Generic placeholder image

Recent Advances in Food, Nutrition & Agriculture

Editor-in-Chief

ISSN (Print): 2772-574X
ISSN (Online): 2772-5758

Mini-Review Article

Sustainable Approaches to Boost Yield and Chemical Constituents of Aromatic and Medicinal Plants by Application of Biostimulants

Author(s): Mohamad Hesam Shahrajabian and Wenli Sun*

Volume 13, Issue 2, 2022

Published on: 20 October, 2022

Page: [72 - 92] Pages: 21

DOI: 10.2174/2772574X13666221004151822

Price: $65

Abstract

Introduction: Biostimulants consist of natural ingredients, metabolites of fermentation, micro-organisms, algae or plant extracts, bacteria, mushrooms, humus substances, amino acids, biomolecules, etc.

Methods: In this study, all relevant English-language articles were collected. The literature was reviewed using the keywords of biostimulant, medicinal plant, aromatic plant, natural products, and pharmaceutical benefits from Google Scholar, Scopus, and PubMed databases.

Results: The significant and promoting impact of biostimulants has been reported for different medicinal and aromatic plants, such as salicylic acid for ajuga, artichoke, ajwain, basil, common rue, common sage, common thyme, coneflower, coriander, dendrobium, desert Indian wheat, dragonhead, fennel, fenugreek, feverfew, ginger, groundnut, guava, henna, Iranian soda, lavender, lemon balm, lemongrass, Malabar spinach; seaweed extract on almond, bird,s eye chili; amino acids on artemisia, broccoli, chamomile, beneficial bacteria on ashwagandha; humic acid on black cumin, cannabis, chicory, garlic, gerbera, Hungarian vetch, Moldavian dragonhead, niger plant; chitosan on dragon fruit, marigold, milk thistle, etc. The suggested mechanisms include the stimulatory impacts on the activity of enzymes involved in different biosynthetic processes, the hormone-like activity of biostimulant compounds and the improvement of nutrient uptake of plants.

Conclusion: The current manuscript gives many examples of the potential of biostimulants for medicinal and aromatic plant production. However, further studies are needed to better understand the effectiveness of different biostimulants and foliar applications in sustainable agriculture.

Keywords: Biostimulant, Salicylic acid, humic acid, medicinal plant, aromatic plant, natural product

« Previous
Graphical Abstract

[1]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Exploring Artemisia annua L., artemisinin and its derivatives, from traditional Chinese wonder medicinal science. Not. Bot. Horti Agrobot. Cluj-Napoca, 2020, 48(4), 1719-1741.
[http://dx.doi.org/10.15835/nbha48412002]
[2]
Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants application: A low input cropping management tool for sustainable farming vegetables. Biomolecules, 2021, 11(5), 698.
[http://dx.doi.org/10.3390/biom11050698] [PMID: 34067181]
[3]
Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Tzortzakis, N.; Petropoulos, S.A. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules, 2021, 11(6), 819.
[http://dx.doi.org/10.3390/biom11060819] [PMID: 34072781]
[4]
Davies, P.J. The plant hormones: Their nature, occurrence, and functions. In: Plant Hormones: Biosynthesis, Signal Transduction and Action, 3rd ed.; Davies, P.J., Ed.; Springer Science + Business Media B.V.:: Dordrecht, 2010; pp. 1-15.
[5]
Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil, 2014, 383(1-2), 3-41.
[http://dx.doi.org/10.1007/s11104-014-2131-8]
[6]
Bhattacharya, A.; Sood, P.; Citovsky, V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol. Plant Pathol., 2010, 11(5), 705-719.
[http://dx.doi.org/10.1111/j.1364-3703.2010.00625.x] [PMID: 20696007]
[7]
Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 2019, 24(13), 2452.
[http://dx.doi.org/10.3390/molecules24132452] [PMID: 31277395]
[8]
Eraslan, F.; Inal, A.; Gunes, A.; Alpaslan, M. Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci. Hortic. (Amsterdam), 2007, 113(2), 120-128.
[http://dx.doi.org/10.1016/j.scienta.2007.03.012]
[9]
Lefevere, H.; Bauters, L.; Gheysen, G. Salicyli acid biosynthesis in plants. Front. Plant Sci., 2020, 11, 338.
[http://dx.doi.org/10.3389/fpls.2020.00338] [PMID: 32362901]
[10]
Ali, B. Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatal. Agric. Biotechnol., 2021, 31, 101884.
[http://dx.doi.org/10.1016/j.bcab.2020.101884]
[11]
Guo, X.; Liu, H.; Wu, S. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Sci. Total Environ., 2019, 662, 501-510.
[http://dx.doi.org/10.1016/j.scitotenv.2019.01.137] [PMID: 30695750]
[12]
Xiang, Y.; Kang, F.; Xiang, Y.; Jiao, Y. Effects of humic acid-modified magnetic Fe3O4/MgAl-layered double hydroxide on the plant growth, soil enzyme activity, and metal availability. Ecotoxicol. Environ. Saf., 2019, 182, 109424.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109424] [PMID: 31299478]
[13]
Ouni, Y.; Ghnaya, T.; Montemurro, F.; Abdelly, Ch.; Lakhdar, A. The role of humic substances in mitigating the harmful effects of soil salinity and improve plant productivity. Int. J. Plant Prod., 2014, 8(3), 353-374.
[14]
Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. (Amsterdam), 2015, 196, 15-27.
[http://dx.doi.org/10.1016/j.scienta.2015.09.013]
[15]
Bah, C.S.F.; Bekhit, A.E.D.A.; Carne, A.; McConnell, M.A. Production of bioactive peptide hydrolysates from deer, sheep and pig plasma using plant and fungal protease preparations. Food Chem., 2015, 176, 54-63.
[http://dx.doi.org/10.1016/j.foodchem.2014.12.025] [PMID: 25624206]
[16]
Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. (Amsterdam), 2015, 196, 28-38.
[http://dx.doi.org/10.1016/j.scienta.2015.08.037]
[17]
Shahrajabian, M.H.; Sun, W.; Soleymani, A.; Cheng, Q. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother. Res., 2020, 2020(1), 1-11.
[PMID: 33350538]
[18]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Molecular breeding and the impacts of some important genes families on agronomic traits, a review. Genet. Resour. Crop Evol., 2021, 68, 1709-1730.
[http://dx.doi.org/10.1007/s10722-021-01148-x]
[19]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Spanish chamomile (Anacyclus pyrethrum) and pyrethrum (Tanacetum cineraiifolium): Organic and natural pesticides and treasure of medicinal herbs. Not. Sci. Biol., 2021, 13(1), 10816.
[http://dx.doi.org/10.15835/nsb13110816]
[20]
Marmitt, D.J.; Shahrajabian, M.H. Plant species used in Brazil and Asia regions with toxic properties. Phytother. Res., 2021, 35(9), 4703-4726.
[http://dx.doi.org/10.1002/ptr.7100] [PMID: 33793002]
[21]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini Rev. Med. Chem., 2021, 21(6), 724-730.
[http://dx.doi.org/10.2174/1389557520666201127104907] [PMID: 33245271]
[22]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Barberry (Berberis vulgaris), a medicinal fruit and food with traditional and modern pharmaceutical uses. Isr. J. Plant Sci., 2021, 68(1-2), 61-71.
[http://dx.doi.org/10.1163/22238980-bja10019]
[23]
Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 2010, 48(12), 909-930.
[http://dx.doi.org/10.1016/j.plaphy.2010.08.016] [PMID: 20870416]
[24]
Babaei, S.; Niknam, V.; Behmanesh, M. Comparative effects of nitric oxide and salicylic acid on salinity tolerance in saffron (Crocus sativus). Plant Biosyst., 2021, 155(1), 73-82.
[25]
Kumari, R.; Kaur, I.; Bhatnagar, A.K. Effect of aqueous extract of Sargassum johnstonii Setchell & Gardner on growth, yield and quality of Lycopersicon esculentum Mill. J. Appl. Phycol., 2011, 23(3), 623-633.
[http://dx.doi.org/10.1007/s10811-011-9651-x]
[26]
khudus, S.; Kumar, A. Beneficial effects of biostimulants in various flower crops and ornamental plants. Int. J. Curr. Microbiol. Appl. Sci., 2020, 9(10), 1873-1878.
[http://dx.doi.org/10.20546/ijcmas.2020.910.229]
[27]
Li, T.; Hu, Y.J.; Hao, Z.P.; Li, H.; Chen, B.D. Aquaporin genes GintAQPF1 and GintAQPF2 from Glomus intraradices contribute to plant drought tolerance. Plant Signal. Behav., 2013, 8(5), e24030.
[http://dx.doi.org/10.4161/psb.24030] [PMID: 23435173]
[28]
Carillo, P.; Colla, G.; Fusco, G.M.; Dell’Aversana, E.; El-Nakhel, C.; Giordano, M.; Pannico, A.; Cozzolino, E.; Mori, M.; Reynaud, H.; Kyriacou, M.C.; Cardarelli, M.; Rouphael, Y. Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach. Agronomy (Basel), 2019, 9(8), 450.
[http://dx.doi.org/10.3390/agronomy9080450]
[29]
Xu, C.; Mou, B. Chitosan as soil amendment affects lettuce growth, photochemical efficiency, and gas exchange. Horttechnology, 2018, 28(4), 476-480.
[http://dx.doi.org/10.21273/HORTTECH04032-18]
[30]
Kopta, T.; Pavlíková, M. Sękara, A.; Pokluda, R.; Maršálek, B. Effect of bacterial-algal biostimulant on the yield and internal quality of lettuce (Lactuca sativa L.) produced for spring and summer crop. Not. Bot. Horti Agrobot. Cluj-Napoca, 2018, 46(2), 615-621.
[http://dx.doi.org/10.15835/nbha46211110]
[31]
Türkmen, Ö.; Dursun, A.; Turan, M.; Erdinç, Ç. Calcium and humic acid affect seed germination, growth, and nutrient content of tomato (Lycopersicon esculentum L.) seedlings under saline soil conditions. Acta Agric. Scand. B Soil Plant Sci., 2004, 54(3), 168-174.
[http://dx.doi.org/10.1080/09064710310022014]
[32]
Suman, S.; Spehia, R.S.; Sharma, V. Humic acid improved efficiency of fertigation and productivity of tomato. J. Plant Nutr., 2017, 40(3), 439-446.
[http://dx.doi.org/10.1080/01904167.2016.1245325]
[33]
Yildirim, E. Foliar and soil fertilization of humic acid affect productivity and quality of tomato. Acta Agric. Scand. B Soil Plant Sci., 2007, 57(2), 182-186.
[http://dx.doi.org/10.1080/09064710600813107]
[34]
Razavi Nasab, A.; Fotovat, A.; Astaraie, A.; Tajabadipour, A. Effect of organic waste and humic acid on some growth parameters and nutrients concentration of pistachio seedlings. Commun. Soil Sci. Plant Anal., 2019, 50(3), 254-264.
[http://dx.doi.org/10.1080/00103624.2018.1559328]
[35]
de Morais, E.G.; Silva, C.A.; Maluf, H.J.G.M. Soaking of seedlings roots in humic acid as an effective practice to improve Eucalyptus nutrition and growth. Commun. Soil Sci. Plant Anal., 2021, 52(12), 1399-1415.
[http://dx.doi.org/10.1080/00103624.2021.1885686]
[36]
Yazdani, B.; Nikbakht, A.; Etemadi, N. Physiological effects of different combinations of humic and fulvic acid on gerbera. Commun. Soil Sci. Plant Anal., 2014, 45(10), 1357-1368.
[http://dx.doi.org/10.1080/00103624.2013.875200]
[37]
Desoky, E.S.M.; ElSayed, A.I.; Merwad, A.R.M.A.; Rady, M.M. Stimulating antioxidant defenses, antioxidant gene expression, and salt tolerance in Pisum sativum seedling by pretreatment using licorice root extract (LRE) as an organic biostimulant. Plant Physiol. Biochem., 2019, 142, 292-302.
[http://dx.doi.org/10.1016/j.plaphy.2019.07.020] [PMID: 31351320]
[38]
Hoeberichts, F.A.; Povero, G.; Ibañez, M.; Strijker, A.; Pezzolato, D.; Mills, R.; Piaggesi, A. Next Generation Sequencing to characterise the breaking of bud dormancy using a natural biostimulant in kiwifruit (Actinidia deliciosa). Sci. Hortic. (Amsterdam), 2017, 225, 252-263.
[http://dx.doi.org/10.1016/j.scienta.2017.07.011]
[39]
Barrajón-Catalán, E.; Álvarez-Martínez, F.J.; Borrás, F.; Pérez, D.; Herrero, N.; Ruiz, J.J.; Micol, V. Metabolomic analysis of the effects of a commercial complex biostimulant on pepper crops. Food Chem., 2020, 310, 125818.
[http://dx.doi.org/10.1016/j.foodchem.2019.125818] [PMID: 31787397]
[40]
Ngoroyemoto, N.; Gupta, S.; Kulkarni, M.G.; Finnie, J.F.; Van Staden, J. Effect of organic biostimulants on the growth and biochemical composition of Amaranthus hybridus L. S. Afr. J. Bot., 2019, 124, 87-93.
[http://dx.doi.org/10.1016/j.sajb.2019.03.040]
[41]
Wise, K.; Gill, H.; Selby-Pham, J. Willow bark extract and the biostimulant complex Root Nectar® increase propagation efficiency in chrysanthemum and lavender cuttings. Sci. Hortic. (Amsterdam), 2020, 263, 109108.
[http://dx.doi.org/10.1016/j.scienta.2019.109108]
[42]
Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic., 2015, 31(1), 1-17.
[http://dx.doi.org/10.1080/01448765.2014.964649]
[43]
Szczepanek, M.; Wilczewski, E. Pobereżny, J.; Wszelaczyńska, E.; Ochmian, I. Carrot root size distribution in response to biostimulant application. Acta Agric. Scand. B Soil Plant Sci., 2017, 67(4), 334-339.
[http://dx.doi.org/10.1080/09064710.2017.1278783]
[44]
Monder, M.J.; Niedzielski, M. Woliński, K. Effect of rooting preparations on protein, chlorophyll and carotenoid content in leaves of Rosa gallica ‘Duchesse d’Angoulême’ cuttings. Dendrobiology (Pozn.), 2014, 72, 29-39.
[http://dx.doi.org/10.12657/denbio.072.002]
[45]
Ertani, A.; Pizzeghello, D.; Francioso, O.; Sambo, P.; Sanchez-Cortes, S.; Nardi, S. Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: chemical and metabolomic approaches. Front. Plant Sci., 2014, 5, 375.
[http://dx.doi.org/10.3389/fpls.2014.00375] [PMID: 25136346]
[46]
Parađiković N.; Zeljković S.; Tkalec, M.; Vinković T.; Maksimović I.; Haramija, J. Influence of biostimulant application on growth, nutrient status and proline concentration of begonia transplants. Biol. Agric. Hortic., 2017, 33(2), 89-96.
[http://dx.doi.org/10.1080/01448765.2016.1205513]
[47]
Hanafy, M.S.; Heikal, A.A.M.; El-Ghawwas, E.O.; Ali, Z.H. The effect of cattle manure and biostimulants on growth and essential oil production of southernwood Artemisia (Artemisia abrotanum L.) plants. Middle East J Agric Res, 2017, 06(04), 1218-1231.
[48]
Uchenna, M.N.; Theophilus, C.N.N.; Emmanuel, I.; Peter, I.E. Effects of Moringa oleifera leaf extract on morphological and physiological growth of cassava and its efficacy in controlling Zonocerus variegatus. Afr. J. Biotechnol., 2015, 14(32), 2494-2500.
[http://dx.doi.org/10.5897/AJB2015.14534]
[49]
Kim, M.J.; Shim, C.K.; Kim, Y.K.; Ko, B.G.; Park, J.H.; Hwang, S.G.; Kim, B.H. Effect of biostimulator Chlorella fusca on improving growth and qualities of Chinese chives and spinach in organic farm. Plant Pathol. J., 2018, 34(6), 567-574.
[http://dx.doi.org/10.5423/PPJ.FT.11.2018.0254] [PMID: 30588229]
[50]
Ahmad, I.; Tanveer, M.U.; Liaqat, M.; Dole, J.M. Comparison of corm soaks with preharvest foliar application of moringa leaf extract for improving growth and yield of cut Freesia hybrida. Sci. Hortic. (Amsterdam), 2019, 254, 21-25.
[http://dx.doi.org/10.1016/j.scienta.2019.04.074]
[51]
El-Serafy, R.S.; El-Sheshtawy, A.A. Effect of nitrogen fixing bacteria and moringa leaf extract on fruit yield, estragole content and total phenols of organic fennel. Sci. Hortic. (Amsterdam), 2020, 265, 109209.
[http://dx.doi.org/10.1016/j.scienta.2020.109209]
[52]
Zheng, X.; Li, Y.; Xi, X.; Ma, C.; Sun, Z.; Yang, X.; Li, X.; Tian, Y.; Wang, C. Exogenous Strigolactones alleviate KCl stress by regulating photosynthesis, ROS migration and ion transport in Malus hupehensis Rehd. Plant Physiol. Biochem., 2021, 159, 113-122.
[http://dx.doi.org/10.1016/j.plaphy.2020.12.015] [PMID: 33359960]
[53]
Haider Abbasi, B.; Ullah, M.A.; Nadeem, M.; Tungmunnithum, D.; Hano, C. Exogenous application of salicylic acid and gibberellic acid on biomass accumulation, antioxidant and anti-inflammatory secondary metabolites production in multiple shoot culture of Ajuga integrifolia Buch. Ham. ex D. Don. Ind. Crops Prod., 2020, 145, 112098.
[http://dx.doi.org/10.1016/j.indcrop.2020.112098]
[54]
Fathi, S.H.; Najafian, S.H. Morpho-physiological and biochemical properties of Carum copticum (L.): Effects of salicylic acid. Iran J. Plant Physiol., 2020, 10(2), 3103-3112.
[55]
Saidi, I.; Yousfi, N.; Borgi, M.A. Salicylic acid improves the antioxidant ability against arsenic-induced oxidative stress in sunflower (Helianthus annuus) seedling. J. Plant Nutr., 2017, 40(16), 2326-2335.
[http://dx.doi.org/10.1080/01904167.2017.1310888]
[56]
Sedghi, M.; Gholi-Toluie, S. Influence of salicylic acid on the antimicrobial potential of Stevia (Stevia rebaudiana Bertoni, Asteraceae) leaf extracts against soybean seed-borne pathogens. Trop. J. Pharm. Res., 2014, 12(6), 1035-1038.
[http://dx.doi.org/10.4314/tjpr.v12i6.25]
[57]
Daghaghian, H.; Mortazaie, N.F.; Bahreininejad, B. Physiological response of the medicinal plant artichoke (Cynara scolymus L.) to exogenous salicylic acid under field saline conditions. J. Hortic. Sci. Biotechnol., 2017, 92(4), 1-8.
[http://dx.doi.org/10.1080/14620316.2016.1205960]
[58]
Radhakrishnan, N.; Balasubramanian, R. Salicylic acid induced defence responses in Curcuma longa (L.) against Pythium aphanidermatum infection. Crop Prot., 2009, 28(11), 974-979.
[http://dx.doi.org/10.1016/j.cropro.2009.07.010]
[59]
Goudarzi, T.; Saharkhiz, M.J.; Rowshan, V.; Taban, A. Changes in essential oil content and composition of Tansy (Tanacetum vulgare L.) under foliar application of salicylic and orthophosphoric acids. J. Essent. Oil Res., 2016, 28(1), 64-70.
[http://dx.doi.org/10.1080/10412905.2015.1077166]
[60]
Nazar, R.; Umar, S.; Khan, N.A. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signal. Behav., 2015, 10(3), e1003751.
[http://dx.doi.org/10.1080/15592324.2014.1003751] [PMID: 25730495]
[61]
Zaid, A.; Mohammad, F.; Wani, S.H.; Siddique, K.M.H. Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. Ecotoxicol. Environ. Saf., 2019, 180, 575-587.
[http://dx.doi.org/10.1016/j.ecoenv.2019.05.042] [PMID: 31129436]
[62]
Zewail, R.M.Y.; El-Desoukey, H.S.; Islam, K.R. Chromium stress alleviation by salicylic acid in Malabar spinach (Basella alba). J. Plant Nutr., 2020, 43(9), 1268-1285.
[http://dx.doi.org/10.1080/01904167.2020.1727504]
[63]
Miclea, I.; Suhani, A.; Zahan, M.; Bunea, A. Effect of jasmonic acid and salicylic acid on growth and biochemical composition of in vitro propagated Lavandula angustifolia Mill. Agronomy (Basel), 1722, 2020(10), 1-14.
[64]
Idrees, M.; Khan, M.M.A.; Aftab, T.; Naeem, M.; Hashmi, N. Salicylic acid-induced physiological and biochemical changes in lemongrass varieties under water stress. J. Plant Interact., 2010, 5(4), 293-303.
[http://dx.doi.org/10.1080/17429145.2010.508566]
[65]
Mallahi, T.; Saharkhiz, M.J.; Javanmardi, J. Salicylic acid changes morpho-physiological attributes of feverfew (Tanacetum parthenium L.) under salinity stress. Acta Ecol. Sin., 2018, 38(5), 351-355.
[http://dx.doi.org/10.1016/j.chnaes.2018.02.003]
[66]
Kulak, M.; Jorrín-Novo, J.V.; Romero-Rodriguez, M.C.; Yildirim, E.D.; Gul, F.; Karaman, S. Seed priming with salicylic acid on plant growth and essential oil composition in basil (Ocimum basilicum L.) plants grown under water stress conditions. Ind. Crops Prod., 2021, 161, 113235.
[http://dx.doi.org/10.1016/j.indcrop.2020.113235]
[67]
Kahveci, H.; Bilginer, N.; Diraz-Yildirim, E.; Kulak, M.; Yazar, E.; Kocacinar, F.; Karaman, S. Priming with salicylic acid, β-carotene and tryptophan modulates growth, phenolics and essential oil components of Ocimum basilicum L. grown under salinity. Sci. Hortic. (Amsterdam), 2021, 281, 109964.
[http://dx.doi.org/10.1016/j.scienta.2021.109964]
[68]
Idrees, M.; Naeem, M.; Aftab, T.; Khan, M.M.A. Moinuddin, Salicylic acid restrains nickel toxicity, improves antioxidant defence system and enhances the production of anticancer alkaloids in Catharanthus roseus (L.). J. Hazard. Mater., 2013, 252-253, 367-374.
[http://dx.doi.org/10.1016/j.jhazmat.2013.03.005] [PMID: 23597961]
[69]
Shaki, F.; Ebrahimzadeh Maboud, H.; Niknam, V. Central role of salicylic acid in resistance of safflower (Carthamus tinctorius L.) against salinity. J. Plant Interact., 2017, 12(1), 414-420.
[http://dx.doi.org/10.1080/17429145.2017.1373870]
[70]
Rahmani, I.; Ahmadi, N.; Ghanati, F.; Sadeghi, M. Effects of salicylic acid applied pre- or post-transport on post-harvest characteristics and antioxidant enzyme activity of gladiolus cut flower spikes. N. Z. J. Crop Hortic. Sci., 2015, 43(4), 294-305.
[http://dx.doi.org/10.1080/01140671.2015.1096799]
[71]
Khalil, N.; Fekry, M.; Bishr, M.; El-Zalabani, S.; Salama, O. Foliar spraying of salicylic acid induced accumulation of phenolics, increased radical scavenging activity and modified the composition of the essential oil of water stressed Thymus vulgaris L. Plant Physiol. Biochem., 2018, 123, 65-74.
[http://dx.doi.org/10.1016/j.plaphy.2017.12.007] [PMID: 29223848]
[72]
Darvizheh, H.; Zahedi, M.; Abbaszadeh, B.; Razmjoo, J. Changes in some antioxidant enzymes and physiological indices of purple coneflower (Echinacea purpurea L.) in response to water deficit and foliar application of salicylic acid and spermine under field condition. Sci. Hortic. (Amsterdam), 2019, 247, 390-399.
[http://dx.doi.org/10.1016/j.scienta.2018.12.037]
[73]
Liu, T.; Li, T.; Zhang, L.; Li, H.; Liu, S.; Yang, S.; An, Q.; Pan, C.; Zou, N. Exogenous salicylic acid alleviates the accumulation of pesticides and mitigates pesticide-induced oxidative stress in cucumber plants (Cucumis sativus L.). Ecotoxicol. Environ. Saf., 2021, 208, 111654.
[http://dx.doi.org/10.1016/j.ecoenv.2020.111654] [PMID: 33396168]
[74]
Belkadhi, A.; De Haro, A.; Obregon, S.; Chaïbi, W.; Djebali, W. Exogenous salicylic acid protects phospholipids against cadmium stress in flax (Linum usitatissimum L.). Ecotoxicol. Environ. Saf., 2015, 120, 102-109.
[http://dx.doi.org/10.1016/j.ecoenv.2015.05.028] [PMID: 26057076]
[75]
Sinha, P.; Shukla, A.K.; Sharma, Y.K. Amelioration of heavy-metal toxicity in cauliflower by application of salicylic acid. Commun. Soil Sci. Plant Anal., 2015, 46(10), 1309-1319.
[http://dx.doi.org/10.1080/00103624.2015.1033543]
[76]
Momeni, M.; Pirbalouti, A.G.; Mousavi, A.; Badi, H.N. Effect of foliar applications of salicylic acid and chitosan on the essential oil of Thymbra spicata L. under different soil moisture conditions. J. Essent. Oil-Bear. Plants, 2020, 23(5), 1142-1153.
[http://dx.doi.org/10.1080/0972060X.2020.1801519]
[77]
Singh, P.K.; Chaturvedi, V.K. Effects of salicylic acid on seedling growth and nitrogen use efficiency in cucumber (Cucumis sativus L.). Plant Biosyst., 2012, 146(2), 302-308.
[78]
Attia, E.Z.; Abd El-Baky, R.M.; Desoukey, S.Y.; El Hakeem Mohamed, M.A.; Bishr, M.M.; Kamel, M.S. Chemical composition and antimicrobial activities of essential oils of Ruta graveolens plants treated with salicylic acid under drought stress conditions. Fut. J. Pharm. Sci., 2018, 4(2), 254-264.
[http://dx.doi.org/10.1016/j.fjps.2018.09.001]
[79]
Yadegari, M. Foliar application effects of salicylic acid and jasmonic acid on the essential oil composition of Salvia officinalis. Turk Biyokim. Derg., 2018, 43(4), 417-424.
[http://dx.doi.org/10.1515/tjb-2017-0183]
[80]
Es-sbihi, F.Z.; Hazzoumi, Z.; Amrani, J.K. Effect of salicylic acid foliar application on growth, glandular hairs and essential oil yield in Salvia officinalis L. grown under zinc stress. Chem. Biol. Technol. Agric., 2020, 7(1), 26.
[http://dx.doi.org/10.1186/s40538-020-00192-6]
[81]
Miri, S.M.; Ahmadi, S.; Moradi, P. Influence of salicylic acid and citric acid on the growth, biochemical characteristics and essential oil content of Thyme (Thymus vulgaris L.). J. Med. Plants By-Prod., 2015, 2, 141-146.
[82]
Osama, S.; El Sherei, M.; Al-Mahdy, D.A.; Bishr, M.; Salama, O. Effect of salicylic acid foliar spraying on growth parameters, γ-pyrones, phenolic content and radical scavenging activity of drought stressed Ammi visnaga L. plant. Ind. Crops Prod., 2019, 134, 1-10.
[http://dx.doi.org/10.1016/j.indcrop.2019.03.035]
[83]
Shekofteh, H.; Shahrokhi, H.; Solimani, E. Effect of drought stress and salicylic acid on yield and mucilage content of the medicinal herb Plantago ovata Forssk. Desert, 2015, 20(2), 245-252.
[84]
Nasiri, Y.; Zandi, H.; Morshedloo, M.R. Effect of salicylic acid and ascorbic acid on essential oil content and composition of Dragonhead (Dracocephalum moldavica L.) under organic farming. J. Essent. Oil-Bear. Plants, 2018, 21(2), 362-373.
[http://dx.doi.org/10.1080/0972060X.2018.1453383]
[85]
Saa, S.; Olivos-Del Rio, A.; Castro, S.; Brown, P.H. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill. D. A. Webb). Front. Plant Sci., 2015, 6, 87.
[http://dx.doi.org/10.3389/fpls.2015.00087] [PMID: 25755660]
[86]
Rouphael, Y.; De Micco, V.; Arena, C.; Raimondi, G.; Colla, G.; De Pascale, S. Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange, and leaf anatomy of zucchini squash grown under saline conditions. J. Appl. Phycol., 2017, 29(1), 459-470.
[http://dx.doi.org/10.1007/s10811-016-0937-x]
[87]
Vijayakumar, S.; Durgadevi, S.; Arulmozhi, P.; Rajalakshmi, S.; Gopalakrishnan, T.; Parameswari, N. Effect of seaweed liquid fertilizer on yield and quality of Capsicum annum L. Acta Ecol. Sin., 2019, 39(5), 406-410.
[http://dx.doi.org/10.1016/j.chnaes.2018.10.001]
[88]
Shamya Arokia rajan, M.; Thriunavukkarasu, R.; Joseph, J.; Aruni, W. Effect of seaweed on seed germination and biochemical constituents of Capsicum annuum. Biocatal. Agric. Biotechnol., 2020, 29, 101761.
[http://dx.doi.org/10.1016/j.bcab.2020.101761]
[89]
Rathore, S.S.; Chaudhary, D.R.; Boricha, G.N.; Ghosh, A.; Bhatt, B.P.; Zodape, S.T.; Patolia, J.S. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. S. Afr. J. Bot., 2009, 75(2), 351-355.
[http://dx.doi.org/10.1016/j.sajb.2008.10.009]
[90]
Vasantharaja, R.; Abraham, L.S.; Inbakandan, D.; Thirugnanasambandam, R.; Senthilvelan, T.; Jabeen, S.K.A.; Prakash, P. Influence of seaweed extracts on growth, phytochemical contents and antioxidant capacity of cowpea (Vigna unguiculata L. Walp). Biocatal. Agric. Biotechnol., 2019, 17, 589-594.
[http://dx.doi.org/10.1016/j.bcab.2019.01.021]
[91]
Anli, M.; Kaoua, M.E.L. ait-el-Mokhtar, M.; Boutasknit, A.; ben-Laouane, R.; Toubali, S.; Baslam, M.; Lyamlouli, K.; Hafidi, M.; Meddich, A. Seaweed extract application and arbuscular mycorrhizal fungal inoculation: A tool for promoting growth and development of date palm (Phoenix dactylifera L.) cv «Boufgous». S. Afr. J. Bot., 2020, 132, 15-21.
[http://dx.doi.org/10.1016/j.sajb.2020.04.004]
[92]
Dehkordi, R.A.; Roghani, S.R.; Mafakheri, S.; Asghari, B. Effect of biostimulants on morpho-physiological traits of various ecotypes of fenugreek (Trigonella foenum-graecum L.) under water deficit stress. Sci. Hortic. (Amsterdam), 2021, 283, 110077.
[http://dx.doi.org/10.1016/j.scienta.2021.110077]
[93]
Manea, A.I.; Abbas, K.A.U. Influence of seaweed extract, organic and inorganic fertilizer on growth and yield broccoli. Int. J. Veg. Sci., 2018, 24(6), 550-556.
[http://dx.doi.org/10.1080/19315260.2018.1446205]
[94]
Bernstein, N.; Gorelick, J.; Zerahia, R.; Koch, S. Impact of N, P, K, and humic acid supplementation of the chemical profile of medical cannabis (Cannabis sativa L.). Front. Plant Sci., 2019, 10, 736.
[http://dx.doi.org/10.3389/fpls.2019.00736] [PMID: 31263470]
[95]
Karimi, E.; Shirmardi, M.; Dehestani Ardakani, M.; Gholamnezhad, J.; Zarebanadkouki, M. The effect of humic acid and biochar on growth and nutrients uptake Calendula (Calendula officinalis L.). Commun. Soil Sci. Plant Anal., 2020, 51(12), 1658-1669.
[http://dx.doi.org/10.1080/00103624.2020.1791157]
[96]
Gholami, H.; Saharkhiz, M.J.; Raouf Fard, F.; Ghani, A.; Nadaf, F. Humic acid and vermicompost increased bioactive components, antioxidant activity and herb yield of Chicory (Cichorium intybus L.). Biocatal. Agric. Biotechnol., 2018, 14, 286-292.
[http://dx.doi.org/10.1016/j.bcab.2018.03.021]
[97]
Duan, D.; Tong, J.; Xu, Q.; Dai, L.; Ye, J.; Wu, H.; Xu, C.; Shi, J. Regulation mechanisms of humic acid on Pb stress in tea plant (Camellia sinensis L.). Environ. Pollut., 2020, 267, 115546.
[http://dx.doi.org/10.1016/j.envpol.2020.115546] [PMID: 32892024]
[98]
Bayat, H.; Shafie, F.; Aminifard, M.H.; Daghighi, S. Comparative effects of humic and fulvic acids as biostimulants on growth, antioxidant activity and nutrient content of yarrow (Achillea millefolium L.). Sci. Hortic. (Amsterdam), 2021, 279, 109912.
[http://dx.doi.org/10.1016/j.scienta.2021.109912]
[99]
Tadayyon, A.; Beheshti, S.; Pessarakli, M. Effects of sprayed humic acid, iron, and zinc on quantitative and qualitative characteristics of niger plant (Guizotia abyssinica L.). J. Plant Nutr., 2017, 40(11), 1644-1650.
[http://dx.doi.org/10.1080/01904167.2016.1270321]
[100]
Haghighi, M.; Teixeira Da Silva, J.A. Amendment of hydroponic nutrient solution with humic acid and glutamic acid in tomato (Lycopersicon esculentum Mill.) culture. Soil Sci. Plant Nutr., 2013, 59(4), 642-648.
[http://dx.doi.org/10.1080/00380768.2013.809599]
[101]
Amani Machiani, M.; Rezaei-Chiyaneh, E.; Javanmard, A.; Maggi, F.; Morshedloo, M.R. Evaluation of common bean (Phaseolus vulgaris L.) seed yield and quali-quantitative production of the essential oils from fennel (Foeniculum vulgare Mill.) and dragonhead (Dracocephalum moldavica L.) in intercropping system under humic acid application. J. Clean. Prod., 2019, 235, 112-122.
[http://dx.doi.org/10.1016/j.jclepro.2019.06.241]
[102]
Noroozisharaf, A.; Kaviani, M. Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions. Physiol. Mol. Biol. Plants, 2018, 24(3), 423-431.
[http://dx.doi.org/10.1007/s12298-018-0510-y] [PMID: 29692550]
[103]
Fang, Z.; Wang, X.; Zhang, X.; Zhao, D.; Tao, J. Effects of fulvic acid on the photosynthetic and physiological characteristics of Paeonia ostii under drought stress. Plant Signal. Behav., 2020, 15(7), 1774714.
[http://dx.doi.org/10.1080/15592324.2020.1774714] [PMID: 32498663]
[104]
Jat, R.S.; Basak, B.B.; Gajbhiye, N.A. Organic manures and biostimulants fostered soil health and increased the harvest quality of the medicinal herb ashwagandha. Agron. J., 2021, 113(1), 504-514.
[http://dx.doi.org/10.1002/agj2.20457]
[105]
Hidalgo-Santiago, L.; Navarro-León, E.; López-Moreno, F.J.; Arjó, G.; González, L.M.; Ruiz, J.M.; Blasco, B. The application of the silicon-based biostimulant Codasil® offset water deficit of lettuce plants. Sci. Hortic. (Amsterdam), 2021, 285, 110177.
[http://dx.doi.org/10.1016/j.scienta.2021.110177]
[106]
Shafie, F.; Bayat, H.; Aminifard, M.H.; Daghighi, S. Biostimulant effects of seaweed extract and amino acids on growth, antioxidants, and nutrient content of yarrow (Achillea millefolium L.) in the field and greenhouse conditions. Commun. Soil Sci. Plant Anal., 2021, 52(9), 964-975.
[http://dx.doi.org/10.1080/00103624.2021.1872596]
[107]
EL-Zefzafy. M.M.; Shahhat, I.M.A.; Yousef, R.S.; Elsharkawy, E.R. Infl uence of foliar application with amino acids and citric acid on physiological and phytochemical responses of Artemisia abrotanum produced by in vitro culture. Biosci. Biotechnol. Res. Commun., 2016, 9(4), 702-711.
[http://dx.doi.org/10.21786/bbrc/9.4/18]
[108]
Kałużewicz, A.; Gąsecka, M.; Spiżewski, T. Influence of biostimulants on phenolic content in broccoli heads directly after harvest and after storage. Folia Hortic., 2017, 29(2), 221-230.
[http://dx.doi.org/10.1515/fhort-2017-0020]
[109]
Haj Seyed Hadi, M.R.; Taghi Darz, M.; Ghandehari, Z.; Riazi, G. Effects of vermicompost and amino acids on the flower yield and essential oil production from Matricaria chamomile L. J. Med. Plants Res., 2011, 5(23), 5611-5617.
[110]
Dzung, P.D.; Phu, D.V.; Du, B.D.; Ngoc, L.S.; Duy, N.N.; Hiet, H.D.; Nghia, D.H.; Thang, N.T.; Le, B.V.; Hien, N.Q. Effect of foliar application of oligochitosan with different molecular weight on growth promotion and fruit yield enhancement of chili plant. Plant Prod. Sci., 2017, 20(4), 389-395.
[http://dx.doi.org/10.1080/1343943X.2017.1399803]
[111]
Rodrigues-Brandão, I.; Kleinowski, A.M.; Einhardt, A.M.; Lima, M.C.; Amarante, L.; Peters, J.A.; Braga, E.J.B. Salicylic acid on antioxidant activity and betacyan in production from leaves of Alternanthera tenella. Cienc. Rural, 2014, 44(10), 1893-1898.
[http://dx.doi.org/10.1590/0103-8478cr20130873]
[112]
Hawrylak-Nowak, B.; Dresler, S.; Rubinowska, K.; Matraszek-Gawron, R. Eliciting effect of foliar application of chitosan lactate on the phytochemical properties of Ocimum basilicum L. and Melissa officinalis L. Food Chem., 2021, 342, 128358.
[http://dx.doi.org/10.1016/j.foodchem.2020.128358] [PMID: 33092914]
[113]
Zahid, N.; Ali, A.; Manickam, S.; Siddiqui, Y.; Alderson, P.G.; Maqbool, M. Efficacy of curative applications of submicron chitosan dispersions on anthracnose intensity and vegetative growth of dragon fruit plants. Crop Prot., 2014, 62, 129-134.
[http://dx.doi.org/10.1016/j.cropro.2014.04.010]
[114]
Zahid, N.; Maqbool, M.; Ali, A.; Siddiqui, Y.; Bhatti, Q.A. Inhibition in production of cellulolytic and pectinolytic enzymes of Colletotrichum gloeosporioides isolated from dragon fruit plants in response to submicron chitosan dispersions. Sci. Hortic. (Amsterdam), 2019, 243, 314-319.
[http://dx.doi.org/10.1016/j.scienta.2018.08.011]
[115]
Abdul-Hafeez, E.Y.; Ibrahim, O.H.M. Effects of chitosan and BABA foliar application on flowering and chemical characteristics of German chamomile ‘Bode-gold’. S. Afr. J. Bot., 2021, 139, 241-245.
[http://dx.doi.org/10.1016/j.sajb.2021.01.037]
[116]
Prabhu, M.; Kumar, A.R.; Rajamani, K. Influence of different organic substances on growth and herb yield of sacred basil (Ocimum sanctum L.). Indian J. Agric. Res., 2010, 44(1), 48-52.
[117]
Kwiatkowski, C.A.; Juszczak, J. The response of sweet basil (Ocimum basilicum L.) to the application of growth stimulators and forecrops. Acta Agrobot., 2012, 64(2), 69-76.
[http://dx.doi.org/10.5586/aa.2011.019]
[118]
Elhindi, K.M.; Al-Amri, S.M.; Abdel-Salam, E.M.; Al-Suhaibani, N.A. Effectiveness of salicylic acid in mitigating salt-induced adverse effects on different physio-biochemical attributes in sweet basil (Ocimum basilicum L.). J. Plant Nutr., 2017, 40(6), 908-919.
[http://dx.doi.org/10.1080/01904167.2016.1270311]
[119]
Damalas, C.A. Improving drought tolerance in sweet basil (Ocimum basilicum) with salicylic acid. Sci. Hortic. (Amsterdam), 2019, 246, 360-365.
[http://dx.doi.org/10.1016/j.scienta.2018.11.005]
[120]
Bayat, H.R.; Belopukhov, S. The effect of humic acid, plant growth promoting rhizobacteria and seaweed on essential oil, growth parameters and chlorophyll content in basil (Ocimum basilicum L.). Agric. Res. Technol., 2019, 19(4), 00192-00197.
[121]
Taha, R.S.; Alharby, H.F.; Bamagoos, A.A.; Medani, R.A.; Rady, M.M. Elevating tolerance of drought stress in Ocimum basilicum using pollen grains extract; a natural biostimulant by regulation of plant performance and antioxidant defense system. S. Afr. J. Bot., 2020, 128, 42-53.
[http://dx.doi.org/10.1016/j.sajb.2019.09.014]
[122]
Boveiri Dehsheikh, A.; Mahmoodi Sourestani, M.; Zolfaghari, M.; Enayatizamir, N. Changes in soil microbial activity, essential oil quantity, and quality of Thai basil as response to biofertilizers and humic acid. J. Clean. Prod., 2020, 256, 120439.
[http://dx.doi.org/10.1016/j.jclepro.2020.120439]
[123]
Mota, I.; Sanchez-Sanchez, J.; Pedro, L.G.; Sousa, M.J. Composition variation of the essential oil from Ocimum basilicum L. cv. Geovese Gigante in response to Glomus intraradices and mild water stress at different stages of growth. Biochem. Syst. Ecol., 2020, 90(104021)
[124]
Safaei, Z.; Azizi, M.; Davarynejad, G.; Aroiee, H. The effect of foliar application of humic acid and nanofertilizer (Pharmks®) on yield and yield components of black cumin (Nigella sativa L.). J. Med. Plants By-Prod., 2014, 2, 133-140.
[125]
Al-Sman, M.K.; Abo-Elyousr, K.A.M.; Eraky, A.; El-Zawahry, A. Efficiency of Pseudomonas spp.-based formulation for controlling root rot disease of black cumin under greenhouse and field conditions. Arch. Phytopathol. Pflanzenschutz, 2019, 52(19-20), 1313-1325.
[http://dx.doi.org/10.1080/03235408.2019.1707384]
[126]
Verma, P.; Sen, N.L. The impact of plant growth regulators on growth and biochemical constituents of coriander (Coriandrum sativum L.). J. Herbs Spices Med. Plants, 2008, 14(3-4), 144-153.
[http://dx.doi.org/10.1080/10496470802598685]
[127]
Hesami, S.; Nabizadeh, E.; Rahimi, A.R.; Rokhzadi, A. Effects of salicylic acid levels and irrigation intervals on growth and yield of coriander (Coriandrum sativum) in field conditions. Environ Experiment Biol, 2012, 10, 113-116.
[128]
Shirkhodaei, M.; Darzi, M.T.; Haj Seyed Hadi, M.R. Influence of vermicompost and biostimulant on the growth and biomass of coriander (Coriandrum sativum L.). Int. J. Adv. Biol. Biomed. Res., 2014, 2(3), 706-714.
[129]
Pokluda, R. Sękara, A.; Jezdinský, A.; Kalisz, A.; Neugebauerová, J.; Grabowska, A. The physiological status and stress biomarker concentration of Coriandrum sativum L. plants subjected to chilling are modified by biostimulant application. Biol. Agric. Hortic., 2016, 32(4), 258-268.
[http://dx.doi.org/10.1080/01448765.2016.1172344]
[130]
Vinogradov, D.; Lupova, E.; Khromtsev, D.; Vasileva, V. The influence of bio-stimulants on productivity of coriander in the non-chernozem zone of Russia. Bulg. J. Agric. Sci., 2018, 26(6), 1078-1084.
[131]
Aminifard, M.H.; Jorkesh, A.; Fallahi, H.R.; Moslemi, F.S. Influences of benzyl adenine and salicylic acid and on growth, yield, and biochemical characteristics of coriander (Coriandrum sativum L.). S. Afr. J. Bot., 2020, 132, 299-303.
[http://dx.doi.org/10.1016/j.sajb.2020.05.019]
[132]
Yuan, Z.; Cong, G.; Zhang, J. Effects of exogenous salicylic acid on polysaccharides production of Dendrobium officinale. S. Afr. J. Bot., 2014, 95, 78-84.
[http://dx.doi.org/10.1016/j.sajb.2014.08.007]
[133]
Kabiri, R.; Hatami, A.; Naghizadeh, M. Effect of drought stress and its interaction with salicylic acid on fennel (Foeniculum vulgare Mill.) germination and early seedling growth. J Med Plants By-products, 2014, 2, 107-116.
[134]
Ghilavizadeh, A.; Masouleh, E.H.; Zakerin, H.R.; Valadabadi, S.A.R.; Sayfzadeh, S.; Yousefi, M. Influence of salicylic acid on growth, yield and macro-elements absorption of fennel (Foeniculum vulgare Mill.) under water stress. J. Med. Plants By-Prod., 2019, 1, 67-75.
[135]
Evelin, H.; Giri, B.; Kapoor, R. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza, 2012, 22(3), 203-217.
[http://dx.doi.org/10.1007/s00572-011-0392-0] [PMID: 21695577]
[136]
Ghasemi, S.N.; Fallah, S.; Pokhrel, L.R.; Rostamnejadi, A. Natural amelioration of Zinc oxide nanoparticle toxicity in fenugreek (Trigonella foenum-gracum) by arbuscular mycorrhizal (Glomus intraradices) secretion of glomalin. Plant Physiol. Biochem., 2017, 112, 227-238.
[http://dx.doi.org/10.1016/j.plaphy.2017.01.001] [PMID: 28107731]
[137]
Mabrouk, B.; Kâab, S.B.; Rezgui, M.; Majdoub, N.; Teixeira da Silva, J.A.; Kâab, L.B.B. Salicylic acid alleviates arsenic and zinc toxicity in the process of reserve mobilization in germinating fenugreek (Trigonella foenum-graecum L.) seeds. S. Afr. J. Bot., 2019, 124, 235-243.
[http://dx.doi.org/10.1016/j.sajb.2019.05.020]
[138]
Beyzi, E.; Gürbüz, B. Influence of sowing date and humic acid on fenugreek (Trigonella foenum-graecum L.). J. Appl. Res. Med. Aromat. Plants, 2020, 16, 100234.
[http://dx.doi.org/10.1016/j.jarmap.2019.100234]
[139]
Lisjak, M. Tomić O.; Špoljarević M.; Teklić T.; Stanisavljević A.; Balas, J. Garden cress germinability and seedling vigour after treatment with plant extracts. Poljoprivreda (Osijek), 2015, 21(2), 41-46.
[http://dx.doi.org/10.18047/poljo.21.2.7]
[140]
Abdel-Razz, H.S.; El-Sharkaw, G.A. Effect of biofertilizer and humic acid applications on growth, yield, quality and storability of two garlic (Allium sativum L.) cultivars. Asian J. Crop Sci., 2012, 5(1), 48-64.
[http://dx.doi.org/10.3923/ajcs.2013.48.64]
[141]
Manas, D.; Soumya, G.; Kheyali, S. Effect of humic acid application on accumulation of mineral nutrition and pungency in garlic (Allium sativum L.). Int. J. Biotechnol. Mol. Biol. Res., 2014, 5(2), 7-12.
[http://dx.doi.org/10.5897/IJBMBR2014.0186]
[142]
Jędrszczyk, E.; Kopeć A.; Bucki, P.; Ambroszczyk, A.M.; Skowera, B. The enhancing effect of plants growth biostimulants in garlic cultivation on the chemical composition and level of bioactive compounds in the garlic leaves, stems and bulbs. Not. Bot. Horti Agrobot. Cluj-Napoca, 2018, 47(1), 81-91.
[http://dx.doi.org/10.15835/nbha47111074]
[143]
Ali, E.F.; Hassan, F.A.S.; Elgimabi, M. Improving the growth, yield and volatile oil content of Pelargonium graveolens L. Herit by foliar application with moringa leaf extract through motivating physiological and biochemical parameters. S. Afr. J. Bot., 2018, 119, 383-389.
[http://dx.doi.org/10.1016/j.sajb.2018.10.003]
[144]
Nikbakht, A.; Kafi, M.; Babalar, M.; Xia, Y.P.; Luo, A.; Etemadi, N. Effect of humic acid on plant growth, nutrient uptake, and postharvest life of Gerbera. J. Plant Nutr., 2008, 31(12), 2155-2167.
[http://dx.doi.org/10.1080/01904160802462819]
[145]
Haghighi, M.; Nikbakht, A.; Xia, Y.P.; Pessarakli, M. Solution on growth, nutrient efficiency, and postharvest attributes of Gerbera. Commun. Soil Sci. Plant Anal., 2014, 45(2), 177-188.
[http://dx.doi.org/10.1080/00103624.2013.848885]
[146]
Ali Ghasemzadeh. Jaafar, H.Z.E. Effect of salicylic acid application on biochemical changes in ginger (Zingiber officinale Roscoe). J. Med. Plants Res., 2012, 6(5), 790-795.
[http://dx.doi.org/10.5897/JMPR11.1459]
[147]
Tian, L.; Shi, S.; Ma, L.; Zhou, X.; Luo, S.; Zhang, J.; Lu, B.; Tian, C. The effect of Glomus intraradices on the physiological properties of Panax ginseng and on rhizospheric microbial diversity. J. Ginseng Res., 2019, 43(1), 77-85.
[http://dx.doi.org/10.1016/j.jgr.2017.08.005] [PMID: 30662296]
[148]
Negro, D.; Montesano, V.; Sonnante, G.; Rubino, P.; De Lisi, A.; Sarli, G. Fertilization strategies on cultivars of globe artichoke: Effects on yield and quality performance. J. Plant Nutr., 2016, 39(2), 279-287.
[http://dx.doi.org/10.1080/01904167.2015.1022185]
[149]
Kong, J.; Dong, Y.; Xu, L.; Liu, S.; Bai, X. Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. Bot. Stud. (Taipei, Taiwan), 2014, 55(1), 9.
[http://dx.doi.org/10.1186/1999-3110-55-9] [PMID: 28510913]
[150]
Shamili, M.; Esfandiari Ghalati, R.; Samari, F. The impact of foliar salicylic acid in salt-exposed guava (Psidium guajava L.) seedlings. Int. J. Fruit Sci., 2021, 21(1), 323-333.
[http://dx.doi.org/10.1080/15538362.2021.1887050]
[151]
Farahbakhsh, H.; Pasandi Pour, A.; Reiahi, N. Physiological response of henna (Lawsonia inermise L.) to salicylic acid and salinity. Plant Prod. Sci., 2017, 20(2), 237-247.
[http://dx.doi.org/10.1080/1343943X.2017.1299581]
[152]
Moustafa, H.E.B.; Ahmed, S.S.; Shahin, S.M. Effect of foliar spray with potassium silicate on growth and active constituents of horseradish armiractetra (Moringa oleifera Lam.) plants grown in some soils of Egypt. Middle East J Agric Res, 2018, 7(01), 60-70.
[153]
Esringü, A.; Kaynar, D.; Turan, M.; Ercisli, S. Ameliorative effect of humic aid and plant growth-promoting rhizobacteria (PGPR) on Hungarian vetch plants under salinity stress. Commun. Soil Sci. Plant Anal., 2016, 47(5), 602-618.
[http://dx.doi.org/10.1080/00103624.2016.1141922]
[154]
Sharifi, Y.; Nematzadeh, G.A.; Ghasemi, O.V.; Tavabe, G.T.S.; Ebrahimzadeh, M.A. Effect of salicylic acid on phenols and flavonoids content in callus culture of Iranian sodab (Ruta graveolens): A threatened medicinal plant of North of Iran. Tabari Biomed. Stud. Res. J., 2019, 1(3), 32-36.
[155]
Fett-Neto, A.G.; Melanson, S.J.; Nicholson, S.A.; Pennington, J.J.; DiCosmo, F. Improved taxol yield by aromatic carboxylic acid and amino acid feeding to cell cultures oftaxus cuspidata. Biotechnol. Bioeng., 1994, 44(8), 967-971.
[http://dx.doi.org/10.1002/bit.260440813] [PMID: 18618915]
[156]
Safari, F.; Akramian, M.; Salehi-Arjmand, H.; Khadivi, A. Physiological and molecular mechanisms underlying salicylic acid-mitigated mercury toxicity in lemon balm (Melissa officinalis L.). Ecotoxicol. Environ. Saf., 2019, 183, 109542.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109542] [PMID: 31401333]
[157]
Hatami, M.; Khanizadeh, P.; Bovand, F.; Aghaee, A. Silicon nanoparticle-mediated seed priming and Pseudomonas spp. inoculation augment growth, physiology and antioxidant metabolic status in Melissa officinalis L. plants. Ind. Crops Prod., 2021, 162, 113238.
[http://dx.doi.org/10.1016/j.indcrop.2021.113238]
[158]
Caporale, A.G.; Sommella, A.; Lorito, M.; Lombardi, N.; Azam, S.M.G.G.; Pigna, M.; Ruocco, M. Trichoderma spp. alleviate phytotoxicity in lettuce plants (Lactuca sativa L.) irrigated with arsenic-contaminated water. J. Plant Physiol., 2014, 171(15), 1378-1384.
[http://dx.doi.org/10.1016/j.jplph.2014.05.011] [PMID: 25046759]
[159]
Lucini, L.; Rouphael, Y.; Cardarelli, M.; Canaguier, R.; Kumar, P.; Colla, G. The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci. Hortic. (Amsterdam), 2015, 182, 124-133.
[http://dx.doi.org/10.1016/j.scienta.2014.11.022]
[160]
Shehata, S.M.; Schmidhalter, U.; Valšíková, M.; Junge, H. Effect of bio-stimulants on yield and quality of head lettuce grown under two sources of nitrogen. Gesunde Pflanzen, 2016, 68(1), 33-39.
[http://dx.doi.org/10.1007/s10343-016-0357-5]
[161]
Chrysargyris, A.; Xylia, P.; Anastasiou, M.; Pantelides, I.; Tzortzakis, N. Effects of Ascophyllum nodosum seaweed extracts on lettuce growth, physiology and fresh-cut salad storage under potassium deficiency. J. Sci. Food Agric., 2018, 98(15), 5861-5872.
[http://dx.doi.org/10.1002/jsfa.9139] [PMID: 29797323]
[162]
Torres, P.; Novaes, P.; Ferreira, L.G.; Santos, J.P.; Mazepa, E.; Duarte, M.E.R.; Noseda, M.D.; Chow, F.; dos Santos, D.Y.A.C. Effects of extracts and isolated molecules of two species of Gracilaria (Gracilariales, Rhodophyta) on early growth of lettuce. Algal Res., 2018, 32, 142-149.
[http://dx.doi.org/10.1016/j.algal.2018.03.016]
[163]
Wang, Y.; Yang, R.; Zheng, J.; Shen, Z.; Xu, X. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). Ecotoxicol. Environ. Saf., 2019, 167, 10-19.
[http://dx.doi.org/10.1016/j.ecoenv.2018.08.064] [PMID: 30292971]
[164]
Khan, S.; Yu, H.; Li, Q.; Gao, Y.; Sallam, B.N.; Wang, H.; Liu, P.; Jiang, W. Exogenous application of amino acids improves the growth and yield of lettuce by enhancing photosynthetic assimilation and nutrient availability. Agronomy (Basel), 2019, 9(5), 266.
[http://dx.doi.org/10.3390/agronomy9050266]
[165]
Russo, R.; Poincelot, R.P.; Berlyn, G.P. The use of a commercial organic biostimulant for improved production of marigold cultivars. J. Home Consumer Horticultr., 1993, 1(1), 83-93.
[http://dx.doi.org/10.1300/J280v01n01_05]
[166]
Rafiee, H.; Mehrafarin, A.; Qaderi, A.; Kalate Jari, S.; Naghdi Badi, H. Phytochemical, agronomical and morphological responses of pot Marigold (Calendula officinalis L.) to foliar application of bio-stimulators (Bioactive amino acid compounds). Faslnamah-i Giyahan-i Daruyi, 2013, 12(47), 48-61.
[167]
Zeljkovic, S.; Paradikovic, N.; Vinkovic, T.; Tkalec, M.; Maksimovic, I.; Haramija, J. Nutrient status, growth and proline concentration of French marigold (Tagetes patula L.) as affected by biostimulant treatment. J. Food Agric. Environ., 2013, 11, 2324-2327.
[168]
Safikhan, S.; Khoshbakht, K.; Chaichi, M.R.; Amini, A.; Motesharezadeh, B. Role of chitosan on the growth, physiological parameters and enzymatic activity of milk thistle (Silybum marianum (L.) Gaertn.) in a pot experiment. J. Appl. Res. Med. Aromat. Plants, 2018, 10, 49-58.
[http://dx.doi.org/10.1016/j.jarmap.2018.06.002]
[169]
Estaji, A.; Niknam, F. Foliar salicylic acid spraying effect’ on growth, seed oil content, and physiology of drought-stressed Silybum marianum L. plant. Agric. Water Manage., 2020, 234, 106116.
[http://dx.doi.org/10.1016/j.agwat.2020.106116]
[170]
Ratnakumari, R.; Nagamani, A.; Sarojini, C.K.; Adinarayana, G. Effect of Trichoderma species on yield of Mentha arvensis L. Int. J. Adv. Res. (Indore), 2014, 2(7), 864-867.
[171]
Elansary, H.O.; Mahmoud, E.A.; El-Ansary, D.O.; Mattar, M.A. Effects of water stress and modern biostimulants on growth and quality characteristics of mint. Agronomy (Basel), 2020, 10(6), 1-16.
[172]
Samadimatin, A.; Hani, A. Effect of ethanol and humic acid foliar spraying on morphological traits, photosynthetic pigments and quality and quantity of essential oil content of Dracocephalum moldavica L. Iran J. Plant Physiol., 2017, 8(1), 2299-2306.
[173]
Arthur, G.D.; Stirk, W.A.; van Staden, J.; Scott, P. Effect of a seaweed concentrate on the growth and yield of three varieties of Capsicum annuum. S. Afr. J. Bot., 2003, 69(2), 207-211.
[http://dx.doi.org/10.1016/S0254-6299(15)30348-3]
[174]
Karakurt, Y.; Unlu, H.; Unlu, H.; Padem, H. The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agric. Scand. B Soil Plant Sci., 2009, 59(3), 233-237.
[http://dx.doi.org/10.1080/09064710802022952]
[175]
Sönmez, F.; Gülser, F. Effects of humic acid and Ca(NO 3)2 on nutrient contents in pepper (Capsicum annuum) seedling under salt stress. Acta Agric. Scand. B Soil Plant Sci., 2016, 66(7), 613-618.
[http://dx.doi.org/10.1080/09064710.2016.1205654]
[176]
Parađiković N.; Vinković T.; Vinković Vrček, I.; Žuntar, I.; Bojić M.; Medić-Šarić M. Effect of natural biostimulants on yield and nutritional quality: an example of sweet yellow pepper (Capsicum annuum L.) plants. J. Sci. Food Agric., 2011, 91(12), 2146-2152.
[http://dx.doi.org/10.1002/jsfa.4431] [PMID: 21538369]
[177]
Aminifard, M.H.; Aroiee, H.; Azizi, M.; Nemati, H.; Jaafar, H.Z.E. Effect of humic acid on antioxidant activities and fruit quality of hot pepper (Capsicum annuum L.). J. Herbs Spices Med. Plants, 2012, 18(4), 360-369.
[http://dx.doi.org/10.1080/10496475.2012.713905]
[178]
Abdel Latef, A.A.H.; Chaoxing, H. Does inoculation with Glomus mosseae improve salt tolerance in pepper plants? J. Plant Growth Regul., 2014, 33(3), 644-653.
[http://dx.doi.org/10.1007/s00344-014-9414-4]
[179]
Akladious, S.A.; Mohamed, H.I. Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Sci. Hortic. (Amsterdam), 2018, 236, 244-250.
[http://dx.doi.org/10.1016/j.scienta.2018.03.047]
[180]
Kaya, C.; Ashraf, M.; Alyemeni, M.N.; Ahmad, P. The role of endogenous nitric oxide in salicylic acid-induced up-regulation of ascorbate-glutathione cycle involved in salinity tolerance of pepper (Capsicum annuum L.) plants. Plant Physiol. Biochem., 2020, 147, 10-20.
[http://dx.doi.org/10.1016/j.plaphy.2019.11.040] [PMID: 31837556]
[181]
Saharkhiz, M.J.; Goudarzi, T. Foliar application of salicylic acid changes essential oil content and chemical compositions of peppermint (Mentha piperita L.). J. Essent. Oil-Bear. Plants, 2014, 17(3), 435-440.
[http://dx.doi.org/10.1080/0972060X.2014.892839]
[182]
Santoro, M.V.; Cappellari, L.R.; Giordano, W.; Banchio, E. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study. Plant Biol., 2015, 17(6), 1218-1226.
[http://dx.doi.org/10.1111/plb.12351] [PMID: 26012535]
[183]
Pourhadi, M.; Badi, H.N.; Mehrafarin, A.; Omidi, H.; Hajiaghaee, R. Phytochemical and growth responses of Mentha piperita to foliar application of biostimulants under greenhouse and field conditions. Herba Pol., 2018, 64(2), 1-12.
[http://dx.doi.org/10.2478/hepo-2018-0010]
[184]
Shahabivan, S.; Padash, A.; Aghaee, A.; Nasiri, Y.; Fathi Rezaei, P. Plant biostimulants (Funneliformis mosseae and humic substances) rather than chemical fertilizer improved biochemical responses in peppermint. Iran J. Plant Physiol., 2018, 8(2), 2333-2344.
[185]
Figueroa-Pérez, M.G.; Pérez-Ramírez, I.F.; Enciso-Moreno, J.A.; Gallegos-Corona, M.A.; Salgado, L.M.; Reynoso-Camacho, R. Diabetic nephropathy is ameliorated with peppermint (Mentha piperita) infusions prepared from salicylic acid-elicited plants. J. Funct. Foods, 2018, 43, 55-61.
[http://dx.doi.org/10.1016/j.jff.2018.01.029]
[186]
Ahmad, B.; Jaleel, H.; Shabbir, A.; Khan, M.M.A.; Sadiq, Y. Concomitant application of depolymerized chitosan and GA3 modulates photosynthesis, essential oil and menthol production in peppermint (Mentha piperita L.). Sci. Hortic. (Amsterdam), 2019, 246, 371-379.
[http://dx.doi.org/10.1016/j.scienta.2018.10.031]
[187]
Goudarzian, A.; Pirbalouti, A.G.; Hossaynzadeh, M. Menthol, balance of menthol/menthone, and essential oil contents of Mentha × Piperita L. under foliar-applied chitosan and inoculation of arbuscular mycorrhizal fungi. J. Essent. Oil-Bear. Plants, 2020, 23(5), 1012-1021.
[http://dx.doi.org/10.1080/0972060X.2020.1828177]
[188]
Caruso, G.; De Pascale, S.; Cozzolino, E.; Giordano, M.; El-Nakhel, C.; Cuciniello, A.; Cenvinzo, V.; Colla, G.; Rouphael, Y. Protein hydrolysate or plant extract-based biostimulants enhanced yield and quality performances of greenhouse perennial wall rocket grown in different seasons. Plants, 2019, 8(7), 208.
[http://dx.doi.org/10.3390/plants8070208] [PMID: 31284493]
[189]
Praveen Kumar, G.; Desai, S.; Reddy, G.; Leo Daniel Amalraj, E.; Rasul, A.; Mir Hassan Ahmed, S.K. Seed bacterization with fluorescent Pseudomonas spp. enhances nutrient uptake and growth of Cajanus cajan L. Commun. Soil Sci. Plant Anal., 2015, 46(5), 652-665.
[http://dx.doi.org/10.1080/00103624.2015.1005219]
[190]
Aremu, A.O.; Masondo, N.A.; Rengasamy, K.R.R.; Amoo, S.O.; Gruz, J.; Bíba, O.; Šubrtová, M. Pěnčík, A.; Novák, O.; Doležal, K.; Van Staden, J. Physiological role of phenolic biostimulants isolated from brown seaweed Ecklonia maxima on plant growth and development. Planta, 2015, 241(6), 1313-1324.
[http://dx.doi.org/10.1007/s00425-015-2256-x] [PMID: 25672504]
[191]
Khatamidoost, Z.; Jamali, S.; Moradi, M.; Saberi Riseh, R. Effect of Iranian strains of Pseudomonas spp. on the control of root-knot nematodes on Pistachios. Biocontrol Sci. Technol., 2015, 25(3), 291-301.
[http://dx.doi.org/10.1080/09583157.2014.973369]
[192]
Pakdaman, N.; Javanshah, A.; Nadi, M. The effect of humc and fulvic acids as bio-fertiliers on the growth of Pistacia vera seedlings under alkaline conditions. Pistachio Health J., 2018, 1(4), 13-20.
[193]
Fathi, S.; Kharazmi, M.; Najafian, S. Effects of salicylic acid foliar application on morpho-physiological traits of purslane (Portulaca olaracea L.) under salinity conditions. J. Plant Physiol. Breed., 2019, 9(2), 1-9.
[194]
Chen, W.; Wang, Y.; Xu, L.; Dong, J.; Zhu, X.; Ying, J.; Wang, Q.; Fan, L.; Li, C.; Liu, L. Methyl jasmonate, salicylic acid and abscisic acid enhance the accumulation of glucosinolates and sulforaphane in radish (Raphanus sativus L.) taproot. Sci. Hortic. (Amsterdam), 2019, 250, 159-167.
[http://dx.doi.org/10.1016/j.scienta.2019.02.024]
[195]
Mahmoud, S.H.; Salama, D.M.; El-Tanahy, A.M.M.; Abd El-Samad, E.H. Utilization of seaweed (Sargassum vulgare) extract to enhance growth, yield and nutritional quality of red radish plants. Ann. Agric. Sci., 2019, 64(2), 167-175.
[http://dx.doi.org/10.1016/j.aoas.2019.11.002]
[196]
Foroutan Nia, A.; Naghdi Badi, H.; Mehrafarin, A.; Bahman, S.; Seif Sahandi, M. Changes in the essential oil content and terpene composition of rosemary (Rosmarinus officinalis L.) by using plant biostimulants. Acta Agric. Slov., 2016, 107(1), 147-157.
[http://dx.doi.org/10.14720/aas.2016.107.1.15]
[197]
Abbaszadeh, B.; Layeghhaghighi, M.; Azimi, R.; Hadi, N. Improving water use efficiency through drought stress and using salicylic acid for proper production of Rosmarinus officinalis L. Ind. Crops Prod., 2020, 144, 111893.
[http://dx.doi.org/10.1016/j.indcrop.2019.111893]
[198]
Daneshvar Hakimi Maibodi, N.; Kafi, M.; Nikbakht, A.; Rejali, F. Effect of foliar applications of humic acid on growth, visual quality, nutrients content and root parameters of perennial ryegrass (Lolium perenne L.). J. Plant Nutr., 2015, 38(2), 224-236.
[http://dx.doi.org/10.1080/01904167.2014.939759]
[199]
Mahdavi, S.; Kafi, M.; Fallahi, E.; Shokrpour, M.; Tabrizi, L. Drought and biostimulant impacts on mineral nutrients, ambient and reflected light-based chlorophyll index, and performance of perennial ryegrass. J. Plant Nutr., 2017, 40(16), 2248-2258.
[http://dx.doi.org/10.1080/01904167.2016.1237650]
[200]
Sharaf-Eldin, M.; Elkholy, S.; Fernández, J.A.; Junge, H.; Cheetham, R.; Guardiola, J.; Weathers, P. Bacillus subtilis FZB24 affects flower quantity and quality of saffron (Crocus sativus). Planta Med., 2008, 74(10), 1316-1320.
[http://dx.doi.org/10.1055/s-2008-1081293] [PMID: 18622904]
[201]
Aghhavani Shajari, M.; Rezvani Moghaddam, P.; Ghorbani, R.; Koocheki, A. Increasing saffron (Crocus sativus L.) corm size through the mycorrhizal inoculation, humic acid application and irrigation managements. J. Plant Nutr., 2018, 41(8), 1047-1064.
[http://dx.doi.org/10.1080/01904167.2018.1433835]
[202]
Tajik, S.; Zarinkamar, F.; Soltani, B.M.; Nazari, M. Induction of phenolic and flavonoid compounds in leaves of saffron (Crocus sativus L.) by salicylic acid. Sci. Hortic. (Amsterdam), 2019, 257, 108751.
[http://dx.doi.org/10.1016/j.scienta.2019.108751]
[203]
Sadeghian, F.; Hadian, J.; Hadavi, M.; Mohamadi, A.; Ghorbanpour, M.; Ghafarzadegan, R. Effects of exogenous salicylic acid application on growth, metabolic activities and essential oil composition of Satureja khuzistanica Jamzad. Faslnamah-i Giyahan-i Daruyi, 2013, 12(47), 70-82.
[204]
Zaremanesh, H.; Eisvand, H.R.; Akbari, N.; Ismaili, A.; Feizian, M. Effects of different humic acid and salinity levels on some traits of Khuzestani savory (Satureja khuzistanica Jamzad). Appl. Ecol. Environ. Res., 2019, 17(3), 5409-5433.
[http://dx.doi.org/10.15666/aeer/1703_54095433]
[205]
Ghasemi Pirbalouti, A.; Rahimmalek, M.; Elikaei-Nejhad, L.; Hamedi, B. Essential oil compositions of summer savory under foliar application of jasmonic acid and salicylic acid. J. Essent. Oil Res., 2014, 26(5), 342-347.
[http://dx.doi.org/10.1080/10412905.2014.922508]
[206]
El-Gohary, A.; El Gendy, A.; Hendawy, S.; El-Sherbeny, S.; Hussein, M.; Geneva, M. Herbage yield, essential oil content and composition of summer savory (Satureja hortensis L.) as affected by sowing date and foliar nutrition. Genet. Plant Physiol., 2015, 5(2), 170-178.
[207]
Abrun, A.; Fattahi, M.; Hassani, A.; Avestan, S. Salicylic acid and UV-B/C radiation effects on growth and physiological traits of Satureja hortensis L. Not. Sci. Biol., 2016, 8(2), 170-175.
[http://dx.doi.org/10.15835/nsb829784]
[208]
Faraji-Mehmany, A.; Esmaielpour, B.; Sedidkon, F.; Khorramdel, S. Effects of foliar spraying with salicylic acid and putrescine on growth characteristics and yirld of summer savory (Satureja hortensis L.). Iran J. Field Crops Res., 2016, 14(1), 73-85.
[209]
Poorghadir, M.; Torkashvand, A.M.; Mirjalili, S.A.; Moradi, P. Interactions of amino acids (proline and phenylalanine) and biostimulants (salicylic acid and chitosan) on the growth and essential oil components of savory (Satureja hortensis L.). Biocatal. Agric. Biotechnol., 2020, 30, 101815.
[http://dx.doi.org/10.1016/j.bcab.2020.101815]
[210]
Khordadi Varamin, J.; Fanoodi, F.; Masoud Sinaki, J.; Rezvan, S.; Damavandi, A. Foliar application of chitosan and nano-magnesium fertilizers influence on seed yield, oil content, photosynthetic pigments, antioxidant enzyme activities of sesame (Sesamum indicum L.) under water-limited conditions. Not. Bot. Horti Agrobot. Cluj-Napoca, 2020, 48(4), 2228-2243.
[http://dx.doi.org/10.15835/nbha48411852]
[211]
Fan, D.; Hodges, D.M.; Zhang, J.; Kirby, C.W.; Ji, X.; Locke, S.J.; Critchley, A.T.; Prithiviraj, B. Commercial extract of the brown seaweed Ascophyllum nodosum enhances phenolic antioxidant content of spinach (Spinacia oleracea L.) which protects Caenorhabditis elegans against oxidative and thermal stress. Food Chem., 2011, 124(1), 195-202.
[http://dx.doi.org/10.1016/j.foodchem.2010.06.008]
[212]
Xu, C.; Leskovar, D.I. Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Sci. Hortic. (Amsterdam), 2015, 183, 39-47.
[http://dx.doi.org/10.1016/j.scienta.2014.12.004]
[213]
Singh, S. Enhancing phytochemical levels, enzymatic and antioxidant activity of spinach leaves by chitosan treatment and an insight into the metabolic pathway using DART-MS technique. Food Chem., 2016, 199, 176-184.
[http://dx.doi.org/10.1016/j.foodchem.2015.11.127] [PMID: 26775959]
[214]
Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.C.; Bonini, P.; Colla, G. Plant- and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant actiob. Agronomy (Basel), 2018, 8(126), 1-15.
[215]
Shin, H.; Min, K.; Arora, R. Exogenous salicylic acid improves freezing tolerance of spinach (Spinacia oleracea L.) leaves. Cryobiology, 2018, 81, 192-200.
[http://dx.doi.org/10.1016/j.cryobiol.2017.10.006] [PMID: 29061524]
[216]
Min, K.; Showman, L.; Perera, A.; Arora, R. Salicylic acid-induced freezing tolerance in spinach (Spinacia oleracea L.) leaves explored through metabolite profiling. Environ. Exp. Bot., 2018, 156, 214-227.
[http://dx.doi.org/10.1016/j.envexpbot.2018.09.011]
[217]
Kulkarni, M.G.; Rengasamy, K.R.R.; Pendota, S.C.; Gruz, J. Plačková, L.; Novák, O.; Doležal, K.; Van Staden, J. Bioactive molecules derived from smoke and seaweed Ecklonia maxima showing phytohormone-like activity in Spinacia oleracea L. N. Biotechnol., 2019, 48, 83-89.
[http://dx.doi.org/10.1016/j.nbt.2018.08.004] [PMID: 30098416]
[218]
Pilanal, N.; Kaplan, M. Investigation of effects on nutrient uptake of humic acid applications of different forms to strawberry plant. J. Plant Nutr., 2003, 26(4), 835-843.
[http://dx.doi.org/10.1081/PLN-120018568]
[219]
Alam, M.Z.; Braun, G.; Norrie, J.; Hodges, D.M. Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Can. J. Plant Sci., 2013, 93(1), 23-36.
[http://dx.doi.org/10.4141/cjps2011-260]
[220]
Aghaeifard, F.; Babalar, M.; Fallahi, E.; Ahmadi, A. Influence of humic acid and salicylic acid on yield, fruit quality, and leaf mineral elements of strawberry (Fragaria × Ananassa duch.) cv. Camarosa. J. Plant Nutr., 2016, 39(13), 1821-1829.
[http://dx.doi.org/10.1080/01904167.2015.1088023]
[221]
Weber, N.; Schmitzer, V.; Jakopic, J.; Stampar, F. First fruit in season: Seaweed extract and silicon advance organic strawberry (Fragaria×ananassa Duch.) fruit formation and yield. Sci. Hortic. (Amsterdam), 2018, 242, 103-109.
[http://dx.doi.org/10.1016/j.scienta.2018.07.038]
[222]
Bajpai, S.; Shukla, P.S.; Asiedu, S.; Pruski, K.; Prithiviraj, B. A biostimulant preparation of brown seaweed Ascophyllum nodosum suppresses powdery mildew of strawberry. Plant Pathol. J., 2019, 35(5), 406-416.
[http://dx.doi.org/10.5423/PPJ.OA.03.2019.0066] [PMID: 31632216]
[223]
Lombardi, N.; Salzano, A.M.; Troise, A.D.; Scaloni, A.; Vitaglione, P.; Vinale, F.; Marra, R.; Caira, S.; Lorito, M.; d’Errico, G.; Lanzuise, S.; Woo, S.L. Effect of Trichoderma bioactive metabolite treatments on the production, quality and protein profile of strawberry fruits. J. Agric. Food Chem., 2020, 68(27), 7246-7258.
[http://dx.doi.org/10.1021/acs.jafc.0c01438] [PMID: 32426974]
[224]
Celiktopuz, E.; Kapur, B. Sarıdas, M.A.; Kargı S.P. Response of strawberry fruit and leaf nutrient concentrations to the application of irrigation levels and a biostimulant. J. Plant Nutr., 2021, 44(2), 153-165.
[http://dx.doi.org/10.1080/01904167.2020.1806310]
[225]
Naeem, M.; Sadiq, Y.; Jahan, A.; Nabi, A.; Aftab, T.; Khan, M.M.A. Salicylic acid restrains arsenic induced oxidative burst in two varieties of Artemisia annua L. by modulating antioxidant defence system and artemisinin production. Ecotoxicol. Environ. Saf., 2020, 202, 110851.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110851] [PMID: 32673966]
[226]
Ghatas, Y.; Ali, M.; Elsadek, M.; Mohamed, Y. Enhancing growth, productivity and artemisinin content of Artemisia annua L. Plant using seaweed extract and micronutrients. Ind. Crops Prod., 2021, 161, 113202.
[http://dx.doi.org/10.1016/j.indcrop.2020.113202]
[227]
Kaur, P.; Gupta, R.C.; Dey, A.; Malik, T.; Pandey, D.K. Optimization of salicylic acid and chitosan treatment for bitter secoiridoid and xanthone glycosides production in shoot cultures of Swertia paniculata using response surface methodology and artificial neural network. BMC Plant Biol., 2020, 20(1), 225.
[http://dx.doi.org/10.1186/s12870-020-02410-7] [PMID: 32429895]
[228]
Hu, R.; Wang, H.; Liu, Q.; Lin, L.; Liao, M.A.; Deng, H.; Wang, Z.; Liang, D.; Wang, X.; Xia, H.; Tang, Y. An algal biostimulant promotes growth and decreases cadmium uptake in accumulator plant Nasturtium officinale.Int. J. Environ. Anal. Chem; , 2020, pp. 1-9.
[http://dx.doi.org/10.1080/03067319.2020.1784413]
[229]
Shahrajabian, M.H. Medicinal herbs with anti-inflammatory activities for natural and organic healing. Curr. Org. Chem., 2021, 25(23), 2885-2901.
[http://dx.doi.org/10.2174/1385272825666211110115656]
[230]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Ginkgo bilobla, a famous living fossil tree and an ancient herbal traditional Chinese medicine. Curr. Nutr. Food Sci., 2022, 18(3), 259-264.
[http://dx.doi.org/10.2174/1573401317666210910120735]
[231]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Foliar application of nutrients on medicinal and aromatic plants, the sustainable approaches for higher and better production. Beni. Suef Univ. J. Basic Appl. Sci., 2022, 11(26), 1-10.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy