Keywords: FoF1-ATP synthase, cancer, free radicals, metastasis, polyphenols, terpenoids.
[1]
Bray F, Laversanne M, Weiderpass E, Soerjomataram I. The ever increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021; 127(16): 3029-30.
[http://dx.doi.org/10.1002/cncr.33587] [PMID: 34086348]
[http://dx.doi.org/10.1002/cncr.33587] [PMID: 34086348]
[2]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Dillekås H, Rogers MS, Straume O. Are 90% of deaths from cancer caused by metastases? Cancer Med 2019; 8(12): 5574-6.
[http://dx.doi.org/10.1002/cam4.2474] [PMID: 31397113]
[http://dx.doi.org/10.1002/cam4.2474] [PMID: 31397113]
[4]
Briguglio G, Costa C, Pollicino M, Giambò F, Catania S, Fenga C. Polyphenols in cancer prevention: New insights (Review). Int J Funct Nutr 2020; 1(2): 9.
[http://dx.doi.org/10.3892/ijfn.2020.9]
[http://dx.doi.org/10.3892/ijfn.2020.9]
[5]
Lachance JC, Radhakrishnan S, Madiwale G, Guerrier S, Vanamala JKP. Targeting hallmarks of cancer with a food system based approach. Nutrition 2020; 69: 110563.
[http://dx.doi.org/10.1016/j.nut.2019.110563] [PMID: 31622909]
[http://dx.doi.org/10.1016/j.nut.2019.110563] [PMID: 31622909]
[6]
Jiang L, Zhao X, Xu J, et al. The protective effect of dietary phytosterols on cancer risk: A systematic meta-analysis. J Oncol 2019; 2019: 7479518.
[http://dx.doi.org/10.1155/2019/7479518]
[http://dx.doi.org/10.1155/2019/7479518]
[7]
Montané X, Kowalczyk O, Reig VB, et al. Current perspectives of the applications of polyphenols and flavonoids in cancer therapy. Molecules 2020; 25(15): 3342.
[http://dx.doi.org/10.3390/molecules25153342] [PMID: 32717865]
[http://dx.doi.org/10.3390/molecules25153342] [PMID: 32717865]
[8]
Giordano A, Tommonaro G. Curcumin and cancer. Nutrients 2019; 11(10): 2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[9]
Elshaer M, Chen Y, Wang XJ, Tang X. Resveratrol: An overview of its anti-cancer mechanisms. Life Sci 2018; 207: 340-9.
[http://dx.doi.org/10.1016/j.lfs.2018.06.028] [PMID: 29959028]
[http://dx.doi.org/10.1016/j.lfs.2018.06.028] [PMID: 29959028]
[10]
Blesso CN. Dietary anthocyanins and human health. Nutrients 2019; 11(9): 2107.
[http://dx.doi.org/10.3390/nu11092107] [PMID: 31491856]
[http://dx.doi.org/10.3390/nu11092107] [PMID: 31491856]
[11]
Gledhill JR, Montgomery MG, Leslie AGW, Walker JE. Mechanism of inhibition of bovine F 1 -ATPase by resveratrol and related polyphe-nols. Proc Natl Acad Sci USA 2007; 104(34): 13632-7.
[http://dx.doi.org/10.1073/pnas.0706290104] [PMID: 17698806]
[http://dx.doi.org/10.1073/pnas.0706290104] [PMID: 17698806]
[12]
Dadi PK, Ahmad M, Ahmad Z. Inhibition of ATPase activity of Escherichia coli ATP synthase by polyphenols. Int J Biol Macromol 2009; 45(1): 72-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.04.004] [PMID: 19375450]
[http://dx.doi.org/10.1016/j.ijbiomac.2009.04.004] [PMID: 19375450]
[13]
Sekiya M, Sakamoto Y, Futai M, Nakanishi MM. Role of α/β interface in F 1 ATPase rotational catalysis probed by inhibitors and mutations. Int J Biol Macromol 2017; 99: 615-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.089] [PMID: 28246051]
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.089] [PMID: 28246051]
[14]
Boyer PD. The ATP synthase-a splendid molecular machine. Annu Rev Biochem 1997; 66(1): 717-49.
[http://dx.doi.org/10.1146/annurev.biochem.66.1.717] [PMID: 9242922]
[http://dx.doi.org/10.1146/annurev.biochem.66.1.717] [PMID: 9242922]
[15]
Bruschi M, Bartolucci M, Petretto A, et al. Differential expression of the five redox complexes in the retinal mitochondria or rod outer segment disks is consistent with their different functionality. FASEB Bioadv 2020; 2(5): 315-24.
[http://dx.doi.org/10.1096/fba.2019-00093] [PMID: 32395704]
[http://dx.doi.org/10.1096/fba.2019-00093] [PMID: 32395704]
[16]
Xing SL, Yan J, Yu ZH, Zhu CQ. Neuronal cell surface ATP synthase mediates synthesis of extracellular ATP and regulation of intracellular pH. Cell Biol Int 2010; 35(1): 81-6.
[http://dx.doi.org/10.1042/CBI20090441] [PMID: 20626349]
[http://dx.doi.org/10.1042/CBI20090441] [PMID: 20626349]
[17]
Mangiullo R, Gnoni A, Leone A, Gnoni GV, Papa S, Zanotti F. Structural and functional characterization of FoF1-ATP synthase on the extracellular surface of rat hepatocytes. Biochim Biophys Acta Bioenerg 2008; 1777(10): 1326-35.
[http://dx.doi.org/10.1016/j.bbabio.2008.08.003] [PMID: 18775409]
[http://dx.doi.org/10.1016/j.bbabio.2008.08.003] [PMID: 18775409]
[18]
Wang W, Ma Z, Liu Y, et al. A Monoclonal Antibody (Mc178-Ab) targeted to the ecto-ATP synthase β-subunit-induced cell apoptosis via a mechanism involving the MAKase and Akt pathways. Clin Exp Med 2012; 12(1): 3-12.
[http://dx.doi.org/10.1007/s10238-011-0133-x] [PMID: 21505868]
[http://dx.doi.org/10.1007/s10238-011-0133-x] [PMID: 21505868]
[19]
Zhang X, Gao F, Yu L, et al. Dual functions of a monoclonal antibody against cell surface F1F0 ATP synthase on both HUVEC and tumor cells. Acta Pharmacol Sin 2008; 29(8): 942-50.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00830.x] [PMID: 18664327]
[http://dx.doi.org/10.1111/j.1745-7254.2008.00830.x] [PMID: 18664327]
[20]
Li W, Li Y, Li G, et al. Ectopic expression of the ATP synthase β subunit on the membrane of PC-3M cells supports its potential role in prostate cancer metastasis. Int J Oncol 2017; 50(4): 1312-20.
[http://dx.doi.org/10.3892/ijo.2017.3878] [PMID: 28259978]
[http://dx.doi.org/10.3892/ijo.2017.3878] [PMID: 28259978]
[21]
Wang W, Shi X, Liu Y, et al. The mechanism underlying the effects of the cell surface ATP synthase on the regulation of intracellular acidification during acidosis. J Cell Biochem 2013; 114(7): 1695-703.
[http://dx.doi.org/10.1002/jcb.24511] [PMID: 23386430]
[http://dx.doi.org/10.1002/jcb.24511] [PMID: 23386430]
[22]
Chang HY, Huang TC, Chen NN, Huang HC, Juan HF. Combination therapy targeting ectopic ATP synthase and 26S proteasome induces ER stress in breast cancer cells. Cell Death Dis 2014; 5(11): e1540.
[http://dx.doi.org/10.1038/cddis.2014.504] [PMID: 25429617]
[http://dx.doi.org/10.1038/cddis.2014.504] [PMID: 25429617]
[23]
Chang YW, Hsu CL, Tang CW, Chen XJ, Huang HC, Juan HF. Multiomics reveals ectopic ATP synthase blockade induces cancer cell death via a lncRNA-mediated phosph signaling network. Mol Cell Proteomics 2020; 19(11): 1805-25.
[http://dx.doi.org/10.1074/mcp.RA120.002219] [PMID: 32788343]
[http://dx.doi.org/10.1074/mcp.RA120.002219] [PMID: 32788343]
[24]
Bosc C, Selak MA, Sarry JE. Resistance is futile: Targeting mitochondrial energetics and metabolism to overcome drug resistance in cancer treatment. Cell Metab 2017; 26(5): 705-7.
[http://dx.doi.org/10.1016/j.cmet.2017.10.013] [PMID: 29117545]
[http://dx.doi.org/10.1016/j.cmet.2017.10.013] [PMID: 29117545]