Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

A Number of the N-terminal RASSF Family: RASSF7

Author(s): Yang Xu, Wei Du, Yongshuang Xiao, Keyu Gao, Jie Li and Shuofeng Li*

Volume 24, Issue 12, 2024

Published on: 15 April, 2024

Page: [889 - 895] Pages: 7

DOI: 10.2174/1871520622666220930094149

Price: $65

Abstract

The Ras association domain family 7 (RASSF7, also named HRC1), a potential tumor-related gene, located on human chromosome 11p15, has been identified as an important member of the N-terminal RASSF family. Whereas, the molecular biological mechanisms of RASSF7 in tumorigenesis remain to be further established. We perform a systematic review of the literature and assessment from PUBMED and MEDLINE databases in this article. RASSF7 plays a significant role in mitosis, microtubule growth, apoptosis, proliferation and differentiation. Many research literature shows that the RASSF7 could promote the occurrence and advance of human tumors by regulating Aurora B, MKK4, MKK7, JNK, YAP, MEK, and ERK, whereas, it might inhibit c-Myc and thus lead to the suppression of tumorigenesis. The pregulation of RASSF7 often occurs in various malignancies such as lung cancer, neuroblastoma, thyroid neoplasm, hepatocellular cancer, breast cancer and gastric cancer. The expression stage of RASSF7 is positively correlated with the tumor TNM stage. In this review, we primarily elaborate on the acknowledged structure and progress in the various biomechanisms and research advances of RASSF7, especially the potential relevant signaling pathways. We hope that RASSF7 , a prospective therapeutic target for human malignancies, could play an available role in future anti-cancer treatment.

Keywords: RASSF7, tumor promoter, therapeutic target, malignancy, function

Next »
[1]
Johnson, S.M.; Grosshans, H.; Shingara, J.; Byrom, M.; Jarvis, R.; Cheng, A.; Labourier, E.; Reinert, K.L.; Brown, D.; Slack, F.J. RAS is regulated by the let-7 microRNA family. Cell, 2005, 120(5), 635-647.
[http://dx.doi.org/10.1016/j.cell.2005.01.014] [PMID: 15766527]
[2]
Bos, J.L. Ras oncogenes in human cancer: a review. Cancer Res., 1989, 49(17), 4682-4689.
[PMID: 2547513]
[3]
Campbell, S.L.; Khosravi-Far, R.; Rossman, K.L.; Clark, G.J.; Der, C.J. Increasing complexity of Ras signaling. Oncogene, 1998, 17(11), 1395-1413.
[http://dx.doi.org/10.1038/sj.onc.1202174] [PMID: 9779987]
[4]
Selby, P.B.; Lee, S.S.; Kelley, E.M.; Bangham, J.W.; Raymer, G.D.; Hunsicker, P.R. Specific-locus experiments show that female mice exposed near the time of birth to low-LET ionizing radiation exhibit both a low mutational response and a dose-rate effect. Mutat. Res., 1991, 249(2), 351-367.
[http://dx.doi.org/10.1016/0027-5107(91)90010-L] [PMID: 2072978]
[5]
Chen, Y.; Takita, J.; Hiwatari, M.; Igarashi, T.; Hanada, R.; Kikuchi, A.; Hongo, T.; Taki, T.; Ogasawara, M.; Shimada, A.; Hayashi, Y. Mutations of the PTPN11 and RAS genes in rhabdomyosarcoma and pediatric hematological malignancies. Genes Chrom. Can., 2006, 45(6), 583-591.
[http://dx.doi.org/10.1002/gcc.20322] [PMID: 16518851]
[6]
Agathanggelou, A.; Cooper, W.N.; Latif, F. Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res., 2005, 65(9), 3497-3508.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4088] [PMID: 15867337]
[7]
Avruch, J.; Xavier, R.; Bardeesy, N.; Zhang, X.; Praskova, M.; Zhou, D.; Xia, F. Rassf family of tumor suppressor polypeptides. J. Biol. Chem., 2009, 284(17), 11001-11005.
[http://dx.doi.org/10.1074/jbc.R800073200] [PMID: 19091744]
[8]
Ponting, C.P.; Benjamin, D.R. A novel family ofras-binding domains. Trends Biochem. Sci., 1996, 21(11), 422-425.
[http://dx.doi.org/10.1016/S0968-0004(96)30038-8] [PMID: 8987396]
[9]
Osborne, C.; Wilson, P.; Tripathy, D. Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist, 2004, 9(4), 361-377.
[http://dx.doi.org/10.1634/theoncologist.9-4-361] [PMID: 15266090]
[10]
Jones, P.A. The DNA methylation paradox. Trends Genet., 1999, 15(1), 34-37.
[http://dx.doi.org/10.1016/S0168-9525(98)01636-9] [PMID: 10087932]
[11]
Knudson, A.G., Jr Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA, 1971, 68(4), 820-823.
[http://dx.doi.org/10.1073/pnas.68.4.820] [PMID: 5279523]
[12]
Hou, Y.; Li, S.; Du, W.; Li, H.; Wen, R. The tumor suppressor role of the ras association domain family 10. Anticancer. Agents Med. Chem., 2020, 20(18), 2207-2215.
[http://dx.doi.org/10.2174/1871520620666200714141906] [PMID: 32664845]
[13]
Li, S.; Teng, J.; Li, H.; Chen, F.; Zheng, J. The emerging roles of RASSF5 in human malignancy. Anticancer. Agents Med. Chem., 2018, 18(3), 314-322.
[http://dx.doi.org/10.2174/1871520617666170327120747] [PMID: 28356010]
[14]
Sarkar, A.; Iwasa, H.; Hossain, S.; Xu, X.; Sawada, T.; Shimizu, T.; Maruyama, J.; Arimoto-Matsuzaki, K.; Hata, Y. Domain analysis of Ras-association domain family member 6 upon interaction with MDM2. FEBS Lett., 2017, 591(2), 260-272.
[http://dx.doi.org/10.1002/1873-3468.12551] [PMID: 28054709]
[15]
Iwasa, H.; Kuroyanagi, H.; Maimaiti, S.; Ikeda, M.; Nakagawa, K.; Hata, Y. Characterization of RSF-1, the Caenorhabditis elegans homolog of the Ras-association domain family protein 1. Exp. Cell Res., 2013, 319(3), 1-11.
[http://dx.doi.org/10.1016/j.yexcr.2012.10.008] [PMID: 23103556]
[16]
Hwang, E.; Cheong, H.K.; Mushtaq, A.U.; Kim, H.Y.; Yeo, K.J.; Kim, E.; Lee, W.C.; Hwang, K.Y.; Cheong, C.; Jeon, Y.H. Structural basis of the heterodimerization of the MST and RASSF SARAH domains in the Hippo signalling pathway. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(7), 1944-1953.
[http://dx.doi.org/10.1107/S139900471400947X] [PMID: 25004971]
[17]
Cheong.; Chaejoon.; Jeon.; Young, Ho.; Hae-Kap. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(7), 1944-1953.
[18]
Hwang, E. Backbone assignment of the SARAH domain from Mst2 kinase. J. Anal. Sci. Technol., 2010, 1(1), 15-18.
[http://dx.doi.org/10.5355/JAST.2010.15]
[19]
Saucedo, L.J.; Edgar, B.A. Filling out the Hippo pathway. Nat. Rev. Mol. Cell Biol., 2007, 8(8), 613-621.
[http://dx.doi.org/10.1038/nrm2221] [PMID: 17622252]
[20]
Praskova, M.; Khoklatchev, A.; Ortiz-Vega, S.; Avruch, J. Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem. J., 2004, 381(2), 453-462.
[http://dx.doi.org/10.1042/BJ20040025] [PMID: 15109305]
[21]
Romano, D.; Matallanas, D.; Weitsman, G.; Preisinger, C.; Ng, T.; Kolch, W. Proapoptotic kinase MST2 coordinates signaling crosstalk between RASSF1A, Raf-1, and Akt. Cancer Res., 2010, 70(3), 1195-1203.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3147] [PMID: 20086174]
[22]
Oh, H.J.; Lee, K.K.; Song, S.J.; Jin, M.S.; Song, M.S.; Lee, J.H.; Im, C.R.; Lee, J.O.; Yonehara, S.; Lim, D.S. Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis. Cancer Res., 2006, 66(5), 2562-2569.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2951] [PMID: 16510573]
[23]
Iwasa, H.; Hossain, S.; Hata, Y. Tumor suppressor C-RASSF proteins. Cell. Mol. Life Sci., 2018, 75(10), 1773-1787.
[http://dx.doi.org/10.1007/s00018-018-2756-5] [PMID: 29353317]
[24]
Lock, F.E.; Underhill-Day, N.; Dunwell, T.; Matallanas, D.; Cooper, W.; Hesson, L.; Recino, A.; Ward, A.; Pavlova, T.; Zabarovsky, E.; Grant, M.M.; Maher, E.R.; Chalmers, A.D.; Kolch, W.; Latif, F. The RASSF8 candidate tumor suppressor inhibits cell growth and regulates the Wnt and NF-κB signaling pathways. Oncogene, 2010, 29(30), 4307-4316.
[http://dx.doi.org/10.1038/onc.2010.192] [PMID: 20514026]
[25]
Gulsen, T.; Hadjicosti, I.; Li, Y.; Zhang, X.; Whitley, P.R.; Chalmers, A.D. Truncated RASSF7 promotes centrosomal defects and cell death. Dev. Biol., 2016, 409(2), 502-517.
[http://dx.doi.org/10.1016/j.ydbio.2015.11.001] [PMID: 26569555]
[26]
Kumaraswamy, A.; Mamidi, A.; Desai, P.; Sivagnanam, A.; Perumalsamy, L.R.; Ramakrishnan, C.; Gromiha, M.; Rajalingam, K.; Mahalingam, S. The non-enzymatic RAS effector RASSF7 inhibits oncogenic c-Myc function. J. Biol. Chem., 2018, 293(40), 15691-15705.
[http://dx.doi.org/10.1074/jbc.RA118.004452] [PMID: 30139745]
[27]
Miller, V.A. Optimizing therapy in previously treated non-small cell lung cancer. Semin. Oncol., 2006, 33(1)(Suppl. 1), 25-31.
[http://dx.doi.org/10.1053/j.seminoncol.2005.12.005] [PMID: 16472706]
[28]
Schoen, P.; Leserman, L.; Wilschut, J. Fusion of reconstituted influenza virus envelopes with liposomes mediated by streptavidin/biotin interactions. FEBS Lett., 1996, 390(3), 315-318.
[http://dx.doi.org/10.1016/0014-5793(96)00682-5] [PMID: 8706885]
[29]
Xin, S.; Li, X.; Zhao, G.; Wang, Y.; Zhang, J.; Duan, Z. RASSF7 and RASSF8 proteins are predictive factors for development and metastasis in malignant thyroid neoplasms. J. Cancer Res. Ther., 2013, 9(7), 173.
[http://dx.doi.org/10.4103/0973-1482.122519]
[30]
Weitzel, J.N.; Patel, J. A single P1 clone bearing three genes from human chromosome 11p15.5: HRC1, HRAS1, and RNH. Genet. Anal. Tech. Appl., 1994, 11(5-6), 165-170.
[http://dx.doi.org/10.1016/1050-3862(94)90037-X] [PMID: 7710782]
[31]
Schwab, M. Encyclopedia of Cancer; Springer Berlin Heidelberg: Berlin, Heidelberg, 2017, p. 2129.
[32]
Krontiris, T.G.; Devlin, B.; Karp, D.D.; Robert, N.J.; Risch, N. An association between the risk of cancer and mutations in the HRAS1 minisatellite locus. N. Engl. J. Med., 1993, 329(8), 517-523.
[http://dx.doi.org/10.1056/NEJM199308193290801] [PMID: 8336750]
[33]
Phelan, C.M.; Rebbeck, T.R.; Weber, B.L.; Devilee, P.; Ruttledge, M.H.; Lynch, H.T.; Lenoir, G.M.; Stratton, M.R.; Easton, D.F.; Ponder, B.A.J.; Cannon-Albright, L.; Larsson, C.; Goldgar, D.E.; Narod, S.A. Ovarian cancer risk in BRCA1 carriers is modified by the HRAS1 variable number of tandem repeat (VNTR) locus. Nat. Genet., 1996, 12(3), 309-311.
[http://dx.doi.org/10.1038/ng0396-309] [PMID: 8589723]
[34]
Vega, A.; Sobrido, M.J.; Ruiz-Ponte, C.; Barros, F.; Carracedo, A. RareHRAS1 alleles are a risk factor for the development of brain tumors. Cancer, 2001, 92(11), 2920-2926.
[http://dx.doi.org/10.1002/1097-0142(20011201)92:11<2920:AID-CNCR10110>3.0.CO;2-S] [PMID: 11753967]
[35]
Porteous, D.J.; Bickmore, W.; Christie, S.; Boyd, P.A.; Cranston, G.; Fletcher, J.M.; Gosden, J.R.; Rout, D.; Seawright, A.; Simola, K.O. HRAS1-selected chromosome transfer generates markers that colocalize aniridia- and genitourinary dysplasia-associated translocation breakpoints and the Wilms tumor gene within band 11p13. Proc. Natl. Acad. Sci. USA, 1987, 84(15), 5355-5359.
[http://dx.doi.org/10.1073/pnas.84.15.5355] [PMID: 3037545]
[36]
Weitzel, J.N.; Ding, S.; Larson, G.P.; Nelson, R.A.; Goodman, A.; Grendys, E.C.; Ball, H.G.; Krontiris, T.G. The HRAS1 minisatellite locus and risk of ovarian cancer. Cancer Res., 2000, 60(2), 259-261.
[PMID: 10667571]
[37]
van der Weyden, L.; Adams, D.J. The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim. Biophys. Acta, 2007, 1776(1), 58-85.
[PMID: 17692468]
[38]
Underhill-Day, N.; Hill, V.; Latif, F. N-terminal RASSF family. Epigenetics, 2011, 6(3), 284-292.
[http://dx.doi.org/10.4161/epi.6.3.14108] [PMID: 21116130]
[39]
Recino, A.; Flaxman, A.; Sherwood, V.; Cooper, W.; Ward, A.; Latif, F.; Chalmers, A.D. RASSF7: A new possible therapeutic cancer target? Genet. Res., 2010, 92(1), 71-72.
[40]
Djos, A.; Martinsson, T.; Kogner, P.; Carén, H. The RASSF gene family members RASSF5, RASSF6 and RASSF7 show frequent DNA methylation in neuroblastoma. Mol. Cancer, 2012, 11(1), 40.
[http://dx.doi.org/10.1186/1476-4598-11-40] [PMID: 22695170]
[41]
Wang, S.; Liang, Q.; Qiao, H.; Li, H.; Shen, T.; Ji, F.; Jiao, J. DISC1 regulates astrogenesis in the embryonic brain via modulation of RAS/MEK/ERK signaling through RASSF7. Development, 2016, 143(15), dev.133066.
[42]
Recino, A.; Sherwood, V.; Flaxman, A.; Cooper, W.N.; Latif, F.; Ward, A.; Chalmers, A.D. Human RASSF7 regulates the microtubule cytoskeleton and is required for spindle formation, Aurora B activation and chromosomal congression during mitosis. Biochem. J., 2010, 430(2), 207-213.
[http://dx.doi.org/10.1042/BJ20100883] [PMID: 20629633]
[43]
Mezzanotte, J.J.; Hill, V.; Schmidt, M.L.; Shinawi, T.; Tommasi, S.; Krex, D.; Schackert, G.; Pfeifer, G.P.; Latif, F.; Clark, G.J. RASSF6 exhibits promoter hypermethylation in metastatic melanoma and inhibits invasion in melanoma cells. Epigenetics, 2014, 9(11), 1496-1503.
[http://dx.doi.org/10.4161/15592294.2014.983361] [PMID: 25482183]
[44]
Sherwood, V.; Recino, A.; Jeffries, A.; Ward, A.; Chalmers, A.D. The N-terminal RASSF family: a new group of Ras-association-domaincontaining proteins, with emerging links to cancer formation. Biochem. J., 2010, 425(2), 303-311.
[http://dx.doi.org/10.1042/BJ20091318] [PMID: 20025613]
[45]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[46]
Sherwood, V.; Manbodh, R.; Sheppard, C.; Chalmers, A.D. RASSF7 is a member of a new family of RAS association domain-containing proteins and is required for completing mitosis. Mol. Biol. Cell, 2008, 19(4), 1772-1782.
[http://dx.doi.org/10.1091/mbc.e07-07-0652] [PMID: 18272789]
[47]
Takahashi, S.; Ebihara, A.; Kajiho, H.; Kontani, K.; Nishina, H.; Katada, T. RASSF7 negatively regulates pro-apoptotic JNK signaling by inhibiting the activity of phosphorylated-MKK7. Cell Death Differ., 2011, 18(4), 645-655.
[http://dx.doi.org/10.1038/cdd.2010.137] [PMID: 21278800]
[48]
He, L.; He, X.; Lowe, S.W.; Hannon, G.J. microRNAs join the p53 network-Another piece in the tumour-suppression puzzle. Nat. Rev. Cancer, 2007, 7(11), 819-822.
[http://dx.doi.org/10.1038/nrc2232] [PMID: 17914404]
[49]
Schüller, U.; Zhao, Q.; Godinho, S.A.; Heine, V.M.; Medema, R.H.; Pellman, D.; Rowitch, D.H. Forkhead transcription factor FoxM1 regulates mitotic entry and prevents spindle defects in cerebellar granule neuron precursors. Mol. Cell. Biol., 2007, 27(23), 8259-8270.
[http://dx.doi.org/10.1128/MCB.00707-07] [PMID: 17893320]
[50]
Pereira, G.; Schiebel, E. Kin4 kinase delays mitotic exit in response to spindle alignment defects. Mol. Cell, 2005, 19(2), 209-221.
[http://dx.doi.org/10.1016/j.molcel.2005.05.030] [PMID: 16039590]
[51]
Granic, A.; Potter, H. Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-Pick C1, Alzheimer’s disease, and atherosclerosis. PLoS One, 2013, 8(4), e60718.
[http://dx.doi.org/10.1371/journal.pone.0060718] [PMID: 23593294]
[52]
Eggert, U.; Mitchison, T. Small molecule screening by imaging. Curr. Opin. Chem. Biol., 2006, 10(3), 232-237.
[http://dx.doi.org/10.1016/j.cbpa.2006.04.010] [PMID: 16682248]
[53]
Ruchaud, S.; Carmena, M.; Earnshaw, W.C. Chromosomal passengers: conducting cell division. Nat. Rev. Mol. Cell Biol., 2007, 8(10), 798-812.
[http://dx.doi.org/10.1038/nrm2257] [PMID: 17848966]
[54]
Hauf, S.; Cole, R.W.; LaTerra, S.; Zimmer, C.; Schnapp, G.; Walter, R.; Heckel, A.; van Meel, J.; Rieder, C.L.; Peters, J.M. The small molecule heperadin reveals a role for aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol., 2003, 161(2), 281-294.
[http://dx.doi.org/10.1083/jcb.200208092] [PMID: 12707311]
[55]
Steigemann, P.; Wurzenberger, C.; Schmitz, M.H.A.; Held, M.; Guizetti, J.; Maar, S.; Gerlich, D.W. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell, 2009, 136(3), 473-484.
[http://dx.doi.org/10.1016/j.cell.2008.12.020] [PMID: 19203582]
[56]
Rosasco-Nitcher, S.E.; Lan, W.; Khorasanizadeh, S.; Stukenberg, P.T. Centromeric Aurora-B activation requires TD-60, microtubules, and substrate priming phosphorylation. Science, 2008, 319(5862), 469-472.
[http://dx.doi.org/10.1126/science.1148980] [PMID: 18218899]
[57]
Funabiki, H. Correcting aberrant kinetochore microtubule attachments: a hidden regulation of Aurora B on microtubules. Curr. Opin. Cell Biol., 2019, 58, 34-41.
[http://dx.doi.org/10.1016/j.ceb.2018.12.007] [PMID: 30684807]
[58]
Uren, A.G.; Wong, L.; Pakusch, M.; Fowler, K.J.; Burrows, F.J.; Vaux, D.L.; Choo, K.H.A. Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr. Biol., 2000, 10(21), 1319-1328.
[http://dx.doi.org/10.1016/S0960-9822(00)00769-7] [PMID: 11084331]
[59]
Cooke, C.A.; Heck, M.M.; Earnshaw, W.C. The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J. Cell Biol., 1987, 105(5), 2053-2067.
[http://dx.doi.org/10.1083/jcb.105.5.2053] [PMID: 3316246]
[60]
MAP Kinase Kinase Kinases. Schwab, M., Ed.; Encyclopedia of Cancer; Springer Berlin Heidelberg: Berlin, Heidelberg, 2016, p. 2655.
[61]
Waetzig, V.; Zhao, Y.; Herdegen, T. The bright side of JNKs-Multitalented mediators in neuronal sprouting, brain development and nerve fiber regeneration. Prog. Neurobiol., 2006, 80(2), 84-97.
[http://dx.doi.org/10.1016/j.pneurobio.2006.08.002] [PMID: 17045385]
[62]
Ma, X.; Xu, W.; Zhang, D.; Yang, Y.; Li, W.; Xue, L. Wallenda regulates JNK-mediated cell death in Drosophila. Cell Death Dis., 2015, 6(5), e1737.
[http://dx.doi.org/10.1038/cddis.2015.111] [PMID: 25950467]
[63]
Shimizu, S.; Konishi, A.; Nishida, Y.; Mizuta, T.; Nishina, H.; Yamamoto, A.; Tsujimoto, Y. Involvement of JNK in the regulation of autophagic cell death. Oncogene, 2010, 29(14), 2070-2082.
[http://dx.doi.org/10.1038/onc.2009.487] [PMID: 20101227]
[64]
He, T.C.; Sparks, A.B.; Rago, C.; Hermeking, H.; Zawel, L.; da Costa, L.T.; Morin, P.J.; Vogelstein, B.; Kinzler, K.W. Identification of c-MYC as a target of the APC pathway. Science, 1998, 281(5382), 1509-1512.
[http://dx.doi.org/10.1126/science.281.5382.1509] [PMID: 9727977]
[65]
Gao, P.; Tchernyshyov, I.; Chang, T.C.; Lee, Y.S.; Kita, K.; Ochi, T.; Zeller, K.I.; De Marzo, A.M.; Van Eyk, J.E.; Mendell, J.T.; Dang, C.V. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009, 458(7239), 762-765.
[http://dx.doi.org/10.1038/nature07823] [PMID: 19219026]
[66]
Minna, J.D.; Roth, J.A.; Gazdar, A.F. Focus on lung cancer. Cancer Cell, 2002, 1(1), 49-52.
[http://dx.doi.org/10.1016/S1535-6108(02)00027-2] [PMID: 12086887]
[67]
Dong, Q.Z.; Wang, Y.; Dong, X.J.; Li, Z.X.; Tang, Z.P.; Cui, Q.Z.; Wang, E.H. CIP2A is overexpressed in non-small cell lung cancer and correlates with poor prognosis. Ann. Surg. Oncol., 2011, 18(3), 857-865.
[http://dx.doi.org/10.1245/s10434-010-1313-8] [PMID: 20842459]
[68]
Pan, D. The hippo signaling pathway in development and cancer. Dev. Cell, 2010, 19(4), 491-505.
[http://dx.doi.org/10.1016/j.devcel.2010.09.011] [PMID: 20951342]
[69]
Song, S.; Honjo, S.; Jin, J.; Chang, S.S.; Scott, A.W.; Chen, Q.; Kalhor, N.; Correa, A.M.; Hofstetter, W.L.; Albarracin, C.T.; Wu, T.T.; Johnson, R.L.; Hung, M.C.; Ajani, J.A. The hippo coactivator YAP1 mediates EGFR overexpression and confers chemoresistance in esophageal cancer. Clin. Cancer Res., 2015, 21(11), 2580-2590.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2191] [PMID: 25739674]
[70]
Dong, J.; Feldmann, G.; Huang, J.; Wu, S.; Zhang, N.; Comerford, S.A.; Gayyed, M.F.; Anders, R.A.; Maitra, A.; Pan, D. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell, 2007, 130(6), 1120-1133.
[http://dx.doi.org/10.1016/j.cell.2007.07.019] [PMID: 17889654]
[71]
Zheng, X.; Dong, Q.; Zhang, X.; Han, Q.; Han, X.; Han, Y.; Wu, J.; Rong, X.; Wang, E. The coiled-coil domain of oncogene RASSF 7 inhibits hippo signaling and promotes non-small cell lung cancer. Oncotarget, 2017, 8(45), 78734-78748.
[http://dx.doi.org/10.18632/oncotarget.20223] [PMID: 29108261]
[72]
Johnsen, J.I.; Kogner, P.; Albihn, A.; Henriksson, M.A. Embryonal neural tumours and cell death. Apoptosis, 2009, 14(4), 424-438.
[http://dx.doi.org/10.1007/s10495-009-0325-y] [PMID: 19259824]
[73]
Stern, F.; Lehman, E.; Ruder, A. Mortality among unionized construction plasterers and cement masons. Am. J. Ind. Med., 2001, 39(4), 373-388.
[http://dx.doi.org/10.1002/ajim.1028] [PMID: 11323787]
[74]
Chen, A.Y.; Jemal, A.; Ward, E.M. Increasing incidence of differentiated thyroid cancer in the United States, 1988-2005. Cancer, 2009, 115(16), 3801-3807.
[http://dx.doi.org/10.1002/cncr.24416] [PMID: 19598221]
[75]
Said, S.; Schlumberger, M.; Suarez, H.G. Oncogenes and anti-oncogenes in human epithelial thyroid tumors. J. Endocrinol. Invest., 1994, 17(5), 371-379.
[http://dx.doi.org/10.1007/BF03349004] [PMID: 8077623]
[76]
Zhang, M.; Li, Q.; Zhang, L.; Wang, Y.; Wang, L.; Li, Q.; He, T.; Wan, B.; Wang, X. RASSF7 promotes cell proliferation through activating MEK1/2-ERK1/2 signaling pathway in hepatocellular carcinoma. Cell. Mol. Biol., 2018, 64(5), 73-79.
[http://dx.doi.org/10.14715/cmb/2018.64.5.12] [PMID: 29729697]
[77]
Fatima, A.; Tariq, F.; Malik, M.F.A.; Qasim, M.; Haq, F. Copy number profiling of mammaprint™ genes reveals association with the prognosis of breast cancer patients. J. Breast Cancer, 2017, 20(3), 246-253.
[http://dx.doi.org/10.4048/jbc.2017.20.3.246] [PMID: 28970850]
[78]
Uemura, N.; Okamoto, S.; Yamamoto, S.; Matsumura, N.; Yamaguchi, S.; Yamakido, M.; Taniyama, K.; Sasaki, N.; Schlemper, R.J. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med., 2001, 345(11), 784-789.
[http://dx.doi.org/10.1056/NEJMoa001999] [PMID: 11556297]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy