Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Discovery and Activity Evaluation of the Inhibitory Effect of Four Kinds of Traditional Chinese Medicine Extracts on the CYP3A4 Enzyme

Author(s): Chenyang Ai, Xinxin Miao, Lili Wang* and Jun He*

Volume 26, Issue 9, 2023

Published on: 03 November, 2022

Page: [1737 - 1745] Pages: 9

DOI: 10.2174/1386207325666220909100935

Price: $65

Abstract

Background and Objective: Traditional Chinese medicines that have inhibitory effects on the CYP3A4 enzymes were screened and their inhibitory effects were verified with in vitro bioassay.

Methods: The computer virtual screening methods, including the CYP3A4 enzyme pharmacophore model and the molecular docking method, were used to rapidly screen the potential CYP3A4 inhibitors in the Traditional Chinese Medicine Database (TCMD), and then in vitro experiments were conducted to validate the computational data.

Results: A total of 413 chemical components in TCMD that have potential inhibitory effects on the CYP3A4 enzyme were screened, and four kinds of traditional Chinese medicines (Abrus precatorius, Andrographis paniculata, Angelica pubescens f. biserrata and Lithospermum erythrorhizon) contained the most potential CYP3A4 inhibitors; The results of the in vitro experiments showed that these four traditional Chinese medicine extracts all had certain degrees of inhibition on the CYP3A4 enzyme, with IC50 values of 5.15, 14.97, 15.2, and 24.21 μg/ml, respectively.

Conclusion: The extracts of Abrus precatorius, Andrographis paniculata, Angelica pubescens f. biserrata and Lithospermum erythrorhizon had certain inhibitory effects on the CYP3A4 enzyme, and attention should be paid to the possible adverse reactions when they were used in combination with the CYP3A4 enzyme-substrate drugs. A combination of computational approaches might be a useful tool to identify potential inhibitors of the CYP3A4 enzyme from traditional Chinese medicine.

Keywords: Pharmacophore model, molecular docking, CYP3A4 enzyme inhibitors, TCMD

Graphical Abstract

[1]
Guillot, J.; Maumus-Robert, S.; Bezin, J. Polypharmacy: A general review of definitions, descriptions and determinants. Therapie, 2020, 75(5), 407-416.
[http://dx.doi.org/10.1016/j.therap.2019.10.001] [PMID: 31732240]
[2]
Mabuchi, T.; Hosomi, K.; Yokoyama, S.; Takada, M. Relationship between polypharmacy and adverse events. Int. J. Clin. Pharmacol. Ther., 2021, 59(5), 353-357.
[http://dx.doi.org/10.5414/CP203853] [PMID: 33480842]
[3]
Goutelle, S.; Bourguignon, L.; Bleyzac, N.; Berry, J.; Clavel-Grabit, F.; Tod, M. In vivo quantitative prediction of the effect of gene polymorphisms and drug interactions on drug exposure for CYP2C19 substrates. AAPS J., 2013, 15(2), 415-426.
[http://dx.doi.org/10.1208/s12248-012-9431-9] [PMID: 23319287]
[4]
Zheng, Y.F.; Bae, S.H.; Choi, E.J.; Park, J.B.; Kim, S.O.; Jang, M.J.; Park, G.H.; Shin, W.G.; Oh, E.; Bae, S.K. Evaluation of the in vitro/in vivo drug interaction potential of BST204, a purified dry extract of ginseng, and its four bioactive ginsenosides through cytochrome P450 inhibition/induction and UDP-glucuronosyltransferase inhibition. Food Chem. Toxicol., 2014, 68, 117-127.
[http://dx.doi.org/10.1016/j.fct.2014.03.004] [PMID: 24632066]
[5]
Kontijevskis, A.; Komorowski, J.; Wikberg, J.E.S. Generalized proteochemometric model of multiple cytochrome p450 enzymes and their inhibitors. J. Chem. Inf. Model., 2008, 48(9), 1840-1850.
[http://dx.doi.org/10.1021/ci8000953] [PMID: 18693719]
[6]
Lapins, M.; Worachartcheewan, A.; Spjuth, O.; Georgiev, V.; Prachayasittikul, V.; Nantasenamat, C.; Wikberg, J.E.S. A unified proteochemometric model for prediction of inhibition of cytochrome p450 isoforms. PLoS One, 2013, 8(6), e66566.
[http://dx.doi.org/10.1371/journal.pone.0066566] [PMID: 23799117]
[7]
Purnapatre, K.; Khattar, S.K.; Saini, K.S. Cytochrome P450s in the development of target-based anticancer drugs. Cancer Lett., 2008, 259(1), 1-15.
[http://dx.doi.org/10.1016/j.canlet.2007.10.024] [PMID: 18053638]
[8]
Handa, K.; Nakagome, I.; Yamaotsu, N.; Gouda, H.; Hirono, S. Three-dimensional quantitative structure-activity relationship analysis of inhibitors of human and rat cytochrome P4503A enzymes. Drug Metab. Pharmacokinet., 2013, 28(4), 345-355.
[http://dx.doi.org/10.2133/dmpk.DMPK-12-RG-133] [PMID: 23358262]
[9]
Jalaie, M.; Arimoto, R.; Gifford, E.; Schefzick, S.; Waller, C.L. Prediction of drug-like molecular properties: Modeling cytochrome p450 interactions. Methods Mol. Biol., 2004, 275, 449-520.
[http://dx.doi.org/10.1385/1-59259-802-1:449] [PMID: 15141126]
[10]
Sevrioukova, I. Interaction of human drug-metabolizing CYP3A4 with small inhibitory molecules. Biochemistry, 2019, 58(7), 930-939.
[http://dx.doi.org/10.1021/acs.biochem.8b01221] [PMID: 30676743]
[11]
Mishra, N.K. Computational modeling of P450s for toxicity prediction. Expert Opin. Drug Metab. Toxicol., 2011, 7(10), 1211-1231.
[http://dx.doi.org/10.1517/17425255.2011.611501] [PMID: 21864218]
[12]
Shoombuatong, W.; Prathipati, P.; Prachayasittikul, V.; Schaduangrat, N.; Malik, A.A.; Pratiwi, R.; Wanwimolruk, S.; Wikberg, J.E.S.; Gleeson, M.P.; Spjuth, O.; Nantasenamat, C. Towards predicting the cytochrome P450 modulation: From QSAR to proteochemometric modeling. Curr. Drug Metab., 2017, 18(6), 540-555.
[http://dx.doi.org/10.2174/1389200218666170320121932] [PMID: 28322159]
[13]
Zhang, L.; Zhou, P.; Yang, F.; Wang, Z. Computer-based QSARs for predicting mixture toxicity of benzene and its derivatives. Chemosphere, 2007, 67(2), 396-401.
[http://dx.doi.org/10.1016/j.chemosphere.2006.09.018] [PMID: 17184822]
[14]
In vitro drug interaction studies-cytochrome P450 enzyme and transporter-mediated drug interactions guidance for industry (2020 – 01064). 2020. b Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/vitro-drug-interaction-
[15]
Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; Fagan, P; Marvin, J.; Padilla, D.; Ravichandran, V.; Schneider, B.; Thanki, N.; Weissig, H.; Westbrook, J.D.; Zardecki, C. The protein data bank. Acta Crystallogr. D Biol. Crystallogr., 2002, 58(1), 899-90.
[http://dx.doi.org/10.2133/dmpk.DMPK-12-RG-133] [PMID: 23358262]
[16]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and developm. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[17]
He, F.; Bi, H.; Xie, Z.; Zuo, Z.; Li, J.; Li, X.; Zhao, L.; Chen, X.; Huang, M. Rapid determination of six metabolites from multiple cytochrome P450 probe substrates in human liver microsome by liquid chromatography/mass spectrometry: Application to high-throughput inhibition screening of terpenoids. Rapid Commun. Mass Spectrom., 2007, 21(5), 635-643.
[http://dx.doi.org/10.1002/rcm.2881] [PMID: 17279482]
[18]
Kandel, S.E.; Han, L.W.; Mao, Q.; Lampe, J.N. Digging Deeper into CYP3A testosterone metabolism: Kinetic, regioselectivity, and stereoselectivity differences between CYP3A4/5 and CYP3A7. Drug Metab. Dispos., 2017, 45(12), 1266-1275.
[http://dx.doi.org/10.1124/dmd.117.078055] [PMID: 28986474]
[19]
Lin, W.; Zhang, J.; Ling, X.; Yu, N.; Li, J.; Yang, H.; Li, R.; Cui, J. Evaluation of the effect of TM208 on the activity of five cytochrome P450 enzymes using on-line solid-phase extraction HPLC–DAD: A cocktail approach. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 923-924, 29-36.
[http://dx.doi.org/10.1016/j.jchromb.2013.01.031] [PMID: 23466445]
[20]
Han, Y.L.; Yu, H.L.; Li, D.; Meng, X.L.; Zhou, Z.Y.; Yu, Q.; Zhang, X.Y.; Wang, F.J.; Guo, C. In vitro inhibition of Huanglian [Rhizoma coptidis (L.)] and its six active alkaloids on six cytochrome P450 isoforms in human liver microsomes. Phytother. Res., 2011, 25(11), 1660-1665.
[http://dx.doi.org/10.1002/ptr.3475] [PMID: 21425377]
[21]
Zuo, J.; Ji, C.L.; Xia, Y.; Li, X.; Chen, J.W. Xanthones as α-glucosidase inhibitors from the antihyperglycemic extract of Securidaca inappendiculata. Pharm. Biol., 2014, 52(7), 898-903.
[http://dx.doi.org/10.3109/13880209.2013.872673] [PMID: 24621306]
[22]
Worakunphanich, W.; Thavorncharoensap, M.; Youngkong, S.; Thadanipon, K.; Thakkinstian, A. Safety of Andrographis paniculata: A systematic review and meta‐analysis. Pharmacoepidemiol. Drug Saf., 2021, 30(6), 727-739.
[http://dx.doi.org/10.1002/pds.5190] [PMID: 33372366]
[23]
Ma, J.; Huang, J.; Hua, S.; Zhang, Y.; Zhang, Y.; Li, T.; Dong, L.; Gao, Q.; Fu, X. The ethnopharmacology, phytochemistry and pharmacology of Angelica biserrata-A review. J. Ethnopharmacol., 2019, 231, 152-169.
[http://dx.doi.org/10.1016/j.jep.2018.10.040] [PMID: 30408534]
[24]
Falayi, O.O.; Oyagbemi, A.A.; Omobowale, T.O.; Ayodele, E.A.; Adedapo, A.D.; Yakubu, M.A.; Adedapo, A.A. Nephroprotective properties of the methanol stem extract of Abrus precatorius on gentamicin-induced renal damage in rats. J. Complement. Integr. Med., 2019, 16(3), 1-14.
[http://dx.doi.org/10.1515/jcim-2017-0176] [PMID: 30367803]
[25]
Song, W.; Zhuang, Y.; Liu, T. Potential role of two cytochrome P450s obtained from Lithospermum erythrorhizon in catalyzing the oxidation of geranylhydroquinone during Shikonin biosynthesis. Phytochemistry, 2020, 175, 112375.
[http://dx.doi.org/10.1016/j.phytochem.2020.112375] [PMID: 32305685]
[26]
Wang, L.; He, X.; Jin, C.; Ondieki, G. Mechanism-based inhibitors from phytomedicine: Risks of hepatotoxicity and their potential hepatotoxic substructures. Curr. Drug Metab., 2016, 17(10), 971-991.
[http://dx.doi.org/10.2174/1389200218666161123124253] [PMID: 27890005]
[27]
Nishiya, Y.; Hagihara, K.; Ito, T.; Tajima, M.; Miura, S.; Kurihara, A.; Farid, N.A.; Ikeda, T. Mechanism-based inhibition of human cytochrome P450 2B6 by ticlopidine, clopidogrel, and the thiolactone metabolite of prasugrel. Drug Metab. Dispos., 2009, 37(3), 589-593.
[http://dx.doi.org/10.1124/dmd.108.022988] [PMID: 19047469]
[28]
Tinel, M.; Belghiti, J.; Descatoire, V.; Amouyal, G.; Letteron, P.; Geneve, J.; Larrey, D.; Pessayre, D. Inactivation of human liver cytochrome P-450 by the drug methoxsalen and other psoralen derivatives. Biochem. Pharmacol., 1987, 36(6), 951-955.
[http://dx.doi.org/10.1016/0006-2952(87)90190-0] [PMID: 3494453]
[29]
Hisaka, A.; Ohno, Y.; Yamamoto, T.; Suzuki, H. Prediction of pharmacokinetic drug–drug interaction caused by changes in cytochrome P450 activity using in vivo information. Pharmacol. Ther., 2010, 125(2), 230-248.
[http://dx.doi.org/10.1016/j.pharmthera.2009.10.011] [PMID: 19951720]
[30]
Shi, Y.; Meng, D.; Wang, S.; Geng, P.; Xu, T.; Zhou, Q.; Zhou, Y.; Li, W.; Chen, X. Effects of Avitinib on CYP450 enzyme activity in vitro and in vivo in rats. Drug Des. Devel. Ther., 2021, 15, 3661-3673.
[http://dx.doi.org/10.2147/DDDT.S323186] [PMID: 34456561]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy