP model of Parkinson’s disease. Brain Res Mol Brain Res 2005; 134(1): 57-66.
[http://dx.doi.org/10.1016/j.molbrainres.2004.09.017] [PMID: 15790530]
[69]
Pathan AR, Viswanad B, Sonkusare SK, Ramarao P. Chronic administration of pioglitazone attenuates intracerebroventricular strepto-zotocin induced-memory impairment in rats. Life Sci 2006; 79(23): 2209-16.
[http://dx.doi.org/10.1016/j.lfs.2006.07.018] [PMID: 16904700]
[70]
Kumar P, Kaundal RK, More S, Sharma SS. Beneficial effects of pioglitazone on cognitive impairment in MPTP model of Parkinson’s disease. Behav Brain Res 2009; 197(2): 398-403.
[http://dx.doi.org/10.1016/j.bbr.2008.10.010] [PMID: 18983875]
[71]
Blackburn JK, Jamwal S, Wang W, Elsworth JD. Pioglitazone transiently stimulates paraoxonase-2 expression in male nonhuman primate brain: Implications for sex-specific therapeutics in neurodegenerative disorders. Neurochem Int 2022; 152: 105222.
[http://dx.doi.org/10.1016/j.neuint.2021.105222] [PMID: 34767873]
[72]
Vijitruth R, Liu M, Choi DY, Nguyen XV, Hunter RL, Bing G. Cyclooxygenase-2 mediates microglial activation and secondary dopamin-ergic cell death in the mouse MPTP model of Parkinson’s disease. J Neuroinflammation 2006; 3(1): 6.
[http://dx.doi.org/10.1186/1742-2094-3-6] [PMID: 16566823]
[73]
Teismann P, Vila M, Choi DK, et al. COX-2 and neurodegeneration in Parkinson’s disease. Ann N Y Acad Sci 2003; 991(1): 272-7.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb07482.x] [PMID: 12846993]
[74]
Hunter RL, Dragicevic N, Seifert K, et al. Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem 2007; 100(5): 1375-86.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04327.x] [PMID: 17254027]
[75]
Onodera Y, Teramura T, Takehara T, Shigi K, Fukuda K. Reactive oxygen species induce Cox‐2 expression via TAK1 activation in syn-ovial fibroblast cells. FEBS Open Bio 2015; 5(1): 492-501.
[http://dx.doi.org/10.1016/j.fob.2015.06.001] [PMID: 26110105]
[76]
Li YJ, Zhang T, Tu JX, Li G, Zhou Y. Tangeretin inhibits IL-1β induced proliferation of rheumatoid synovial fibroblasts and the produc-tion of COX-2, PGE2 and MMPs via modulation of p38 MAPK/ERK/JNK pathways. Bangladesh J Pharmacol 2015; 10(3): 714-25.
[http://dx.doi.org/10.3329/bjp.v10i3.22865]
[77]
Xing B, Liu M, Bing G. Neuroprotection with pioglitazone against LPS insult on dopaminergic neurons may be associated with its inhibi-tion of NF-κB and JNK activation and suppression of COX-2 activity. J Neuroimmunol 2007; 192(1-2): 89-98.
[http://dx.doi.org/10.1016/j.jneuroim.2007.09.029] [PMID: 17976742]

© 2025 Bentham Science Publishers | Privacy Policy