Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Review Article

An Overview of Paclitaxel and Molecular Imprinted Polymers Capped with Quantum Dots as an Alternative Approach for Paclitaxel Extraction and Detection

Author(s): Azad Qayoom Malik*, Tahir ul Gani Mir and Deepak Kumar

Volume 16, Issue 2, 2023

Published on: 26 December, 2022

Page: [185 - 216] Pages: 32

DOI: 10.2174/2666145415666220928111532

Price: $65

Abstract

Paclitaxel (Taxol) is a drug that belongs to the class of compounds called Taxane. It is a strong and potent chemotherapeutic drug that inhibits the growth of certain types of cancer cells; however, its abundance is very low, and various types of methodologies have been implemented to extract paclitaxel from the bark of different plants and herbs. The molecularly imprinted polymers (MIPs) could be the best alternative to purify the paclitaxel molecule. MIPs have become an attractive solution for the selective and fine-tuned determination of target templates in complex forms where other comparable and relevant structural compounds could coexist. Implementation of quantum dots in MIPs improves their extraction features due to the presence of distinct functional sites. Quantum dots can be employed to modulate the size, detectability, and state of the imprinted materials, depending on the selected application. This review aims to summarize and illustrate the modern and innovative strategies based on the aggregation of MIPs with quantum dots. Quantum dot embedded MIPs can be exploited for simultaneous extraction, preconcentration, and detection of paclitaxel obtained from various sources.

Keywords: Molecularly Imprinted Polymer, Quantum dots, MIP@QD sensor, nanocomposite, paclitaxel

[1]
Clyde B, Matthew P, Benjamin S, Shawn W. Molecularly imprinted solid phase extraction of taxane from plant cell culture WPI Journal. 2017. Available from: https://www.semanticscholar.org/paper/Molecularly-Imprinted-Solid-Phase-Extraction-of-Bumila/5f7b26ff50ebae5599962d6e4486bffa867b3e52
[2]
Walsh V, Goodman J. From taxol to taxol®: The changing identities and ownership of an anti-cancer drug. Med Anthropol 2002; 21(3-4): 307-36.
[http://dx.doi.org/10.1080/01459740214074 ] [PMID: 12458837]
[3]
Vidensek N, Lim P, Campbell A, Carlson C. Taxol content in bark, wood, root, leaf, twig, and seedling from several Taxus species. J Nat Prod 1990; 53(6): 1609-10.
[http://dx.doi.org/10.1021/np50072a039 ] [PMID: 1982448]
[4]
Schippmann U. Medicinal Plants Significant Trade Study (CITES Project S- 109) German Federal Agency for Nature Conservation 2001. German Federal Agency for Nature Conservation 2001.
[5]
Fuchs DA, Johnson RK. Cytologic evidence that taxol, an antineoplastic agent from Taxus brevifolia, acts as a mitotic spindle poison. Cancer Treat Rep 1978; 62(8): 1219-22.
[PMID: 688258]
[6]
Yeung TK, Germond C, Chen X, Wang Z. The mode of action of taxol: Apoptosis at low concentration and necrosis at high concentration. Biochem Biophys Res Commun 1999; 263(2): 398-404.
[http://dx.doi.org/10.1006/bbrc.1999.1375 ] [PMID: 10491305]
[7]
Kovács P, Csaba G, Pállinger E, Czaker R. Effects of taxol treatment on the microtubular system and mitochondria of Tetrahymena. Cell Biol Int 2007; 31(7): 724-32.
[http://dx.doi.org/10.1016/j.cellbi.2007.01.004 ] [PMID: 17314054]
[8]
Heldman AW, Cheng L, Jenkins GM, et al. Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis. Circulation 2001; 103(18): 2289-95.
[http://dx.doi.org/10.1161/01.CIR.103.18.2289 ] [PMID: 11342479]
[9]
Venditti JM, Wesley RA, Plowman J. Therapy of metastasis in animal models. J Adv Pharmacol Chemother 1984; 20: 1-20.
[http://dx.doi.org/10.1016/S1054-3589(08)60263-X]
[10]
Wall ME, Wani MC. Camptothecin and taxol: Discovery to clinic-thirteenth Bruce F. Cain Memorial Award Lecture. Cancer Res 1995; 55(4): 753-60.
[PMID: 7850785]
[11]
Monroe EW, Mansukh CW. Taxol: A unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann Intern Med 1989; 111(4): 273-9.
[http://dx.doi.org/10.7326/0003-4819-111-4-273 ] [PMID: 2569287]
[12]
Wiernik PH, Schwartz EL, Einzig A, Strauman JJ, Lipton RB, Dutcher JP. Phase I trial of taxol given as a 24-hour infusion every 21 days: Responses observed in metastatic melanoma. J Clin Oncol 1987; 5(8): 1232-9.
[http://dx.doi.org/10.1200/JCO.1987.5.8.1232 ] [PMID: 2887641]
[13]
Frankie AH, Ronald SW, Richard LT, et al. Phase II trial of taxol, an active drug in the treatment of metastatic breast cancer. J Natl Cancer Inst 1991; 83(24): 1797-805.
[http://dx.doi.org/10.1093/jnci/83.24.1797-a] [PMID: 1683908]
[14]
Hal H. The yew tree: A thousand whispers: Biography of a species. Hulgosi Books 1991.
[15]
Chase M. Clashing priorities: A new cancer drug may extend lives-at cost of rare trees-that angers conservationists, who say Taxol extraction endangers the prized yew pressure on Bristol-Myers too. Wall Street J 1991; 9.
[16]
Adams JD, Flora KP, Goldspiel BR, Wilson JW, Arbuck SG, Finley R. Taxol: A history of pharmaceutical development and current pharmaceutical concerns. J Natl Cancer Inst Monogr 1993; 15(15): 141-7.
[PMID: 7912520]
[17]
Rowinsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC. Clinical toxicities encountered with paclitaxel (Taxol). Semin Oncol 1993; 20(4): 1-15.
[PMID: 8102012]
[18]
Tinwell H, Ashby J. Natural sources of Taxol. Carcinogenesis 1994; 8: 1499-501.
[http://dx.doi.org/10.1093/carcin/15.8.1499 ] [PMID: 7914474]
[19]
Parness J, Horwitz SB. Taxol binds to polymerized tubulin in vitro. J Cell Biol 1981; 91(2): 479-87.
[http://dx.doi.org/10.1083/jcb.91.2.479 ] [PMID: 6118377]
[20]
Denis JN, Greene AE, Guenard D, Gueritte-Voegelein F, Mangatal L, Potier P. Highly efficient, practical approach to natural taxol. J Am Chem Soc 1988; 110(17): 5917-9.
[http://dx.doi.org/10.1021/ja00225a063]
[21]
Guenard D, Gueritte-Voegelein F, Potier P. Taxol and taxotere: Discovery, chemistry, and structure-activity relationships. Acc Chem Res 1993; 26(4): 160-7.
[http://dx.doi.org/10.1021/ar00028a005]
[22]
Collins D, Mill RR, Möller M. Species separation of Taxus baccata, T. canadensis, and T. cuspidata (Taxaceae) and origins of their reputed hybrids inferred from RAPD and cpDNA data. Am J Bot 2003; 90(2): 175-82.
[http://dx.doi.org/10.3732/ajb.90.2.175 ] [PMID: 21659107]
[23]
Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 1993; 260(5105): 214-6.
[http://dx.doi.org/10.1126/science.8097061 ] [PMID: 8097061]
[24]
Wang J, Li G, Lu H, Zheng Z, Huang Y, Su W. Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol Lett 2000; 193(2): 249-53.
[http://dx.doi.org/10.1111/j.1574-6968.2000.tb09432.x ] [PMID: 11111032]
[25]
Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 1996; 142(2): 435-40.
[http://dx.doi.org/10.1099/13500872-142-2-435 ] [PMID: 8932715]
[26]
Claire C, Yong T, Javier K, Angeles C, Jesús JB, Antonio MA. A structure-based design of new C2- and C13-substituted taxanes: Tubulin binding affinities and extended quantitative structure-activity relationships using comparative binding energy (COMBINE) analysis. Org Biomol Chem 2013; 11(18): 7652-709.
[http://dx.doi.org/10.1039/c3ob40407b]
[27]
Croteau R, Ketchum REB, Long RM, Kaspera R, Wildung MR. Taxol biosynthesis and molecular genetics. Phytochem Rev 2006; 5(1): 75-97.
[http://dx.doi.org/10.1007/s11101-005-3748-2 ] [PMID: 20622989]
[28]
Li D, Fu D, Zhang Y, Ma X, Gao L, Zhou D. Isolation, purification, and identification of taxol and related taxanes from taxol-producing fungus Aspergillus niger subsp. Taxi. J Microbiol Biotechnol 2017; 27: 1379-85.
[29]
Wender PA, Badham NF, Conway SP, et al. The pinene path to taxanes. 6. A concise stereocontrolled synthesis of Taxol. J Am Chem Soc 1997; 119(11): 2757-8.
[http://dx.doi.org/10.1021/ja963539z]
[30]
Kanda Y, Ishihara Y, Wilde NC, Baran PS. Baran.Two phase synthesis of Txanes:Tactics and Strategies. J Org Chem 2020; 85(16): 10293-320.
[http://dx.doi.org/10.1021/acs.joc.0c01287 ] [PMID: 32663002]
[31]
Ganem B, Franke RR. Paclitaxel from primary taxanes: A perspective on creative invention in organozirconium chemistry. J Org Chem 2007; 72(11): 3981-7.
[http://dx.doi.org/10.1021/jo070129s ] [PMID: 17381159]
[32]
Singla AK, Garg A, Aggarwal D. Paclitaxel and its formulations. Int J Pharm 2002; 235(1-2): 179-92.
[http://dx.doi.org/10.1016/S0378-5173(01)00986-3 ] [PMID: 11879753]
[33]
Pengfei L, Ting W, Fuhou L, Xiaoyu P. Preparation and evaluation of paclitaxel-imprinted polymers with a rosin based crosslinker as the stationary phase in high-performance liquid chromatography. J Chromat A 2017; p. 1502.
[34]
Fukaya K, Tanaka Y, Sato AC, et al. Synthesis of Paclitaxel. 1. Synthesis of the ABC Ring of Paclitaxel by SmI 2 -Mediated Cyclization. Org Lett 2015; 17(11): 2570-3.
[http://dx.doi.org/10.1021/acs.orglett.5b01173 ] [PMID: 26010812]
[35]
Holton RA, Somoza C, Kim HB, et al. First total synthesis of taxol. 1. Functionalization of the B ring. J Am Chem Soc 1994; 116(4): 1597-8.
[http://dx.doi.org/10.1021/ja00083a066]
[36]
Nicolaou KC, Nantermet PG, Ueno H, Guy RK, Couladouros EA, Sorensen EJ. Total synthesis of taxol. 1. Retrosynthesis, degradation, and reconstitution. J Am Chem Soc 1995; 117(2): 624-33.
[http://dx.doi.org/10.1021/ja00107a006]
[37]
Masters JJ, Link JT, Snyder LB, Young WB, Danishefsky SJ. A total synthesis of taxol. Angew Chem Int Ed Engl 1995; 34(16): 1723-6.
[http://dx.doi.org/10.1002/anie.199517231]
[38]
Danishefsky SJ, Masters JJ, Young WB, et al. Total synthesis of baccatin III and taxol. J Am Chem Soc 1996; 118(12): 2843-59.
[http://dx.doi.org/10.1021/ja952692a]
[39]
Carreira Erick M, Gerken Viktoria C. Synthesis of (–)-Taxol. Synfacts 2022.
[40]
Mukaiyama T, Shiina I, Iwadare H, et al. Asymmetric total synthesis of taxol. Proc Jpn Acad, Ser B, Phys Biol Sci 1997; 73(6): 95-100.
[http://dx.doi.org/10.2183/pjab.73.95]
[41]
Morihira K, Hara R, Kawahara S, et al. Enantioselective total synthesis of taxol. J Am Chem Soc 1998; 120(49): 12980-1.
[http://dx.doi.org/10.1021/ja9824932]
[42]
Doi T, Fuse S, Miyamoto S, Nakai K, Sasuga D, Takahashi T. A formal total synthesis of taxol aided by an automated synthesizer. Chem Asian J 2006; 1(3): 370-83.
[http://dx.doi.org/10.1002/asia.200600156 ] [PMID: 17441074]
[43]
Nakada M, Kojima E, Iwata Y. A concise synthesis approach to optically active taxol C-ring fragment. Tetrahedron Lett 1998; 39(3-4): 313-6.
[http://dx.doi.org/10.1016/S0040-4039(97)10554-8]
[44]
Iwamoto M, Kawada H, Tanaka T, Nakada M. Preparation of new chiral building blocks via asymmetric catalysis. Tetrahedron Lett 2003; 44(39): 7239-43.
[http://dx.doi.org/10.1016/j.tetlet.2003.08.009]
[45]
Tsuna K, Noguchi N, Nakada M. Synthesis of medium-sized carbocyclic ketones via the intramolecular B-alkyl Liebeskind–Srogl coupling reaction. Tetrahedron Lett 2011; 52(52): 7202-5.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.148]
[46]
Hideaki W, Mitsuhiro I, Masahisa N. Preparation of new chiral building blocks: Highly enantioselective reduction of prochiral 1,3-cycloalkanediones possessing a methyl group and a protected hydroxymethyl group at their C2 position with baker’s yeast or CBS catalyst. Chem 2005; 70: 4652-8.
[47]
Sharpless KB, Verhoeven TR. 1979; 197: 63-74.
[48]
Hutchins RO, Taffer IM, Burgoyne W. Regio and stereoselective cleavage of epoxides with cyanoborohydride and boron trifluoride etherate. J Org Chem 1981; 46(25): 5214-5.
[http://dx.doi.org/10.1021/jo00338a031]
[49]
Davis FA, Lamendola J Jr, Nadir U, et al. Chemistry of oxaziridines. 1. Synthesis and structure of 2-arenesulfonyl-3-aryloxaziridines. A new class of oxaziridines. J Am Chem Soc 1980; 102(6): 2000-5.
[http://dx.doi.org/10.1021/ja00526a040]
[50]
Miller RA, Li W, Humphrey GR. A ruthenium catalyzed oxidation of steroidal alkenes to enones. Tetrahedron Lett 1996; 37(20): 3429-32.
[http://dx.doi.org/10.1016/0040-4039(96)00586-2]
[51]
Senthilkumar PM, Aravind A, Baskaran S. Regioselective oxidative cleavage of benzylidene acetals: Synthesis of highly functionalized chiral intermediates. Tetrahedron Lett 2007; 48(7): 1175-8.
[http://dx.doi.org/10.1016/j.tetlet.2006.12.078]
[52]
Meng Z, Lv Q, Lu J, et al. Prodrug strategies for paclitaxel. Int J Mol Sci 2016; 17: 796.
[53]
Denis G, Morgan S, Rong L, et al. Cytoreductive surgery and intraoperative administration of paclitaxel-loaded expansile nanoparticles delay tumor recurrence in ovarian carcinoma. Ann Surg Oncol 2013; 20: 1684-93.
[54]
Park S, Kang S, Chen X, et al. Tumor suppression via paclitaxel-loaded drug carriers that target inflammation marker upregulated in tumor vasculature and macrophages. Biomaterials 2013; 34(2): 598-605.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.004 ] [PMID: 23099063]
[55]
Li Y, Bi Y, Xi Y, Li L. Enhancement on oral absorption of paclitaxel by multifunctional pluronic micelles. J Drug Target 2013; 21(2): 188-99.
[http://dx.doi.org/10.3109/1061186X.2012.737001 ] [PMID: 23126604]
[56]
Zhang J, Zhao J, Zhang W, et al. Establishment of paclitaxel-resistant cell line and the underlying mechanism on drug resistance. Int J Gynecol Cancer 2012; 22(9): 1.
[http://dx.doi.org/10.1097/IGC.0b013e31826e2382 ] [PMID: 23051955]
[57]
Byron SA, Loch DC, Pollock PM. Fibroblast growth factor receptor inhibition synergizes with Paclitaxel and Doxorubicin in endometrial cancer cells. Int J Gynecol Cancer 2012; 22(9): 1.
[http://dx.doi.org/10.1097/IGC.0b013e31826f6806 ] [PMID: 23060048]
[58]
Huang T, Gong WH, Li XC, et al. Synergistic increase in the sensitivity of osteosarcoma cells to thermochemotherapy with combination of paclitaxel and etoposide. Mol Med Rep 2012; 6(5): 1013-7.
[http://dx.doi.org/10.3892/mmr.2012.1058 ] [PMID: 22948360]
[59]
Zhu K, Gerbino E, Beaupre DM, et al. Farnesyltransferase inhibitor R115777 (Zarnestra, Tipifarnib) synergizes with paclitaxel to induce apoptosis and mitotic arrest and to inhibit tumor growth of multiple myeloma cells. Blood 2005; 105(12): 4759-66.
[http://dx.doi.org/10.1182/blood-2004-11-4307 ] [PMID: 15728126]
[60]
Föger F, Malaivijitnond S, Wannaprasert T, Huck C, Bernkop-Schnürch A, Werle M. Effect of a thiolated polymer on oral paclitaxel absorption and tumor growth in rats. J Drug Target 2008; 16(2): 149-55.
[http://dx.doi.org/10.1080/10611860701850130 ] [PMID: 18274935]
[61]
Yen WC, Corpuz MR, Prudente RY, et al. A selective retinoid X receptor agonist bexarotene (Targretin) prevents and overcomes acquired paclitaxel (Taxol) resistance in human non-small cell lung cancer. Clin Cancer Res 2004; 10(24): 8656-64.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0979 ] [PMID: 15623650]
[62]
Priyadarshini K, Aparajitha K. Paclitaxel against cancer: A short review. Med Chem 2012; 2-7.
[63]
Beulz-Riché D, Robert J, Riché C, Ratanasavanh D. Effects of paclitaxel, cyclophosphamide, ifosfamide, tamoxifen and cyclosporine on the metabolism of methoxymorpholinodoxorubicin in human liver microsomes. Cancer Chemother Pharmacol 2002; 49(4): 274-80.
[http://dx.doi.org/10.1007/s00280-001-0415-1 ] [PMID: 11914905]
[64]
Lee FYF, Borzilleri R, Fairchild CR, et al. BMS-247550: A novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin Cancer Res 2001; 7(5): 1429-37.
[PMID: 11350914]
[65]
Yasuda M, Kimura E, Ochiai K, et al. Dose finding study of paclitaxel and carboplatin for ovarian cancer (JKTB). Gan To Kagaku Ryoho 2001; 28(4): 493-8.
[PMID: 11329783]
[66]
Minami H, Sasaki Y, Watanabe T, Ogawa M. Pharmacodynamic modeling of the entire time course of leukopenia after a 3-hour infusion of paclitaxel. Jpn J Cancer Res 2001; 92(2): 231-8.
[http://dx.doi.org/10.1111/j.1349-7006.2001.tb01086.x ] [PMID: 11223553]
[67]
Mullins DW, Burger CJ, Elgert KD. Paclitaxel enhances macrophage IL-12 production in tumor-bearing hosts through nitric oxide. J Immunol 1999; 162(11): 6811-8.
[PMID: 10352302]
[68]
Glass-Marmor L, Beitner R. Taxol (paclitaxel) induces a detachment of phosphofructokinase from cytoskeleton of melanoma cells and decreases the levels of glucose 1,6-bisphosphate, fructose 1,6-bisphosphate and ATP. Eur J Pharmacol 1999; 370(2): 195-9.
[http://dx.doi.org/10.1016/S0014-2999(99)00155-7 ] [PMID: 10323269]
[69]
Cragg GM. Paclitaxel (Taxol®): A success story with valuable lessons for natural product drug discovery and development. Med Res Rev 1998; 18(5): 315-31.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199809)18:5<315:AID-MED3>3.0.CO;2-W ] [PMID: 9735872]
[70]
Long BH, Carboni JM, Wasserman AJ, et al. Eleutherobin, a novel cytotoxic agent that induces tubulin polymerization, is similar to paclitaxel (Taxol). Cancer Res 1998; 58(6): 1111-5.
[PMID: 9515790]
[71]
Plasswilm L, Cordes N, Fietkau R, Sauer R. Cytotoxicity of fractionated paclitaxel (Taxol®) administration in vitro. Strahlenther Onkol 1998; 174(1): 37-42.
[http://dx.doi.org/10.1007/BF03038226]
[72]
Wenk MR, Fahr A, Reszka R, Seelig J. Paclitaxel partitioning into lipid bilayers. J Pharm Sci 1996; 85(2): 228-31.
[http://dx.doi.org/10.1021/js950120i ] [PMID: 8683453]
[73]
Spencer CM, Faulds D. Paclitaxel. Drugs 1994; 48(5): 794-847.
[http://dx.doi.org/10.2165/00003495-199448050-00009 ] [PMID: 7530632]
[74]
Kingston DGI. Taxol: The chemistry and structure-activity relationships of a novel anticancer agent. Trends Biotechnol 1994; 12(6): 222-7.
[http://dx.doi.org/10.1016/0167-7799(94)90120-1 ] [PMID: 7765351]
[75]
Sulkes A, Beller U, Peretz T, et al. Taxol: initial Israeli experience with a novel anticancer agent. Isr J Med Sci 1994; 30(1): 70-8.
[PMID: 7908013]
[76]
Willey TA, Bekos EJ, Gaver RC, et al. High-performance liquid chromatographic procedure for the quantitative determination of paclitaxel (Taxol®) in human plasma. J Chromatogr, Biomed Appl 1993; 621(2): 231-8.
[http://dx.doi.org/10.1016/0378-4347(93)80100-I ] [PMID: 7905005]
[77]
Rowinsky EK, Cazenave LA, Donehower RC. Taxol: A novel investigational antimicrotubule agent. J Natl Cancer Inst 1990; 82(15): 1247-59.
[http://dx.doi.org/10.1093/jnci/82.15.1247 ] [PMID: 1973737]
[78]
Bibi ZM, Mehdi K, Kamali K, Dehghanizadeh H, Bahadornia M. Comparison of different methods’for extraction of taxol from Taxus baccata. World J Environ Biosci 2017; 6(SI): 15-8.
[79]
Chen L, Xu S, Li J. Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chem Soc Rev 2011; 40(5): 2922-42.
[http://dx.doi.org/10.1039/c0cs00084a ] [PMID: 21359355]
[80]
Dickey FH. The preparation of specific adsorbents. Proc Natl Acad Sci USA 1949; 35(5): 227-9.
[http://dx.doi.org/10.1073/pnas.35.5.227 ] [PMID: 16578311]
[81]
Yin J, Yang G, Chen Y. Rapid and efficient chiral separation of nateglinide and its l-enantiomer on monolithic molecularly imprinted polymers. J Chromatogr A 2005; 1090(1-2): 68-75.
[http://dx.doi.org/10.1016/j.chroma.2005.06.078 ] [PMID: 16196134]
[82]
Shea KJ, Sasaki DY. On the control of microenvironment shape of functionalized network polymers prepared by template polymerization. J Am Chem Soc 1989; 111(9): 3442-4.
[http://dx.doi.org/10.1021/ja00191a059]
[83]
Rimmer S. Synthesis of MIPs networks. Chromatogr 1998; 46: 470-4.
[http://dx.doi.org/10.1007/BF02466483]
[84]
Zheng-qiang D, Jun-bo L, Shan-shan T, Yan W, Bo L, Rui-fa J. Theoretical design and selectivity researches on the enrofloxacin imprinted polymer. Struct Chem 2016; 21: 1135-42.
[85]
Dickert FL, Lieberzeit P, Tortschanoff M. Molecular imprints as artificial antibodies - A new generation of chemical sensors. Sens Actuators B Chem 2000; 65(1-3): 186-9.
[http://dx.doi.org/10.1016/S0925-4005(99)00327-5]
[86]
Hirayama K, Sakai Y, Kameoka K, Noda K, Naganawa R. Preparation of a sensor device with specific recognition sites for acetaldehyde by molecular imprinting technique. Sens Actuators B Chem 2002; 86(1): 20-5.
[http://dx.doi.org/10.1016/S0925-4005(02)00107-7]
[87]
Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 2000; 100(7): 2495-504.
[http://dx.doi.org/10.1021/cr990099w ] [PMID: 11749293]
[88]
Ansell RJ, Kriz D, Mosbach K. Molecularly imprinted polymers for bioanalysis: Chromatography, binding assays and biomimetic sensors. Curr Opin Biotechnol 1996; 7(1): 89-94.
[http://dx.doi.org/10.1016/S0958-1669(96)80101-7 ] [PMID: 8791315]
[89]
Kriz D, Ramström O, Mosbach K. Molecular imprinting: New possibilities for sensor technology. Anal Chem 1997; 69(11): 345A-9A.
[http://dx.doi.org/10.1021/ac971657e]
[90]
Chianella I, Lotierzo M, Piletsky SA, et al. Rational design of a polymer specific for microcystin-LR using a computational approach. Anal Chem 2002; 74(6): 1288-93.
[http://dx.doi.org/10.1021/ac010840b ] [PMID: 11924591]
[91]
Lavignac N, Allender CJ, Brain KR. Current status of molecularly imprinted polymers as alternatives to antibodies in sorbent assays. Anal Chim Acta 2004; 510(2): 139-45.
[http://dx.doi.org/10.1016/j.aca.2003.12.066]
[92]
Rechichi A, Cristallini C, Vitale U, et al. New biomedical devices with selective peptide recognition properties. Part 1: Characterization and cytotoxicity of molecularly imprinted polymers. J Cell Mol Med 2007; 11(6): 1367-76.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00102.x ] [PMID: 18205706]
[93]
Baggiani C, Anfossi L, Baravalle P, Giovannoli C, Tozzi C. Selectivity features of molecularly imprinted polymers recognising the carbamate group. Anal Chim Acta 2005; 531(2): 199-207.
[http://dx.doi.org/10.1016/j.aca.2004.10.025]
[94]
Sellergren B, Shea KJ. Origin of peak asymmetry and the effect of temperature on solute retention in enantiomer separations on imprinted chiral stationary phases. J Chromatogr A 1995; 690(1): 29-39.
[http://dx.doi.org/10.1016/0021-9673(94)00905-O]
[95]
González GP, Hernando PF, Alegría JSD. A morphological study of molecularly imprinted polymers using the scanning electron microscope. Anal Chim Acta 2006; 557(1-2): 179-83.
[http://dx.doi.org/10.1016/j.aca.2005.10.034]
[96]
Lei JD, Tong AJ. Preparation of Z-l-Phe-OH-NBD imprinted microchannel and its molecular recognition study. Spectrochim Acta A Mol Biomol Spectrosc 2005; 61(6): 1029-33.
[http://dx.doi.org/10.1016/j.saa.2004.06.001 ] [PMID: 15741098]
[97]
Tamayo FG, Titirici MM, Martin-Esteban A, Sellergren B. Synthesis and evaluation of new propazine-imprinted polymer formats for use as stationary phases in liquid chromatography. Anal Chim Acta 2005; 542(1): 38-46.
[http://dx.doi.org/10.1016/j.aca.2004.12.063]
[98]
Yang K, Liu Z, Mao M, Zhang X, Zhao C, Nishi N. Molecularly imprinted polyethersulfone microspheres for the binding and recognition of bisphenol A. Anal Chim Acta 2005; 546(1): 30-6.
[http://dx.doi.org/10.1016/j.aca.2005.05.008 ] [PMID: 29569552]
[99]
Haginaka J, Kagawa C. Uniformly sized molecularly imprinted polymer for d-chlorpheniramine. J Chromatogr A 2002; 948(1-2): 77-84.
[http://dx.doi.org/10.1016/S0021-9673(01)01262-6 ] [PMID: 12831185]
[100]
Hosoya K, Yoshizako K, Shirasu Y, et al. Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography structural contribution of cross-linked polymer network on specific molecular recognition. J Chromatogr A 1996; 728(1-2): 139-47.
[http://dx.doi.org/10.1016/0021-9673(95)01165-X]
[101]
Haginaka J, Sakai Y. Uniform-sized molecularly imprinted polymer material for (S)-propranolol. J Pharm Biomed Anal 2000; 22(6): 899-907.
[http://dx.doi.org/10.1016/S0731-7085(00)00293-4 ] [PMID: 10857558]
[102]
Nakamura M, Ono M, Nakajima T, Ito Y, Aketo T, Haginaka J. Uniformly sized molecularly imprinted polymer for atropine and its application to the determination of atropine and scopolamine in pharmaceutical preparations containing Scopolia extract. J Pharm Biomed Anal 2005; 37(2): 231-7.
[http://dx.doi.org/10.1016/j.jpba.2004.10.017 ] [PMID: 15708662]
[103]
Haginaka J, Kagawa C. Retentivity and enantioselectivity of uniformly sized molecularly imprinted polymers for d-chlorpheniramine and -brompheniramine in hydro-organic mobile phases. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 804(1): 19-24.
[http://dx.doi.org/10.1016/j.jchromb.2003.12.037 ] [PMID: 15093155]
[104]
Mayes AG, Mosbach K. Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal Chem 1996; 68(21): 3769-74.
[http://dx.doi.org/10.1021/ac960363a ] [PMID: 21619249]
[105]
Zhang L, Cheng G, Fu C. Synthesis and characteristics of tyrosine imprinted beads via suspension polymerization. React Funct Polym 2003; 56(3): 167-73.
[http://dx.doi.org/10.1016/S1381-5148(03)00054-3]
[106]
Pang X, Cheng G, Li R, Lu S, Zhang Y. Bovine serum albumin-imprinted polyacrylamide gel beads prepared via inverse-phase seed suspension polymerization. Anal Chim Acta 2005; 550(1-2): 13-7.
[http://dx.doi.org/10.1016/j.aca.2005.06.067]
[107]
Li W-H, Stöver HDH. Monodisperse cross-linked core−shell polymer microspheres by precipitation polymerization. Macromolecules 2000; 33(12): 4354-60.
[http://dx.doi.org/10.1021/ma9920691]
[108]
Downey JS, McIsaac G, Frank RS, Stöver HDH. Poly(divinylbenzene) microspheres as an intermediate morphology between microgel, macrogel, and coagulum in cross-linking precipitation polymerization. Macromolecules 2001; 34(13): 4534-41.
[http://dx.doi.org/10.1021/ma000386y]
[109]
Spégel P, Schweitz L, Nilsson S. Molecularly imprinted microparticles for capillary electrochromatography: Studies on microparticle synthesis and electrolyte composition. Electrophoresis 2001; 22(17): 3833-41.
[http://dx.doi.org/10.1002/1522-2683(200109)22:17<3833::AID-ELPS3833>3.0.CO;2-9 ] [PMID: 11699926]
[110]
Nilsson J, Spégel P, Nilsson S. Molecularly imprinted polymer formats for capillary electrochromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 804(1): 3-12.
[http://dx.doi.org/10.1016/j.jchromb.2003.12.036 ] [PMID: 15093153]
[111]
de Boer T, Mol R, de Zeeuw RA, et al. Spherical molecularly imprinted polymer particles: A promising tool for molecular recognition in capillary electrokinetic separations. Electrophoresis 2002; 23(9): 1296-300.
[http://dx.doi.org/10.1002/1522-2683(200205)23:9<1296::AID-ELPS1296>3.0.CO;2-2 ] [PMID: 12007129]
[112]
Li P, Rong F, Yuan C. Morphologies and binding characteristics of molecularly imprinted polymers prepared by precipitation polymerization. Polym Int 2003; 52(12): 1799-806.
[http://dx.doi.org/10.1002/pi.1381]
[113]
Ye L, Cormack PAG, Mosbach K. Molecular imprinting on microgel spheres. Anal Chim Acta 2001; 435(1): 187-96.
[http://dx.doi.org/10.1016/S0003-2670(00)01248-4]
[114]
Ye L, Weiss R, Mosbach K. Synthesis and characterization of molecularly imprinted microspheres. Macromolecules 2000; 33(22): 8239-45.
[http://dx.doi.org/10.1021/ma000825t]
[115]
Puoci F, Iemma F, Muzzalupo R, et al. Spherical molecularly imprinted polymers (SMIPs) via a novel precipitation polymerization in the controlled delivery of sulfasalazine. Macromol Biosci 2004; 4(1): 22-6.
[http://dx.doi.org/10.1002/mabi.200300035 ] [PMID: 15468283]
[116]
Ho KC, Yeh WM, Tung TS, Liao JY. Amperometric detection of morphine based on poly(3,4-ethylenedioxythio-phene) immobilized molecularly imprinted polymer particles prepared by precipitation polymerization. Anal Chim Acta 2005; 542(1): 90-6.
[http://dx.doi.org/10.1016/j.aca.2005.02.036]
[117]
Baggiani C, Baravalle P, Anfossi L, Tozzi C. Comparison of pyrimethanil-imprinted beads and bulk polymer as stationary phase by non-linear chromatography. Anal Chim Acta 2005; 542(1): 125-34.
[http://dx.doi.org/10.1016/j.aca.2004.10.088]
[118]
Lei Y, Klaus M. Molecularly imprinted microspheres as antibody binding mimics. Polym 2001; 48: 149-57.
[119]
Moreira FTC, Sales MGF, Goreti F. Biomimetic sensors of molecularly-imprinted polymers for chlorpromazine determination. Mater Sci Eng C 2011; 31(5): 1121-8.
[http://dx.doi.org/10.1016/j.msec.2011.04.012]
[120]
Silvestri D, Borrelli C, Giusti P, Cristallini C, Ciardelli G. Polymeric devices containing imprinted nanospheres: A novel approach to improve recognition in water for clinical uses. Anal Chim Acta 2005; 542(1): 3-13.
[http://dx.doi.org/10.1016/j.aca.2004.12.005]
[121]
Sellergren B, Rückert B, Hall AJ. Layer-by-layer grafting of molecularly imprinted polymers via iniferter modified supports. Adv Mater 2002; 14(17): 1204-8.
[http://dx.doi.org/10.1002/1521-4095(20020903)14:17<1204:AID-ADMA1204>3.0.CO;2-O]
[122]
Rückert B, Hall AJ, Sellergren B. Molecularly imprinted composite materials via iniferter-modified supports. J Mater Chem 2002; 12(8): 2275-80.
[http://dx.doi.org/10.1039/B203115A]
[123]
Sreenivasan K. Surface imprinted polyurethane film as a chiral discriminator. Talanta 2006; 68(3): 1037-9.
[http://dx.doi.org/10.1016/j.talanta.2005.05.005 ] [PMID: 18970429]
[124]
Say R, Erdem M, Ersoz A, Turk H, Denizli A. Biomimetic catalysis of an organophosphate by molecularly surface imprinted polymers. Appl Catal A Gen 2005; 286(2): 221-5.
[http://dx.doi.org/10.1016/j.apcata.2005.03.015]
[125]
Matsui J, Kato T, Takeuchi T, et al. Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique. Anal Chem 1993; 65(17): 2223-4.
[http://dx.doi.org/10.1021/ac00065a009]
[126]
Matsui J, Miyoshi Y, Matsui R, Takeuchi T. Rod-type affinity media for liquid chromatography prepared by in situ molecular imprinting. Anal Sci 1995; 11(6): 1017-9.
[http://dx.doi.org/10.2116/analsci.11.1017]
[127]
Liu H, Row KH, Yang G. Monolithic molecularly imprinted columns for chromatographic separation. Chromatographia 2005; 61(9-10): 429-32.
[http://dx.doi.org/10.1365/s10337-005-0531-x]
[128]
Fairhurst RE, Chassaing C, Venn RF, Mayes AG. A direct comparison of the performance of ground, beaded and silica-grafted MIPs in HPLC and turbulent flow chromatography applications. Biosens Bioelectron 2004; 20(6): 1098-105.
[http://dx.doi.org/10.1016/j.bios.2004.01.020 ] [PMID: 15556354]
[129]
Olof R, Richard JA. Molecular imprinting technology: Challenges and prospects for the future. Chirality 1998; 10: 195-209.
[http://dx.doi.org/10.1002/(SICI)1520-636X(1998)10:3<195:AID-CHIR1>3.0.CO;2-9]
[130]
Plunkett SD, Arnold FH. Molecularly imprinted polymers on silica: Selective supports for high-performance ligand-exchange chromatography. J Chromatogr A 1995; 708(1): 19-29.
[http://dx.doi.org/10.1016/0021-9673(95)00378-Z ] [PMID: 7647924]
[131]
Zourob M, Mohr S, Mayes AG, et al. A micro-reactor for preparing uniform molecularly imprinted polymer beads. Lab Chip 2006; 6(2): 296-301.
[http://dx.doi.org/10.1039/b513195b ] [PMID: 16450041]
[132]
Hosoya K, Yoshizako K, Tanaka N, Kimata K, Araki T, Haginaka J. Uniform-size macroporous polymer-based stationary phase for HPLC prepared through molecular imprinting technique. Chem Lett 1994; 23(8): 1437-8.
[http://dx.doi.org/10.1246/cl.1994.1437]
[133]
Sellergren B. Imprinted dispersion polymers: A new class of easily accessible affinity stationary phases. J Chromatogr A 1994; 673(1): 133-41.
[http://dx.doi.org/10.1016/0021-9673(94)87066-7]
[134]
Vlatakis G, Andersson LI, Müller R, Mosbach K. Drug assay using antibody mimics made by molecular imprinting. Nature 1993; 361(6413): 645-7.
[http://dx.doi.org/10.1038/361645a0 ] [PMID: 8437624]
[135]
Muldoon MT, Stanker LH. Polymer synthesis and characterization of a molecularly imprinted sorbent assay for atrazine. J Agric Food Chem 1995; 43(6): 1424-7.
[http://dx.doi.org/10.1021/jf00054a002]
[136]
Gunter W, Thomas G, Rainer S, Thomas S, Christian K. General principles-2-molecular imprinting for the preparation of enzyme-analogous polymers. ACS Symposium Series. 703: 10-28.
[http://dx.doi.org/10.1021/bk-1998-0703.ch002]
[137]
Pettersson C, Gioeli C. Improved resolution of enantiomers of naproxen by the simultaneous use of a chiral stationary phase and a chiral additive in the mobile phase. J Chromatogr A 1988; 435(1): 225-8.
[http://dx.doi.org/10.1016/S0021-9673(01)82179-8 ] [PMID: 3350894]
[138]
Cegłowski M, Kurczewska J, Ruszkowski P, Schroeder G. Application of paclitaxel-imprinted microparticles obtained using two different cross-linkers for prolonged drug delivery. Eur Polym J 2019; 118: 328-36.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.06.010]
[139]
Ji W, Ma X, Zhang J, Xie H, Liu F, Wang X. Preparation of the high purity gingerols from ginger by dummy molecularly imprinted polymers. J Chromatogr A 2015; 1387: 24-31.
[http://dx.doi.org/10.1016/j.chroma.2015.02.002 ] [PMID: 25704774]
[140]
Anna P. Małgorzata M, Piotr PW. Application of molecular imprinted polymers for selective solid phase extraction of Bisphenol A. Ecol Chem Eng S 2016; 23(4)
[141]
Suzan EA, Mona AM, Nada SA, Eglal AA, Sarah DS, Natalia B. Capacitive sensor based on molecularly imprinted polymers for detection of the insecticide imidacloprid in water. Nature 2020; 10: 14479.
[142]
Song X, Li J, Wang J, Chen L. Quercetin molecularly imprinted polymers: Preparation, recognition characteristics and properties as sorbent for solid-phase extraction. Talanta 2009; 80(2): 694-702.
[http://dx.doi.org/10.1016/j.talanta.2009.07.051 ] [PMID: 19836539]
[143]
Piacham T, Isarankura-Na-Ayudhya C, Prachayasittikul V. Quercetin-imprinted polymer for anthocyanin extraction from mangosteen pericarp. Mater Sci Eng C 2015; 51: 127-31.
[http://dx.doi.org/10.1016/j.msec.2015.02.051 ] [PMID: 25842116]
[144]
Ying Z, Yuan T, Pinyi M, Aimin Y, Hanqi Z, Yanhua C. Determination of melamine and malachite green by surface-enhanced Raman scattering spectroscopy using starch-coated silver nanoparticles as substrates. AnalMet 2015; 7: 8116-22.
[145]
Roy B, Vo Duy S, Puy JY, et al. Synthesis and evaluation of a molecularly imprinted polymer for selective solid-phase extraction of irinotecan from human serum samples. J Funct Biomater 2012; 3(1): 131-42.
[http://dx.doi.org/10.3390/jfb3010131 ] [PMID: 24956520]
[146]
Wang L, Fu W, Shen Y, Tan H, Xu H. Molecularly imprinted polymers for selective extraction of oblongifolin C from Garcinia yunnanensis Hu. Molecules 2017; 22(4): 508.
[http://dx.doi.org/10.3390/molecules22040508 ] [PMID: 28333096]
[147]
Salma B, Showkat AB, Syed RS. Synthesis and characterization of molecular imprinting polymer for the removal of 2-phenylphenol from spiked blood serum and river water. Chem Biol Technol Agric 2019; 15: 4394.
[148]
Jana D, Vojtech A, Rene K. Quantum dots - characterization, preparation and usage in biological systems. Int J Mol Sci 2009; 10: 656-73.
[http://dx.doi.org/10.3390/ijms10020656 ] [PMID: 19333427]
[149]
Kral V, Sotola J, Neuwirth P, Kejik Z, Zaruba K, Martasek P. Nanomedicine— current status and perspectives: A big potential or just a catchword? Chem Listy 2006; 100: 4-9.
[150]
Ghanem MA, Bartlett PN, de Groot P, Zhukov A. A double templated electrodeposition method for the fabrication of arrays of metal nanodots. Electrochem Commun 2004; 6(5): 447-53.
[http://dx.doi.org/10.1016/j.elecom.2004.03.001]
[151]
Fujioka K, Hiruoka M, Sato K, et al. Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotechnology 2008; 19(41): 415102.
[http://dx.doi.org/10.1088/0957-4484/19/41/415102 ] [PMID: 21832637]
[152]
Micic OI, Nozik AJ. Colloidal quantum dots of III–V semiconductors. In: Nalwa HS, Ed. Nanostructured materials and nanotechnology. San Diego: Academic Press 2002; pp. 183-205.
[http://dx.doi.org/10.1016/B978-012513920-5/50007-X]
[153]
Matagne P, Leburton JP. Quantum Dots: Artificial Atoms and Molecules. In: Nalwa HS, Bandyopadhyay S, Eds. Quantum Dots and Nanowires. California: American Scientific Publishers Stevenson Ranch 2003; pp. 2-66.
[154]
Ng J, Missous M. Improvements of stacked self-assembled InAs/GaAs quantum dot structures for 1.3μm applications. Microelectronics 2006; 37(12): 1446-50.
[http://dx.doi.org/10.1016/j.mejo.2006.05.024]
[155]
Anantathanasarn S, Nötzel R, van Veldhoven PJ, et al. Wavelength controlled InAs/InP quantum dots for telecom laser applications. Microelectronics 2006; 37(12): 1461-7.
[http://dx.doi.org/10.1016/j.mejo.2006.05.028]
[156]
Tashkhourian J, Absalan G, Jafari M, Zare S. A rapid and sensitive assay for determination of doxycycline using thioglycolic acid-capped cadmium telluride quantum dots. Spectrochim Acta A Mol Biomol Spectrosc 2016; 152: 119-25.
[http://dx.doi.org/10.1016/j.saa.2015.07.063 ] [PMID: 26204505]
[157]
Jimenez-López J, Molina-García L, Rodrigues SSM, Santos JLM, Ortega-Barrales P, Ruiz-Medina A. Automated determination of Rifamycins making use of MPA–CdTe quantum dots. J Lumin 2016; 175: 158-64.
[http://dx.doi.org/10.1016/j.jlumin.2016.02.036]
[158]
Nsibande SA, Forbes PBC. Fluorescence detection of pesticides using quantum dot materials-A review. Anal Chim Acta 2016; 945: 9-22.
[http://dx.doi.org/10.1016/j.aca.2016.10.002 ] [PMID: 27968720]
[159]
Mohd MS, Syairah S, Wan AWI, Ahmedy AN. Determination of organophosphorus pesticides using molecularly imprinted polymer solid phase extraction. Malays J Anal Sci 2011; 15: 175-83.
[160]
Baker SN, Baker GA. Luminescent carbon nanodots: Emergent nanolights. Angew Chem Int Ed 2010; 49(38): 6726-44.
[http://dx.doi.org/10.1002/anie.200906623 ] [PMID: 20687055]
[161]
Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 2004; 126(40): 12736-7.
[http://dx.doi.org/10.1021/ja040082h ] [PMID: 15469243]
[162]
Ya-Ping S, Bing Z, Yi L, Wei W, Shiral F. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 2006; 128: 7756-7.
[163]
Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed 2007; 46(34): 6473-5.
[http://dx.doi.org/10.1002/anie.200701271 ] [PMID: 17645271]
[164]
Qiao ZA, Wang Y, Gao Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun 2010; 46(46): 8812-4.
[http://dx.doi.org/10.1039/c0cc02724c ] [PMID: 20953494]
[165]
Qu S, Wang X, Lu Q, Liu X, Wang L. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chem Int Ed 2012; 51(49): 12215-8.
[http://dx.doi.org/10.1002/anie.201206791 ] [PMID: 23109224]
[166]
Bhunia SK, Saha A, Maity AR, Ray SC, Jana NR. Carbon nanoparticle-based fluorescent bioimaging probes. Sci Rep 2013; 3(1): 1473.
[http://dx.doi.org/10.1038/srep01473 ] [PMID: 23502324]
[167]
Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun 2008; 44(41): 5116-8.
[http://dx.doi.org/10.1039/b812420e ] [PMID: 18956040]
[168]
Dong Y, Pang H, Yang HB, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed 2013; 52(30): 7800-4.
[http://dx.doi.org/10.1002/anie.201301114 ] [PMID: 23761198]
[169]
Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. Chem Soc Rev 2015; 44(1): 362-81.
[http://dx.doi.org/10.1039/C4CS00269E ] [PMID: 25316556]
[170]
Lee HU, Park SY, Park ES, et al. Photoluminescent carbon nanotags from harmful cyanobacteria for drug delivery and imaging in cancer cells. Sci Rep 2015; 4(1): 4665.
[http://dx.doi.org/10.1038/srep04665 ] [PMID: 24721805]
[171]
Wu M, Zhan J, Geng B, et al. Scalable synthesis of organic-soluble carbon quantum dots: Superior optical properties in solvents, solids, and LEDs. Nanoscale 2017; 9(35): 13195-202.
[http://dx.doi.org/10.1039/C7NR04718E ] [PMID: 28853478]
[172]
Li H, Li Y, Cheng J. Molecularly imprinted silica nanospheres embedded CdSe quantum dots for highly selective and sensitive optosensing of pyrethroids. Chem Mater 2010; 22(8): 2451-7.
[http://dx.doi.org/10.1021/cm902856y]
[173]
Liu H, Fang G, Wang S. Molecularly imprinted optosensing material based on hydrophobic CdSe quantum dots via a reverse microemulsion for specific recognition of ractopamine. Biosens Bioelectron 2014; 55: 127-32.
[http://dx.doi.org/10.1016/j.bios.2013.11.064 ] [PMID: 24370883]
[174]
Ali AE, Nafiseh K, Behzad R. Development of a nano plastic antibody for determination of propranolol using CdTe quantum dots. Sens Actuators B Chem 2017; 272: 846-53.
[175]
Wu L, Lin Z, Zhong H, Peng A, Chen X, Huang Z. Rapid detection of malachite green in fish based on CdTe quantum dots coated with molecularly imprinted silica. Food Chem 2017; 229: 847-53.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.144 ] [PMID: 28372253]
[176]
Chantada-Vázquez MP, Sánchez-González J, Peña-Vázquez E, et al. Synthesis and characterization of novel molecularly imprinted polymer – coated Mn-doped ZnS quantum dots for specific fluorescent recognition of cocaine. Biosens Bioelectron 2016; 75: 213-21.
[http://dx.doi.org/10.1016/j.bios.2015.08.022 ] [PMID: 26319164]
[177]
Zhou J, Li B, Qi A, et al. ZnSe quantum dot based ion imprinting technology for fluorescence detecting cadmium and lead ions on a three-dimensional rotary paper-based microfluidic chip. Sens Actuators B Chem 2020; 305: 127462.
[http://dx.doi.org/10.1016/j.snb.2019.127462]
[178]
Ren X, Liu H, Chen L. Fluorescent detection of chlorpyrifos using Mn(II)-doped ZnS quantum dots coated with a molecularly imprinted polymer. Mikrochim Acta 2015; 182(1-2): 193-200.
[http://dx.doi.org/10.1007/s00604-014-1317-3]
[179]
Zhou Z, Li T, Xu W, Huang W, Wang N, Yang W. Synthesis and characterization of fluorescence molecularly imprinted polymers as sensor for highly sensitive detection of dibutyl phthalate from tap water samples. Sens Actuators B Chem 2017; 240: 1114-22.
[http://dx.doi.org/10.1016/j.snb.2016.09.092]
[180]
Sawetwong P, Chairam S, Jarujamrus P, Amatatongchai M. Enhanced selectivity and sensitivity for colorimetric determination of glyphosate using Mn–ZnS quantum dot embedded molecularly imprinted polymers combined with a 3D-microfluidic paper-based analytical device. Talanta 2021; 225: 122077.
[http://dx.doi.org/10.1016/j.talanta.2020.122077 ] [PMID: 33592801]
[181]
Liu H, Wu D, Zhou K, Wang J, Sun B. Development and applications of molecularly imprinted polymers based on hydrophobic CdSe/ZnS quantum dots for optosensing of Nε-carboxymethyllysine in foods. Food Chem 2016; 211: 34-40.
[http://dx.doi.org/10.1016/j.foodchem.2016.05.038 ] [PMID: 27283604]
[182]
Zheng L, Zheng Y, Liu Y, et al. Core-shell quantum dots coated with molecularly imprinted polymer for selective photoluminescence sensing of perfluorooctanoic acid. Talanta 2019; 194: 1-6.
[http://dx.doi.org/10.1016/j.talanta.2018.09.106 ] [PMID: 30609506]
[183]
Wang HF, He Y, Ji TR, Yan XP. Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Anal Chem 2009; 81(4): 1615-21.
[http://dx.doi.org/10.1021/ac802375a ] [PMID: 19170523]
[184]
Chullasat K, Nurerk P, Kanatharana P, Davis F, Bunkoed O. A facile optosensing protocol based on molecularly imprinted polymer coated on CdTe quantum dots for highly sensitive and selective amoxicillin detection. Sens Actuators B Chem 2018; 254: 255-63.
[http://dx.doi.org/10.1016/j.snb.2017.07.062]
[185]
Zhang W, Han Y, Chen X, et al. Surface molecularly imprinted polymer capped Mn-doped ZnS quantum dots as a phosphorescent nanosensor for detecting patulin in apple juice. Food Chem 2017; 232: 145-54.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.156 ] [PMID: 28490057]
[186]
Wu Y, Cao JP, Zhao XY, et al. Preparation of porous carbons by hydrothermal carbonization and KOH activation of lignite and their performance for electric double layer capacitor. Electrochim Acta 2017; 252: 397-407.
[http://dx.doi.org/10.1016/j.electacta.2017.08.176]
[187]
Shirani MP, Rezaei B, Ensafi AA, Ramezani M. Development of an eco-friendly fluorescence nanosensor based on molecularly imprinted polymer on silica-carbon quantum dot for the rapid indoxacarb detection. Food Chem 2021; 339: 127920.
[http://dx.doi.org/10.1016/j.foodchem.2020.127920 ] [PMID: 32877812]
[188]
Mina MS, Farnoush F, Amin SD, Mohammad RG. A novel metronidazole fluorescent nanosensor based on graphene quantum dots embedded silica molecularly imprinted polymer. Biosens Bioelectron 2017; 92: 618-23.
[189]
Rongkun Z, Mushen L, Mingfang Z, et al. A functional ratio fluorescence sensor platform based on the graphene/Mn-ZnS quantum dots loaded with molecularly imprinted polymer for selective and visual detection sinapic acid, Spectrochim. Acta Part A Mol Biomol Spectrosc 2020; 244: 118845.
[190]
Amjadi M, Jalili R, Manzoori JL. A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots. Luminescence 2016; 31(3): 633-9.
[http://dx.doi.org/10.1002/bio.3003 ] [PMID: 27037966]
[191]
Xiao TT, Shi XZ, Jiao HF, et al. Selective and sensitive determination of cypermethrin in fish via enzyme-linked immunosorbent assay-like method based on molecularly imprinted artificial antibody-quantum dot optosensing materials. Biosens Bioelectron 2016; 75: 34-40.
[http://dx.doi.org/10.1016/j.bios.2015.08.014 ] [PMID: 26283587]
[192]
Sun A, Chai J, Xiao T, et al. Development of a selective fluorescence nanosensor based on molecularly imprinted-quantum dot optosensing materials for saxitoxin detection in shellfish samples. Sens Actuators B Chem 2018; 258: 408-14.
[http://dx.doi.org/10.1016/j.snb.2017.11.143]
[193]
Li X, Jiao HF, Shi XZ, et al. Development and application of a novel fluorescent nanosensor based on FeSe quantum dots embedded silica molecularly imprinted polymer for the rapid optosensing of cyfluthrin. Biosens Bioelectron 2018; 99: 268-73.
[http://dx.doi.org/10.1016/j.bios.2017.07.071 ] [PMID: 28778030]
[194]
Ren X, Chen L. Quantum dots coated with molecularly imprinted polymer as fluorescence probe for detection of cyphenothrin. Biosens Bioelectron 2015; 64: 182-8.
[http://dx.doi.org/10.1016/j.bios.2014.08.086 ] [PMID: 25218102]
[195]
Chao MR, Hu CW, Chen JL. Comparative syntheses of tetracycline-imprinted polymeric silicate and acrylate on CdTe quantum dots as fluorescent sensors. Biosens Bioelectron 2014; 61: 471-7.
[http://dx.doi.org/10.1016/j.bios.2014.05.058 ] [PMID: 24934749]
[196]
Wei X, Xu G, Gong C, Qin F, Gong X, Li C. Fabrication and evaluation of sulfanilamide-imprinted composite sensors by developing a custom-tailored strategy. Sens Actuators B Chem 2018; 255: 2697-703.
[http://dx.doi.org/10.1016/j.snb.2017.09.081]
[197]
Wan W, Biyikal M, Wagner R, Sellergren B, Rurack K. Fluorescent sensory microparticles that “light-up” consisting of a silica core and a molecularly imprinted polymer (MIP) shell. Angew Chem Int Ed 2013; 52(27): 7023-7.
[http://dx.doi.org/10.1002/anie.201300322 ] [PMID: 23716378]
[198]
Lin CI, Joseph AK, Chang CK, Lee Y. Synthesis and photoluminescence study of molecularly imprinted polymers appended onto CdSe/ZnS core-shells. Biosens Bioelectron 2004; 20(1): 127-31.
[http://dx.doi.org/10.1016/j.bios.2003.10.017 ] [PMID: 15142585]
[199]
Nezhadali A, Mehri L, Shadmehri R. Determination of methimazole based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite sensor. Mater Sci Eng C 2018; 85: 225-32.
[http://dx.doi.org/10.1016/j.msec.2017.05.099 ] [PMID: 29407151]
[200]
Zhenyu Z, Yang L, Xiaoqin L, Yanhui Z, Dongmei W. Molecular imprinting electrochemical sensor for sensitive creatinine determination. Int J Electrochem Sci 2018; 13: 2986-95.
[201]
Shirzadmehr A, Rezaei M, Bagheri H, Khoshsafar H. Novel potentiometric sensor for the trace-level determination of Zn 2+ based on a new nanographene/ion imprinted polymer composite. Int J Environ Anal Chem 2016; 96(10): 929-44.
[http://dx.doi.org/10.1080/03067319.2016.1210608]
[202]
Cui M, Huang J, Wang Y, Wu Y, Luo X. Molecularly imprinted electrochemical sensor for propyl gallate based on PtAu bimetallic nanoparticles modified graphene–carbon nanotube composites. Biosens Bioelectron 2015; 68: 563-9.
[http://dx.doi.org/10.1016/j.bios.2015.01.029 ] [PMID: 25638798]
[203]
Bai H, Wang C, Chen J, Li Z, Fu K, Cao Q. Graphene@AuNPs modified molecularly imprinted electrochemical sensor for the determination of colchicine in pharmaceuticals and serum. J Electroanal Chem 2018; 816: 7-13.
[http://dx.doi.org/10.1016/j.jelechem.2018.02.061]
[204]
Abu-Dalo MA, Al-Rawashdeh NAF, Al-Mheidat IR, Nassory NS. Preparation and evaluation of new uranyl imprinted polymer electrode sensor for uranyl ion based on uranyl–carboxybezotriazole complex in pvc matrix membrane. Sens Actuators B Chem 2016; 227: 336-45.
[http://dx.doi.org/10.1016/j.snb.2015.12.076]
[205]
Wei X, Meng M, Song Z, et al. Synthesis of molecularly imprinted silica nanospheres embedded mercaptosuccinic acid-coated CdTe quantum dots for selective recognition of λ-cyhalothrin. J Lumin 2014; 153: 326-32.
[http://dx.doi.org/10.1016/j.jlumin.2014.03.055]
[206]
Ren X, Chen L. Preparation of molecularly imprinted polymer coated quantum dots to detect nicosulfuron in water samples. Anal Bioanal Chem 2015; 407(26): 8087-95.
[http://dx.doi.org/10.1007/s00216-015-8982-x ] [PMID: 26302965]
[207]
Wang XD, Wolfbeis OS. Fiber-optic chemical sensors and biosensors (2008–2012). Anal Chem 2013; 85(2): 487-508.
[http://dx.doi.org/10.1021/ac303159b]
[208]
Wei X, Hao T, Xu Y, et al. Facile polymerizable surfactant inspired synthesis of fluorescent molecularly imprinted composite sensor via aqueous CdTe quantum dots for highly selective detection of λ-cyhalothrin. Sens Actuators B Chem 2016; 224: 315-24.
[http://dx.doi.org/10.1016/j.snb.2015.10.048]
[209]
Yang M, Han A, Duan J, Li Z, Lai Y, Zhan J. Magnetic nanoparticles and quantum dots co-loaded imprinted matrix for pentachlorophenol. J Hazard Mater 2012; 237-238: 63-70.
[http://dx.doi.org/10.1016/j.jhazmat.2012.07.064 ] [PMID: 22964389]
[210]
Li H, Wang Z, Wu B, Liu X, Xue Z, Lu X. Rapid and sensitive detection of methyl-parathion pesticide with an electropolymerized, molecularly imprinted polymer capacitive sensor. Electrochim Acta 2012; 62: 319-26.
[http://dx.doi.org/10.1016/j.electacta.2011.12.035]
[211]
Sara B, Audrey C, Sakina M, Valeria P. Synthesis and application of molecularly imprinted polymers for the selective extraction of organophosphorus pesticides from vegetable oils. J Chromatogr A 2017; 1513: 59-68.
[212]
Mir T, Malik AQ, Singh J, Shukla S, Kumar D. An overview of molecularly imprinted polymers embedded with quantum dots and their implementation as an alternative approach for extraction and detection of crocin. ChemistrySelect 2022; 7: e202200829.
[213]
Fan JP, Xu XK, Xu R, Zhang XH, Zhu JH. Preparation and characterization of molecular imprinted polymer functionalized with core/shell magnetic particles (Fe 3 O 4 @SiO 2 @MIP) for the simultaneous recognition and enrichment of four taxoids in Taxus × media. Chem Eng J 2015; 279: 567-77.
[http://dx.doi.org/10.1016/j.cej.2015.05.045]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy