Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Polymeric Nanoparticles: Prospective on the Synthesis, Characterization and Applications in Nose-to-Brain Drug Delivery

Author(s): Prakash N. Kendre*, Dhiraj R. Kayande, Shirish P. Jain, Tejaswini G. Malge, Namrata N. Zadpe and Bhupendra G. Prajapati

Volume 19, Issue 5, 2023

Published on: 20 October, 2022

Page: [663 - 676] Pages: 14

DOI: 10.2174/1573413718666220929102013

Price: $65

conference banner
Abstract

For the treatment of brain illnesses, there is growing interest in nose-to-brain drug administration. Other, more traditional methods of crossing the blood–brain barrier (BBB) are ineffective. As a result, the therapeutic concentration in the brain cannot be achieved, and the reaction is inadequate. Intranasal medication delivery is one intriguing technique for avoiding first-pass metabolism and bypassing the blood-brain barrier. It lowers medicine doses while reducing systemic side effects. Compared to conventional drug delivery platforms, a nanoparticulate drug delivery method allows for greater penetration via the nasal route. It is better to make the nanoparticles for nose-to-brain administration when a good carrier (polymers) is used. This review focuses on the many processes for creating polymeric nanoparticles, strategies and tactics for improving nose-tobrain drug delivery efficiency, and nanoparticle characterization. The use of the nose-to-brain drug delivery platform is being explored using a variety of nanoparticles created by researchers for the treatment of brain illnesses.

Keywords: Polymeric nanoparticles, synthesis, blood-brain-barrier, brain diseases, techniques

Graphical Abstract

[1]
Wang, Z.; Xiong, G.; Tsang, W.C.; Schätzlein, A.G.; Uchegbu, I.F. Nose-to-brain delivery. J. Pharmacol. Exp. Ther., 2019, 370(3), 593-601.
[http://dx.doi.org/10.1124/jpet.119.258152] [PMID: 31126978]
[2]
Pardridge, W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab., 2012, 32(11), 1959-1972.
[http://dx.doi.org/10.1038/jcbfm.2012.126] [PMID: 22929442]
[3]
Battaglia, L.; Panciani, P.P.; Muntoni, E.; Capucchio, M.T.; Biasibetti, E.; De Bonis, P.; Mioletti, S.; Fontanella, M.; Swaminathan, S. Lipid nanoparticles for intranasal administration: Application to nose-to-brain delivery. Expert Opin. Drug Deliv., 2018, 15(4), 369-378.
[http://dx.doi.org/10.1080/17425247.2018.1429401] [PMID: 29338427]
[4]
Gao, H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm. Sin. B, 2016, 6(4), 268-286.
[http://dx.doi.org/10.1016/j.apsb.2016.05.013] [PMID: 27471668]
[5]
Kumar, A.; Pandey, A.N.; Jain, S.K. Nasal-nanotechnology: Revolution for efficient therapeutics delivery. Drug Deliv., 2016, 23(3), 671-683.
[http://dx.doi.org/10.3109/10717544.2014.920431] [PMID: 24901207]
[6]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[7]
Serlin, Y.; Shelef, I.; Knyazer, B.; Friedman, A. Anatomy and physiology of the blood–brain barrier. Semin. Cell Dev. Biol., 2015, 38, 2-6.
[http://dx.doi.org/10.1016/j.semcdb.2015.01.002] [PMID: 25681530]
[8]
Selvaraj, K.; Gowthamarajan, K.; Karri, V.V.S.R. Nose to brain transport pathways an overview: Potential of nanostructured lipid carriers in nose to brain targeting. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 2088-2095.
[PMID: 29282995]
[9]
Aderibigbe, B.A.; Naki, T. Chitosan-based nanocarriers for nose to brain delivery. Appl. Sci., 2019, 9(11), 2219.
[http://dx.doi.org/10.3390/app9112219]
[10]
Anu, M.E.S.; Saravanakumar, M.P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng., 2017, 263, 032019.
[http://dx.doi.org/10.1088/1757-899X/263/3/032019]
[11]
Patra, J.K.; Baek, K.H. Green nanobiotechnology: Factors affecting synthesis and characterization techniques. J. Nanomater., 2014, 2014, 417305.
[http://dx.doi.org/10.1155/2014/417305]
[12]
Satyanarayana, T.; Reddy, S.S. A review on chemical and physical synthesis methods of nanomaterials. Int. J. Res. Appl. Sci. Eng. Technol., 2018, 6(1), 2885-2889.
[http://dx.doi.org/10.22214/ijraset.2018.1396]
[13]
Jeyaraj, M.; Gurunathan, S.; Qasim, M.; Kang, M.H.; Kim, J.H. A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials, 2019, 9(12), 1719.
[http://dx.doi.org/10.3390/nano9121719] [PMID: 31810256]
[14]
Hussain, I.; Singh, N.B.; Singh, A.; Singh, H.; Singh, S.C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett., 2016, 38(4), 545-560.
[http://dx.doi.org/10.1007/s10529-015-2026-7] [PMID: 26721237]
[15]
Singh, P.; Kim, Y.J.; Zhang, D.; Yang, D.C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol., 2016, 34(7), 588-599.
[http://dx.doi.org/10.1016/j.tibtech.2016.02.006] [PMID: 26944794]
[16]
Pal, S.L.; Jana, U.; Manna, P.K.; Mohanta, G.P.; Manavalan, R. Nanoparticle: An overview of preparation and characterisation. J. Appl. Pharm. Sci., 2011, 1(6), 228-234.
[17]
Hoa, L.T.M.; Chi, N.T.; Nguyen, L.H.; Chien, D.M. Preparation and characterisation of nanoparticles containing ketoprofen and acrylic polymers prepared by emulsion solvent evaporation method. J. Exp. Nanosci., 2012, 7(2), 189-197.
[http://dx.doi.org/10.1080/17458080.2010.515247]
[18]
Meng, Q.; Wang, A.; Hua, H.; Jiang, Y.; Wang, Y.; Mu, H.; Wu, Z.; Sun, K. Intranasal delivery of huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int. J. Nanomedicine, 2018, 13, 705-718.
[http://dx.doi.org/10.2147/IJN.S151474] [PMID: 29440896]
[19]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez, T.M.P.; Acosta, T.L.S.; Diaz, T.L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[20]
Pedroso, S.S.; Fleitas, S.N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym. Int., 2020, 69(5), 443-447.
[http://dx.doi.org/10.1002/pi.5970]
[21]
Md, S.; Khan, R.A.; Mustafa, G.; Chuttani, K.; Baboota, S.; Sahni, J.K.; Ali, J. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, Pharmacokinetic and scintigraphy study in mice model. Eur. J. Pharm. Sci., 2013, 48(3), 393-405.
[http://dx.doi.org/10.1016/j.ejps.2012.12.007] [PMID: 23266466]
[22]
Mittal, D.; Md, S.; Hasan, Q.; Fazil, M.; Ali, A.; Baboota, S.; Ali, J. Brain targeted nanoparticulate drug delivery system of rasagiline via intranasal route. Drug Deliv., 2016, 23(1), 130-139.
[http://dx.doi.org/10.3109/10717544.2014.907372] [PMID: 24786489]
[23]
Iqbal, M.; Zafar, N.; Fessi, H.; Elaissari, A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int. J. Pharm., 2015, 496(2), 173-190.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.057] [PMID: 26522982]
[24]
Alex, A.T.; Joseph, A.; Shavi, G.; Rao, J.V.; Udupa, N. Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery. Drug Deliv., 2016, 23(7), 2144-2153.
[http://dx.doi.org/10.3109/10717544.2014.948643] [PMID: 25544603]
[25]
Nagavarma, B.V.N. Different techniques for preparation of polymeric nanoparticles – A review. Asian J. Pharm. Clin. Res., 2012, 5(3), 16-23.
[26]
Gadhave, D.G.; Kokare, C.R. Nanostructured lipid carriers engineered for intranasal delivery of teriflunomide in multiple sclerosis: Optimization and in vivo studies. Drug Dev. Ind. Pharm., 2019, 45(5), 839-851.
[http://dx.doi.org/10.1080/03639045.2019.1576724] [PMID: 30702966]
[27]
Hangargekar, S.R.; Mohanty, P.; Jain, A. Solid lipid nanoparticles for brain targeting. J. Drug Deliv. Ther., 2019, 9(6-s), 248-252.
[http://dx.doi.org/10.22270/jddt.v9i6-s.3783]
[28]
Kuldeep, S. Nano formulation a novel approach for nose to brain drug delivery. J. Chem. Pharm. Res., 2016, 8(2), 208-215.
[29]
Bonferoni, M.; Rossi, S.; Sandri, G.; Ferrari, F.; Gavini, E.; Rassu, G.; Giunchedi, P. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics, 2019, 11(2), 84.
[http://dx.doi.org/10.3390/pharmaceutics11020084] [PMID: 30781585]
[30]
Jaiswal, M.; Dudhe, R.; Sharma, P. K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech., 2015, 5(2), 123-127.
[31]
Zarif, L. Cochleates as Nanoparticular Drug Carriers. In: Nanoparticulates as Drug Carriers; Published by Imperial College Press and Distributed by World Scientific Publishing Co: Singapore, 2006; pp. 349-366.
[http://dx.doi.org/10.1142/9781860949074_0016]
[32]
Hong, S.S.; Oh, K.T.; Choi, H.G.; Lim, S.J. Liposomal formulations for nose-to-brain delivery: Recent advances and future perspectives. Pharmaceutics, 2019, 11(10), 540.
[http://dx.doi.org/10.3390/pharmaceutics11100540] [PMID: 31627301]
[33]
Vieira, D.; Gamarra, L. Getting into the brain: Liposome-based strategies for effective drug delivery across the blood–brain barrier. Int. J. Nanomedicine, 2016, 11, 5381-5414.
[http://dx.doi.org/10.2147/IJN.S117210] [PMID: 27799765]
[34]
Parajapati, S.K.; Maurya, S.D.; Das, M.K.; Tilak, V.K.; Verma, K.K.; Dhakar, R.C. Potential application of dendrimers in drug delivery: A concise review and update. J. Drug Deliv. Ther., 2016, 6(2), 71-88.
[http://dx.doi.org/10.22270/jddt.v6i2.1195]
[35]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati, K.K.; Pashaei, A.R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[36]
Zhu, Y.; Liu, C.; Pang, Z. Dendrimer-based drug delivery systems for brain targeting. Biomolecules, 2019, 9(12), 790.
[http://dx.doi.org/10.3390/biom9120790] [PMID: 31783573]
[37]
Lungare, S.; Hallam, K.; Badhan, R.K.S. Phytochemical-loaded mesoporous silica nanoparticles for nose-to-brain olfactory drug delivery. Int. J. Pharm., 2016, 513(1-2), 280-293.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.042] [PMID: 27633279]
[38]
Mohanraj, V.J.; Chen, Y. Nanoparticles - A review. Trop. J. Pharm. Res., 2007, 5(1), 561-573.
[http://dx.doi.org/10.4314/tjpr.v5i1.14634]
[39]
Caputo, F.; Clogston, J.; Calzolai, L.; Rösslein, M.; Prina-Mello, A. Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. J. Control. Release, 2019, 299, 31-43.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.030] [PMID: 30797868]
[40]
Pandey, P. D.M. A brief review on inorganic nanoparticles. Crit. Rev., 2016, 3(3), 18-26.
[41]
Rasmussen, M.K.; Pedersen, J.N.; Marie, R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat. Commun., 2020, 11(1), 2337.
[http://dx.doi.org/10.1038/s41467-020-15889-3] [PMID: 32393750]
[42]
Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems - A review (Part 1). Trop. J. Pharm. Res., 2013, 12(2), 255-264.
[43]
Jain, A.K.; Thareja, S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 524-539.
[http://dx.doi.org/10.1080/21691401.2018.1561457] [PMID: 30784319]
[44]
Ranjit, K.; Nanoparticle, B.A. An overview of preparation, characterization and application. Int Res J Pharm., 2013, 4(4), 47-57.
[45]
D’Souza, S. A review of in vitro drug release test methods for nano-sized dosage forms. Adv. Pharm., 2014, 2014, 304757.
[http://dx.doi.org/10.1155/2014/304757]
[46]
Muthu, M.S.; Feng, S.S. Pharmaceutical stability aspects of nanomedicines. Nanomedicine, 2009, 4(8), 857-860.
[http://dx.doi.org/10.2217/nnm.09.75] [PMID: 19958220]
[47]
Mistry, A.; Stolnik, S.; Illum, L. Nanoparticles for direct nose-to-brain delivery of drugs. Int. J. Pharm., 2009, 379(1), 146-157.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.019] [PMID: 19555750]
[48]
Sonvico, F.; Clementino, A.; Buttini, F.; Colombo, G.; Pescina, S.; Stanisçuaski, G.S.; Raffin, P.A.; Nicoli, S. Surface-modified nanocarriers for nose-to-brain delivery: From bioadhesion to targeting. Pharmaceutics, 2018, 10(1), 34.
[http://dx.doi.org/10.3390/pharmaceutics10010034] [PMID: 29543755]
[49]
Erdő, F.; Bors, L.A.; Farkas, D.; Bajza, Á.; Gizurarson, S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull., 2018, 143, 155-170.
[http://dx.doi.org/10.1016/j.brainresbull.2018.10.009] [PMID: 30449731]
[50]
Md, S.; Mustafa, G.; Baboota, S.; Ali, J. Nanoneurotherapeutics approach intended for direct nose to brain delivery. Drug Dev. Ind. Pharm., 2015, 41(12), 1922-1934.
[http://dx.doi.org/10.3109/03639045.2015.1052081] [PMID: 26057769]
[51]
Ghadiri, M.; Young, P.; Traini, D. Strategies to enhance drug absorption via nasal and pulmonary routes. Pharmaceutics, 2019, 11(3), 113.
[http://dx.doi.org/10.3390/pharmaceutics11030113] [PMID: 30861990]
[52]
Islam, S.U.; Shehzad, A.; Ahmed, M.B.; Lee, Y.S. Intranasal delivery of nanoformulations: A potential way of treatment for neurological disorders. Molecules, 2020, 25(8), 1929.
[http://dx.doi.org/10.3390/molecules25081929] [PMID: 32326318]
[53]
Alnasser, S. A review on nasal drug delivery system and its contribution in therapeutic management. Asian J. Pharm. Clin. Res., 2019, 12(1), 40-45.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i1.29443]
[54]
Anagnostou, K.; Stylianakis, M.; Michaleas, S.; Skouras, A. Biodegradable nanomaterials. In: Nanomaterials for Clinical Applications; Elsevier: Amsterdam, Netherlands, 2020; pp. 123-157.
[55]
Singh, N.; Joshi, A.; Toor, A.; Verma, G. Drug delivery: Advancements and challenges. In: Nanostruct Drug Deliv; Elsevier: Amsterdam, Netherlands, 2017; pp. 865-886.
[56]
Suriya, P.A.; Dorothy, R.; Jancirani, S.; Rajendran, S.; Singh, G.; Senthil, K.S. Recent advances in the study of toxicity of polymer-based nanomaterials. In: Nanotoxicity; Elsevier: Amsterdam, Netherlands, 2020; pp. 143-165.
[http://dx.doi.org/10.1016/B978-0-12-819943-5.00007-5]
[57]
Wu, T.; Tang, M. Review of the effects of manufactured nanoparticles on mammalian target organs. J. Appl. Toxicol., 2018, 38(1), 25-40.
[http://dx.doi.org/10.1002/jat.3499] [PMID: 28799656]
[58]
Elsaesser, A.; Howard, C.V. Toxicology of nanoparticles. Adv. Drug Deliv. Rev., 2012, 64(2), 129-137.
[http://dx.doi.org/10.1016/j.addr.2011.09.001] [PMID: 21925220]
[59]
Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M.L.; Stroeve, P.; Mahmoudi, M. Toxicity of nanomaterials. Chem. Soc. Rev., 2012, 41, 2323-2343.
[60]
Wu, T.; Tang, M. Toxicity of quantum dots on respiratory system. Inhal. Toxicol., 2014, 26(2), 128-139.
[http://dx.doi.org/10.3109/08958378.2013.871762] [PMID: 24495248]
[61]
Recordati, C.; De Maglie, M.; Bianchessi, S.; Argentiere, S.; Cella, C.; Mattiello, S.; Cubadda, F.; Aureli, F.; D’Amato, M.; Raggi, A.; Lenardi, C.; Milani, P.; Scanziani, E. Tissue distribution and acute toxicity of silver after single intravenous administration in mice: Nano-specific and size-dependent effects. Part. Fibre Toxicol., 2015, 13(1), 12.
[http://dx.doi.org/10.1186/s12989-016-0124-x] [PMID: 26926244]
[62]
Zoroddu, M.; Medici, S.; Ledda, A.; Nurchi, V.; Lachowicz, J.; Peana, M. Toxicity of nanoparticles. Curr. Med. Chem., 2014, 21(33), 3837-3853.
[http://dx.doi.org/10.2174/0929867321666140601162314] [PMID: 25306903]
[63]
Paek, H.J.; Lee, Y.J.; Chung, H.E.; Yoo, N.H.; Lee, J.A.; Kim, M.K.; Lee, J.K.; Jeong, J.; Choi, S.J. Modulation of the pharmacokinetics of zinc oxide nanoparticles and their fates in vivo. Nanoscale, 2013, 5(23), 11416-11427.
[http://dx.doi.org/10.1039/c3nr02140h] [PMID: 23912904]
[64]
Shegokar, R.; Singh, K.K. Surface modified nevirapine nanosuspensions for viral reservoir targeting: In vitro and in vivo evaluation. Int. J. Pharm., 2011, 421(2), 341-352.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.041] [PMID: 21986114]
[65]
McClements, D.J. Emulsion design to improve the delivery of functional lipophilic components. Annu. Rev. Food Sci. Technol., 2010, 1(1), 241-269.
[http://dx.doi.org/10.1146/annurev.food.080708.100722] [PMID: 22129337]
[66]
Palanikumar, L.; Al-Hosani, S.; Kalmouni, M.; Nguyen, V.P.; Ali, L.; Pasricha, R.; Barrera, F.N.; Magzoub, M. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun. Biol., 2020, 3(1), 95.
[http://dx.doi.org/10.1038/s42003-020-0817-4] [PMID: 32127636]
[67]
Maier, M.A.; Jayaraman, M.; Matsuda, S.; Liu, J.; Barros, S.; Querbes, W.; Tam, Y.K.; Ansell, S.M.; Kumar, V.; Qin, J.; Zhang, X.; Wang, Q.; Panesar, S.; Hutabarat, R.; Carioto, M.; Hettinger, J.; Kandasamy, P.; Butler, D.; Rajeev, K.G.; Pang, B.; Charisse, K.; Fitzgerald, K.; Mui, B.L.; Du, X.; Cullis, P.; Madden, T.D.; Hope, M.J.; Manoharan, M.; Akinc, A. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther., 2013, 21(8), 1570-1578.
[http://dx.doi.org/10.1038/mt.2013.124] [PMID: 23799535]
[68]
Schubert, J.; Chanana, M. Coating matters: Review on colloidal stability of nanoparticles with biocompatible coatings in biological media, living cells and organisms. Curr. Med. Chem., 2018, 25(35), 4553-4586.
[http://dx.doi.org/10.2174/0929867325666180601101859] [PMID: 29852857]
[69]
Thirumala, R.G.; Babu, B.; Joyce, S.R.; Pushpa, M.V.; Ravikumar, R.V.S.S.N. Spectral investigations on undoped and Cu2+ doped ZnO–CdS composite nanopowders. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 139, 86-93.
[http://dx.doi.org/10.1016/j.saa.2014.12.021] [PMID: 25554956]
[70]
Adeleye, A.S.; Pokhrel, S.; Mädler, L.; Keller, A.A. Influence of nanoparticle doping on the colloidal stability and toxicity of copper oxide nanoparticles in synthetic and natural waters. Water Res., 2018, 132, 12-22.
[http://dx.doi.org/10.1016/j.watres.2017.12.069] [PMID: 29304444]
[71]
Ahmad, J.; Siddiqui, M.A.; Akhtar, M.J.; Alhadlaq, H.A.; Alshamsan, A.; Khan, S.T.; Wahab, R.; Al-Khedhairy, A.A.; Al-Salim, A.; Musarrat, J.; Saquib, Q.; Fareed, M.; Ahamed, M. Copper doping enhanced the oxidative stress–mediated cytotoxicity of TiO2 nanoparticles in A549 cells. Hum. Exp. Toxicol., 2018, 37(5), 496-507.
[http://dx.doi.org/10.1177/0960327117714040] [PMID: 28621211]
[72]
Sun, B.; Pokhrel, S.; Dunphy, D.R.; Zhang, H.; Ji, Z.; Wang, X.; Wang, M.; Liao, Y.P.; Chang, C.H.; Dong, J.; Li, R.; Mädler, L.; Brinker, C.J.; Nel, A.E.; Xia, T. Reduction of acute inflammatory effects of fumed silica nanoparticles in the lung by adjusting silanol display through calcination and metal doping. ACS Nano, 2015, 9(9), 9357-9372.
[http://dx.doi.org/10.1021/acsnano.5b03443] [PMID: 26200133]
[73]
Naatz, H.; Lin, S.; Li, R.; Jiang, W.; Ji, Z.; Chang, C.H.; Köser, J.; Thöming, J.; Xia, T. Nel, A.E.; Mädler, L.; Pokhrel, S. Safe-by-Design CuO nanoparticles via Fe-doping, Cu–O bond length variation, and biological assessment in cells and zebrafish embryos. ACS Nano, 2017, 11(1), 501-515.
[http://dx.doi.org/10.1021/acsnano.6b06495] [PMID: 28026936]
[74]
Teoh, W.Y.; Amal, R.; Mädler, L. Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. Nanoscale, 2010, 2(8), 1324-1347.
[http://dx.doi.org/10.1039/c0nr00017e] [PMID: 20820719]
[75]
Hola, K.; Markova, Z.; Zoppellaro, G.; Tucek, J.; Zboril, R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv., 2015, 33(6), 1162-1176.
[http://dx.doi.org/10.1016/j.biotechadv.2015.02.003] [PMID: 25689073]
[76]
Mout, R.; Moyano, D.F.; Rana, S.; Rotello, V.M. Surface functionalization of nanoparticles for nanomedicine. Chem. Soc. Rev., 2012, 41(7), 2539-2544.
[http://dx.doi.org/10.1039/c2cs15294k] [PMID: 22310807]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy