Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Potential Nevadensin from Ocimum basilicum as Antibacterial Agent against Streptococcus mutans: In Vitro and In Silico Studies

Author(s): Salsabila Aqila Putri, Aldina Amalia Nur Shadrina, Euis Julaeha and Dikdik Kurnia*

Volume 26, Issue 9, 2023

Published on: 02 November, 2022

Page: [1746 - 1754] Pages: 9

DOI: 10.2174/1386207325666220930122813

Price: $65

conference banner
Abstract

Background: Streptococcus mutans is one of the bacteria that contributes to biofilm formation and causes dental caries. The inhibition of SrtA, gbpC, and Ag I/II is a promising target to be developed as an antibacterial. Ocimum basilicum is known to have antibacterial activity.

Aim and Objective: The aim of this study is to evaluate the potential nevadensin as antibacterial against S. mutans.

Methods: Antibacterial analysis was carried out by disc diffusion and micro-dilution methods and the in-silico study was performed with ligand-protein docking.

Results: The result showed that the MIC and MBC values of nevadensin are 900 and 7200 μg/mL, respectively. The binding energy of nevadensin to SrtA, gbpC, and Ag I/II were -4.53, 8.37, -6.12 kcal/mol, respectively.

Conclusion: Nevadensin shows moderate activity as an antibacterial against S. mutans. Meanwhile, in silico studies showed it has the same binding strength as chlorhexidine in inhibiting SrtA, whereas to gbpC and Ag I/II, it has a weaker binding affinity. Therefore, nevadensin has the potential as a natural antibacterial against S. mutans by inhibiting SrtA.

Keywords: Antibacterial, Nevadensin, Ocimum basilicum, in vitro, in silico

Graphical Abstract

[1]
Abebe, G. Oral biofilm and its impact on oral health, psychological and social inter-action. Int. J. Oral Dent. Health, 2021, 7, 127.
[2]
Larsen, T.; Fiehn, N.E. Dental biofilm infections - an update. Acta Pathol. Microbiol. Scand. Suppl., 2017, 125(4), 376-384.
[http://dx.doi.org/10.1111/apm.12688] [PMID: 28407420]
[3]
Chen, X.; Daliri, E.B.M.; Kim, N.; Kim, J.R.; Yoo, D.; Oh, D.H. Microbial etiology and prevention of dental caries: Exploiting natural products to inhibit cariogenic biofilms. Pathogens, 2020, 9(7), 569.
[http://dx.doi.org/10.3390/pathogens9070569] [PMID: 32674310]
[4]
Ahmadian, E.; Shahi, S.; Yazdani, J.; Maleki Dizaj, S.; Sharifi, S. Local treatment of the dental caries using nanomaterials. Biomed. Pharmacother., 2018, 108, 443-447.
[http://dx.doi.org/10.1016/j.biopha.2018.09.026] [PMID: 30241047]
[5]
Digel, I.; Kern, I.; Geenen, E.M.; Akimbekov, N. Dental plaque removal by ultrasonic toothbrushes. Dent. J., 2020, 8(1), 28.
[http://dx.doi.org/10.3390/dj8010028] [PMID: 32210213]
[6]
Leme, A.F.P.; Koo, H.; Bellato, C.M.; Bedi, G.; Cury, J.A. The role of sucrose in cariogenic dental biofilm formation-New insight. J. Dent. Res., 2006, 85(10), 878-887.
[http://dx.doi.org/10.1177/154405910608501002] [PMID: 16998125]
[7]
Wi, W.; Abdul Razak, F.; Rahim, Z. The role of sucrose in the development of oral biofilm in a simulated mouth system. Online J. Biol. Sci., 2006, 6.
[8]
Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas aeruginosa biofilms. Int. J. Mol. Sci., 2020, 21(22), 8671.
[http://dx.doi.org/10.3390/ijms21228671] [PMID: 33212950]
[9]
Milho, C.; Silva, J.; Guimarães, R.; Ferreira, I.C.F.R.; Barros, L.; Alves, M.J. Antimicrobials from medicinal plants: An emergent strategy to control oral biofilms. Appl. Sci. (Basel), 2021, 11(9), 4020.
[http://dx.doi.org/10.3390/app11094020]
[10]
Jamal, M.; Tasneem, U.; Hussain, T.; Andleeb, S. Bacterial biofilm: Its composition, formation and role in human infections. J. Microbiol. Biotechnol., 2015, 4, 1-14.
[11]
Bowen, W.H.; Koo, H. Biology of Streptococcus mutans-derived glucosyltransferases: Role in extracellular matrix formation of cariogenic biofilms. Caries Res., 2011, 45(1), 69-86.
[http://dx.doi.org/10.1159/000324598] [PMID: 21346355]
[12]
Meir, O.; Zaknoon, F.; Cogan, U.; Mor, A. A broad-spectrum bactericidal lipopeptide with anti-biofilm properties. Sci. Rep., 2017, 7(1), 2198.
[http://dx.doi.org/10.1038/s41598-017-02373-0] [PMID: 28526864]
[13]
Barbosa, J.O.; Rossoni, R.D.; Vilela, S.F.G.; de Alvarenga, J.A.; Velloso, M.S.; Prata, M.C.A.; Jorge, A.O.C.; Junqueira, J.C. Streptococcus mutans can modulate biofilm formation and attenuate the virulence of Candida albicans. PLoS One, 2016, 11(3), e0150457.
[http://dx.doi.org/10.1371/journal.pone.0150457] [PMID: 26934196]
[14]
Dashper, S.G.; Reynolds, E.C. Lactic acid excretion by Streptococcus mutans. Microbiology (Reading), 1996, 142(1), 33-39.
[http://dx.doi.org/10.1099/13500872-142-1-33] [PMID: 33657745]
[15]
Zayed, S.M.; Aboulwafa, M.M.; Hashem, A.M.; Saleh, S.E. Biofilm formation by Streptococcus mutans and its inhibition by green tea extracts. AMB Express, 2021, 11(1), 73.
[http://dx.doi.org/10.1186/s13568-021-01232-6] [PMID: 34032940]
[16]
Zhou, Y.; Millhouse, E.; Shaw, T.; Lappin, D.F.; Rajendran, R.; Bagg, J.; Lin, H.; Ramage, G. Evaluating Streptococcus mutans strain dependent characteristics in a polymicrobial biofilm community. Front. Microbiol., 2018, 9, 1498-1498.
[http://dx.doi.org/10.3389/fmicb.2018.01498] [PMID: 30083138]
[17]
Zhu, W.; Liu, S.; Zhuang, P.; Liu, J.; Wang, Y.; Lin, H. Characterization of acid-tolerance-associated small RNAs in clinical isolates of Streptococcus mutans: Potential biomarkers for caries prevention. Mol. Med. Rep., 2017, 16(6), 9242-9250.
[http://dx.doi.org/10.3892/mmr.2017.7751] [PMID: 29039505]
[18]
Baker, J.L.; Faustoferri, R.C.; Quivey, R.G., Jr Acid-adaptive mechanisms of Streptococcus mutans -the more we know, the more we don’t. Mol. Oral Microbiol., 2017, 32(2), 107-117.
[http://dx.doi.org/10.1111/omi.12162] [PMID: 27115703]
[19]
Cui, T.; Luo, W.; Xu, L.; Yang, B.; Zhao, W.; Cang, H. Progress of antimicrobial discovery against the major cariogenic pathogen Streptococcus mutans. Curr. Issues Mol. Biol., 2019, 32(1), 601-644.
[http://dx.doi.org/10.21775/cimb.032.601] [PMID: 31166181]
[20]
Matsui, R.; Cvitkovitch, D. Acid tolerance mechanisms utilized by Streptococcus mutans. Future Microbiol., 2010, 5(3), 403-417.
[http://dx.doi.org/10.2217/fmb.09.129] [PMID: 20210551]
[21]
Welin-Neilands, J.; Svensäter, G. Acid tolerance of biofilm cells of Streptococcus mutans. Appl. Environ. Microbiol., 2007, 73(17), 5633-5638.
[http://dx.doi.org/10.1128/AEM.01049-07] [PMID: 17630302]
[22]
Balanescu, F.; Mihaila, M.; Cârâc, G.; Furdui, B.; Vînătoru, C.; Avramescu, S.; Lisa, E.; Cudalbeanu, M.; Dinica, R. Flavonoid profiles of two new approved romanian Ocimum hybrids. Molecules, 2020, 25(19), 4573.
[http://dx.doi.org/10.3390/molecules25194573] [PMID: 33036369]
[23]
Unar, A. Biomedical description of Ocimum basilicum L. JIIMC, 2017, 12(1), 59-67.
[24]
Barbalho, S.; Machado, F.; Rodrigues, J.; Silva, T.; Goulart, R. Sweet basil (Ocimum basilicum): Much more than a condiment. TANG, 2012, 2, 3.1-3.5.
[25]
Nguyen, V.; Nguyen, N.; Thi, N.; Thi, C.; Truc, T.; Nghi, P. In studies on chemical, polyphenol content, flavonoid content, and antioxidant activity of sweet basil leaves (Ocimum basilicum L. In: IOP Conference Series: Materials Science and Engineering IOP Publishing; , 2021; p. 012083.
[http://dx.doi.org/10.1088/1757-899X/1092/1/012083]
[26]
Güez, C.M.; Souza, R.O.; Fischer, P.; Leão, M.F.M.; Duarte, J.A.; Boligon, A.A.; Athayde, M.L.; Zuravski, L.; Oliveira, L.F.S.; Machado, M.M. Evaluation of basil extract (Ocimum basilicum L.) on oxidative, anti-genotoxic and anti-inflammatory effects in human leukocytes cell cultures exposed to challenging agents. Braz. J. Pharm. Sci., 2017, 53(1), 53.
[http://dx.doi.org/10.1590/s2175-97902017000115098]
[27]
Bilal, A.; Jahan, N.; Makbul, S.; Bilal, S.N.; Habib, S.; Hajra, S. Phytochemical and pharmacological studies on Ocimum basilicum. Int. J. Curr. Res. Rev., 2012, 4, 73-83.
[28]
Hosseini, A.; Zare Mehrjerdi, M.; Aliniaeifard, S. Alteration of bioactive compounds in two varieties of basil (Ocimum basilicum) grown under different light spectra. J. Essent. Oil-Bear. Plants, 2018, 21(4), 913-923.
[http://dx.doi.org/10.1080/0972060X.2018.1526126]
[29]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chemical components and pharmacological benefits of basil (Ocimum basilicum): A review. Int. J. Food Prop., 2020, 23(1), 1961-1970.
[http://dx.doi.org/10.1080/10942912.2020.1828456]
[30]
Taechowisan, T.; Jantiya, J.; Mungchukeatsakul, N.; Phutdhawong, W.S. Major compounds from Ocimum basilicum L. and their antimicrobial activity against methicillin-resistant Staphylococcus aureus. Biomed. J. Sci. Tech. Res., 2018, 3(3), 3315-3323.
[http://dx.doi.org/10.26717/BJSTR.2018.03.000910]
[31]
Araújo Silva, V.; Pereira da Sousa, J.; de Luna Freire Pessôa, H.; Fernanda Ramos de Freitas, A.; Douglas Melo Coutinho, H.; Beuttenmuller Nogueira Alves, L.; Oliveira Lima, E. Ocimum basilicum: Antibacterial activity and association study with antibiotics against bacteria of clinical importance. Pharm. Biol., 2016, 54(5), 863-867.
[http://dx.doi.org/10.3109/13880209.2015.1088551] [PMID: 26455352]
[32]
Ferreira, L.; dos Santos, R.; Oliva, G.; Andricopulo, A. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[33]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[34]
Luo, H.; Liang, D.F.; Bao, M.Y.; Sun, R.; Li, Y.Y.; Li, J.Z.; Wang, X.; Lu, K.M.; Bao, J.K. In silico identification of potential inhibitors targeting Streptococcus mutans sortase A. Int. J. Oral Sci., 2017, 9(1), 53-62.
[http://dx.doi.org/10.1038/ijos.2016.58] [PMID: 28358034]
[35]
Cascioferro, S.; Raffa, D.; Maggio, B.; Raimondi, M.V.; Schillaci, D.; Daidone, G. Sortase A inhibitors: Recent advances and future perspectives. J. Med. Chem., 2015, 58(23), 9108-9123.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00779] [PMID: 26280844]
[36]
Igarashi, T.; Asaga, E.; Goto, N. The sortase of Streptococcus mutans mediates cell wall anchoring of a surface protein antigen. Oral Microbiol. Immunol., 2003, 18(4), 266-269.
[http://dx.doi.org/10.1034/j.1399-302X.2003.00076.x] [PMID: 12823805]
[37]
Lei, L.; Long, L.; Yang, X.; Qiu, Y.; Zeng, Y.; Hu, T.; Wang, S.; Li, Y. The VicRK two-component system regulates Streptococcus mutans virulence. Curr. Issues Mol. Biol., 2019, 32(1), 167-200.
[http://dx.doi.org/10.21775/cimb.032.167] [PMID: 31166172]
[38]
Mieher, J.L.; Larson, M.R.; Schormann, N.; Purushotham, S.; Wu, R.; Rajashankar, K.R.; Wu, H.; Deivanayagam, C.; Freitag, N.E. Glucan binding protein C of Streptococcus mutans mediates both sucrose-independent and sucrose-dependent adherence. Infect. Immun., 2018, 86(7), e00146-18.
[http://dx.doi.org/10.1128/IAI.00146-18] [PMID: 29685986]
[39]
Wang, J.; Shi, Y.; Jing, S.; Dong, H.; Wang, D.; Wang, T. Astilbin inhibits the activity of sortase A from Streptococcus mutans. Molecules, 2019, 24(3), 465.
[http://dx.doi.org/10.3390/molecules24030465] [PMID: 30696091]
[40]
Lévesque, C.M.; Voronejskaia, E.; Huang, Y.C.C.; Mair, R.W.; Ellen, R.P.; Cvitkovitch, D.G. Involvement of sortase anchoring of cell wall proteins in biofilm formation by Streptococcus mutans. Infect. Immun., 2005, 73(6), 3773-3777.
[http://dx.doi.org/10.1128/IAI.73.6.3773-3777.2005] [PMID: 15908410]
[41]
Lemos, J.; Palmer, S.; Zeng, L.; Wen, Z.; Kajfasz, J.; Freires, I.; Abranches, J.; Brady, L. The biology of Streptococcus mutans. Microbiol. Spectr., 2019, 7(1), 7.1.03.
[42]
Kurnia, D.; Hutabarat, G.S.; Windaryanti, D.; Herlina, T.; Herdiyati, Y.; Satari, M.H. Potential allylpyrocatechol derivatives as antibacterial agent against oral pathogen of S. sanguinis ATCC 10,556 and as inhibitor of MurA enzymes: In vitro and in silico study. Drug Des. Devel. Ther., 2020, 14, 2977-2985.
[http://dx.doi.org/10.2147/DDDT.S255269] [PMID: 32801638]
[43]
Saquib, S.A.; AlQahtani, N.A.; Ahmad, I.; Kader, M.A.; Al Shahrani, S.S.; Asiri, E.A. Evaluation and comparison of antibacterial efficacy of herbal extracts in combination with antibiotics on periodontal pathobionts: An in vitro microbiological study. Antibiotics (Basel), 2019, 8(3), 89.
[http://dx.doi.org/10.3390/antibiotics8030089] [PMID: 31266146]
[44]
Ragi, K.; Kakkassery, J.T.; Raphael, V.P.; Johnson, R. In vitro antibacterial and in silico docking studies of two Schiff bases on Staphylococcus aureus and its target proteins. Fut. J. Pharm. Sci., 2021, 7(1), 1-9.
[45]
Shadrina, A.A.N.; Herdiyati, Y.; Wiani, I.; Satari, M.H.; Kurnia, D. Prediction Mechanism of nevadensin as antibacterial agent against S. sanguinis: In vitro and in silico studies. Combinator. Chem. High Through. Screen., 2021.
[46]
So Yeon, L.; Si Young, L. Susceptibility of oral streptococci to chlorhexidine and cetylpyridinium chloride. Biocontrol Sci., 2019, 24(1), 13-21.
[http://dx.doi.org/10.4265/bio.24.13] [PMID: 30880309]
[47]
de Aguiar, F.C.; Solarte, A.L.; Tarradas, C.; Luque, I.; Maldonado, A.; Galán-Relaño, Á.; Huerta, B. Antimicrobial activity of selected essential oils against Streptococcus suis isolated from pigs. MicrobiologyOpen, 2018, 7(6), e00613.
[http://dx.doi.org/10.1002/mbo3.613] [PMID: 29575822]
[48]
Brdjanin, S.; Bogdanović, N.; Kolundžić, M.; Milenković, M.; Golić, N.; Kojić, M.; Kundaković, T. Antimicrobial activity of oregano (Origanum vulgare L.): And basil (Ocimum basilicum L.). Extracts. Adv. Technol., 2015, 4(2), 5-10.
[http://dx.doi.org/10.5937/savteh1502005B]
[49]
Silva, V.; Sousa, J.; Guerra, F.; Pessôa, H.; Freitas, A.; Alves, L.; Lima, E. Antibacterial activity of Ocimum basilicum essential oil and linalool on bacterial isolates of clinical importance. Inter. J. Pharmacogn. Phytochem. Res., 2015, 7(6), 1066-1071.
[50]
Taie, H.A.A.; Radwan, S. Potential activity of basil plants as a source of antioxidants and anticancer agents as affected by organic and bio-organic fertilization. Not. Bot. Horti Agrobot. Cluj-Napoca, 2010, 38(1), 119-127.
[51]
Ch, M.; Naz, S.; Sharif, A.; Akram, M.; Saeed, M.; Saeed, M. Biological and pharmacological properties of the sweet basil (Ocimum basilicum). Br. J. Pharm. Res., 2015, 7(5), 330-339.
[http://dx.doi.org/10.9734/BJPR/2015/16505]
[52]
Muley, B.P.; Khadabadi, S.S.; Banarase, N.B. Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): A review. Trop. J. Pharm. Res., 2009, 8(5)
[http://dx.doi.org/10.4314/tjpr.v8i5.48090]
[53]
Kim, K.; Lee, H.; Min, S.; Seol, G. Neuroprotective effect of (-)-linalool against sodium nitroprusside-induced cytotoxicity. Med. Chem., 2015, 5, 178-182.
[54]
Govindarajan, M.; Sivakumar, R.; Rajeswary, M.; Yogalakshmi, K. Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Exp. Parasitol., 2013, 134(1), 7-11.
[http://dx.doi.org/10.1016/j.exppara.2013.01.018] [PMID: 23391742]
[55]
Brahmachari, G. Nevadensin: Isolation, chemistry and bioactivity. Inter. J. Green Pharm., 2010, 4(4), 213.
[http://dx.doi.org/10.4103/0973-8258.74128]
[56]
Elamrani, A.; Benaissa, M. Chemical composition and antibacterial activity of the essential oil of Ononis natrix from Morocco. J. Essent. Oil-Bear. Plants, 2010, 13(4), 477-488.
[http://dx.doi.org/10.1080/0972060X.2010.10643852]
[57]
Bhargav, H.; Shastri, S.D.; Poornav, S.; Darshan, K.; Nayak, M.M. Measurement of the zone of inhibition of an antibiotic. In: IEEE 6th International Conference on Advanced Computing (IACC) IEEE; , 2016; pp. 409-414.
[58]
Handayani, D.; Saputra, D.; Marliyana, S. Antibacterial activity of polyeugenol against Staphylococcus aureus and Escherichia coli. In: IOP Conference Series: Materials Science and Engineering IOP Publishing; , 2019; p. 012061.
[59]
Lien, H.M.; Tseng, C.J.; Huang, C.L.; Lin, Y.T.; Chen, C.C.; Lai, Y.Y. Antimicrobial activity of Antrodia camphorata extracts against oral bacteria. PLoS One, 2014, 9(8), e105286.
[http://dx.doi.org/10.1371/journal.pone.0105286] [PMID: 25144619]
[60]
Rodríguez-Melcón, C.; Alonso-Calleja, C.; García-Fernández, C.; Carballo, J.; Capita, R. Minimum inhibitory concentration (MIC) and Minimum Bactericidal Concentration (MBC) for twelve antimicrobials (biocides and antibiotics) in eight strains of Listeria monocytogenes. Biology (Basel), 2021, 11(1), 46.
[http://dx.doi.org/10.3390/biology11010046] [PMID: 35053044]
[61]
Chikezie, I.O. Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a novel dilution tube method. Afr. J. Microbiol. Res., 2017, 11(23), 977-980.
[http://dx.doi.org/10.5897/AJMR2017.8545]
[62]
Tomás, I.; Rubido, S.; Donos, N. In situ antimicrobial activity of chlorhexidine in the oral cavity.Sci. Against Macrobial Pathog. Comminicating Curr. Res. Thechnological Adv; Mendez-Vilas, A., Ed.; Formatex, 2011. 530-541.
[63]
Brookes, Z.L.S.; Bescos, R.; Belfield, L.A.; Ali, K.; Roberts, A. Current uses of chlorhexidine for management of oral disease: A narrative review. J. Dent., 2020, 103, 103497-103497.
[http://dx.doi.org/10.1016/j.jdent.2020.103497] [PMID: 33075450]
[64]
Du, X.; Li, Y.; Xia, Y.L.; Ai, S.M.; Liang, J.; Sang, P.; Ji, X.L.; Liu, S.Q. Insights into protein–ligand interactions: Mechanisms, models, and methods. Int. J. Mol. Sci., 2016, 17(2), 144.
[http://dx.doi.org/10.3390/ijms17020144] [PMID: 26821017]
[65]
Afriza, D.; Suriyah, W.; Ichwan, S. In silico analysis of molecular interactions between the anti-apoptotic protein survivin and dentatin, nordentatin, and quercetin. J. Phys., 2018, 032001.
[66]
Shawon, J.; Khan, A.M.; Shahriar, I.; Halim, M.A. Improving the binding affinity and interaction of 5-Pentyl-2-Phenoxyphenol against Mycobacterium enoyl ACP reductase by computational approach. Inform. Med. Unlock., 2021, 23, 100528.
[http://dx.doi.org/10.1016/j.imu.2021.100528]
[67]
Ortiz, C.L.D.; Completo, G.C.; Nacario, R.C.; Nellas, R.B. Potential inhibitors of galactofuranosyltransferase 2 (GlfT2): Molecular docking, 3D-QSAR, and in silico ADMETox studies. Sci. Rep., 2019, 9(1), 17096.
[http://dx.doi.org/10.1038/s41598-019-52764-8] [PMID: 31745103]
[68]
Umamaheswari, M.; Aji, C.S.; Asokkumar, K.; Sivsshanmugam, T.; Subhadradevi, V.; Jagannath, P.; Madeswaran, A. Docking studies: In silico aldose reductase inhibitory activity of commercially available flavonoids. Bangladesh J. Pharmacol., 2012, 7(2), 108-113.
[http://dx.doi.org/10.3329/bjp.v7i2.10779]
[69]
Zhang, A. Synthesis, biological evaluation and in silico studies of several substituted benzene sulfonamides as potential antibacterial agents. J. Phys., 2020, 022058.
[70]
Georgakis, N.; Ioannou, E.; Varotsou, C.; Premetis, G.; Chronopoulou, E.G.; Labrou, N.E. Determination of half-maximal inhibitory concentration of an enzyme inhibitor. Methods Mol. Biol., 2020, 2089, 41-46.
[http://dx.doi.org/10.1007/978-1-0716-0163-1_3] [PMID: 31773646]
[71]
Pintilie, L.; Tanase, C.; Mohapatra, R.K. Molecular docking studies on synthetic therapeutic agents for COVID-19. Chemistry Proceedings; Multidisciplinary Digital Publishing Institute, 2020, p. 46.
[72]
Schiebel, J.; Gaspari, R.; Wulsdorf, T.; Ngo, K.; Sohn, C.; Schrader, T.E.; Cavalli, A.; Ostermann, A.; Heine, A.; Klebe, G. Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes. Nat. Commun., 2018, 9(1), 3559.
[http://dx.doi.org/10.1038/s41467-018-05769-2] [PMID: 30177695]
[73]
Morozov, A.V.; Kortemme, T. Potential functions for hydrogen bonds in protein structure prediction and design. Adv. Protein Chem., 2005, 72, 1-38.
[http://dx.doi.org/10.1016/S0065-3233(05)72001-5] [PMID: 16581371]
[74]
Bulusu, G.; Desiraju, G. Strong and weak hydrogen bonds in protein-ligand recognition. J. Indian Inst. Sci., 2019, 100.
[75]
Wu, M.Y.; Dai, D.Q.; Yan, H. PRL-dock: Protein-ligand docking based on hydrogen bond matching and probabilistic relaxation labeling. Proteins, 2012, 80(9), 2137-2153.
[http://dx.doi.org/10.1002/prot.24104] [PMID: 22544808]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy