Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Mini-Review Article

Herbal Medicine-derived Compounds for the Prevention and Treatment of Hepatocellular Carcinoma

Author(s): Zahra Farzaneh and Maryam Farzaneh*

Volume 18, Issue 4, 2022

Published on: 27 August, 2022

Page: [230 - 238] Pages: 9

DOI: 10.2174/1573394718666220519115626

Price: $65

conference banner
Abstract

Hepatocellular carcinoma (HCC) is the second malignancy worldwide. Dysregulation of various signaling pathways has been detected in HCC. Recent investigations have suggested a new approach for the prevention and treatment of HCC with herbal drugs. The anticancer effects of herbal drugs can be evaluated in animal models or HCC cell lines. Various molecular mechanisms and signaling pathways such as TGF-β, Wnt/β-catenin, SHH, Notch, Hippo, PI3K, and VEGF have been found to induce and promote carcinogenesis of HCC. Herbal drugs can target the signaling pathways in HCC and trigger apoptosis, suppress proliferation, and tumor growth. Molecularly targeted therapies using herbal drugs can be novel therapeutic strategies against HCC. This study provides the latest findings on using herbal medicine-derived compounds in the control of HCC.

Keywords: Hepatocellular carcinoma, Cancer, Signaling pathways, Herbal drugs.

[1]
Lu Y, Chan Y-T, Tan H-Y, et al. Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41(1): 3.
[http://dx.doi.org/10.1186/s13046-021-02208-x] [PMID: 34980204]
[2]
Rawla P, Sunkara T, Muralidharan P, Raj JP. Update in global trends and aetiology of hepatocellular carcinoma. Contemp Oncol (Pozn) 2018; 22(3): 141-50.
[http://dx.doi.org/10.5114/wo.2018.78941] [PMID: 30455585]
[3]
Gisder DM, Tannapfel A, Tischoff I. Histopathology of hepatocellular carcinoma-when and what. Hepatoma Res 2022; 8: 4.
[4]
Rajesh Y, Sarkar D. Molecular mechanisms regulating obesity-associated hepatocellular carcinoma. Cancers (Basel) 2020; 12(5): 1290.
[http://dx.doi.org/10.3390/cancers12051290] [PMID: 32443737]
[5]
Polyzos SA, Kountouras J, Goulas A, Papakonstantinou E, Papaioannidou P. Dissociating nonalcoholic steatohepatitis from hepatocellular carcinoma in obesity. Hepatobiliary Surg Nutr 2020; 9(1): 73-6.
[http://dx.doi.org/10.21037/hbsn.2019.07.18] [PMID: 32140483]
[6]
Sagnelli E, Macera M, Russo A, Coppola N, Sagnelli C. Epidemiological and etiological variations in hepatocellular carcinoma. Infection 2020; 48(1): 7-17.
[http://dx.doi.org/10.1007/s15010-019-01345-y] [PMID: 31347138]
[7]
Martínez-Chantar ML, Avila MA, Lu SC. Hepatocellular carcinoma: Updates in pathogenesis, detection and treatment. Cancers (Basel) 2020; 12(10): 2729.
[8]
Kumar R, Goh BG, Kam J-W, Chang P-E, Tan C-K. Comparisons between non-alcoholic steatohepatitis and alcohol-related hepatocellular carcinoma. Clin Mol Hepatol 2020; 26(2): 196-208.
[http://dx.doi.org/10.3350/cmh.2019.0012] [PMID: 31914720]
[9]
Lequoy M, Gigante E, Couty J-P, Desbois-Mouthon C. Hepatocellular carcinoma in the context of non-alcoholic steatohepatitis (NASH): Recent advances in the pathogenic mechanisms. Horm Mol Biol Clin Investig 2020; 41(1): 1.
[http://dx.doi.org/10.1515/hmbci-2019-0044] [PMID: 32112699]
[10]
Tobari M, Hashimoto E, Taniai M, et al. The characteristics and risk factors of hepatocellular carcinoma in nonalcoholic fatty liver disease without cirrhosis. J Gastroenterol Hepatol 2020; 35(5): 862-9.
[http://dx.doi.org/10.1111/jgh.14867] [PMID: 31597206]
[11]
Sumida Y, Yoneda M, Seko Y, et al. Surveillance of hepatocellular carcinoma in nonalcoholic fatty liver disease. Diagnostics (Basel) 2020; 10(8): 579.
[http://dx.doi.org/10.3390/diagnostics10080579] [PMID: 32785100]
[12]
Lin W-C, Lin Y-S, Chang C-W, et al. Impact of direct-acting antiviral therapy for hepatitis C-related hepatocellular carcinoma. PLoS One 2020; 15(5): e0233212.
[http://dx.doi.org/10.1371/journal.pone.0233212] [PMID: 32442193]
[13]
Imai K, Takai K, Hanai T, Suetsugu A, Shiraki M, Shimizu M. Sustained virological response by direct-acting antivirals reduces the recurrence risk of hepatitis C-related hepatocellular carcinoma after curative treatment. Mol Clin Oncol 2020; 12(2): 111-6.
[PMID: 31929880]
[14]
Wu Q-J, Lv W-L, Li J-M, et al. YinQiSanHuang Jiedu decoction for the treatment of hepatitis B-related compensated liver cirrhosis: Study protocol for a multi-center randomized controlled trial. Trials 2021; 22(1): 701.
[http://dx.doi.org/10.1186/s13063-021-05650-6] [PMID: 34649610]
[15]
Shen Y-C, Hsu H-C, Lin T-M, et al. H1-antihistamines reduce the risk of hepatocellular carcinoma in patients with hepatitis b virus, hepatitis c virus, or dual hepatitis b virus-hepatitis c virus infection. J Clin Oncol 2022; 40(11): 1206-19.
[http://dx.doi.org/10.1200/JCO.21.01802]
[16]
Lu S, Meng Z, Tan Y, et al. An advanced network pharmacology study to explore the novel molecular mechanism of compound kushen injection for treating hepatocellular carcinoma by bioinformatics and experimental verification. BMC Complement Med Ther 2022; 22: 1-20.
[17]
Facciorusso A, Serviddio G, Muscatiello N. Local ablative treatments for hepatocellular carcinoma: An updated review. World J Gastrointest Pharmacol Ther 2016; 7(4): 477-89.
[http://dx.doi.org/10.4292/wjgpt.v7.i4.477] [PMID: 27867681]
[18]
Habibollahi P, Sheth RA, Cressman ENK. Histological correlation for radiofrequency and microwave ablation in the local control of hepatocellular carcinoma (hcc) before liver transplantation: A comprehensive review. Cancers (Basel) 2020; 13(1): 104.
[http://dx.doi.org/10.3390/cancers13010104] [PMID: 33396289]
[19]
Özdemir F, Baskiran A. The importance of afp in liver transplantation for hcc. J Gastrointest Cancer 2020; 51(4): 1127-32.
[http://dx.doi.org/10.1007/s12029-020-00486-w] [PMID: 32845425]
[20]
Mao J-X, Guo W-Y, Guo M, Liu C, Teng F, Ding G-S. Acute rejection after liver transplantation is less common, but predicts better prognosis in HBV-related hepatocellular carcinoma patients. Hepatol Int 2020; 14(3): 347-61.
[http://dx.doi.org/10.1007/s12072-020-10022-4] [PMID: 32140981]
[21]
Kakos CD, Ziogas IA, Demiri CD, et al. Liver transplantation for pediatric hepatocellular carcinoma: A systematic review. Cancers (Basel) 2022; 14(5): 1294.
[http://dx.doi.org/10.3390/cancers14051294] [PMID: 35267604]
[22]
Wei C-Y, Chau G-Y, Chen P-H, et al. A comparison of prognoses between surgical resection and radiofrequency ablation therapy for patients with hepatocellular carcinoma and esophagogastric varices. Sci Rep 2020; 10(1): 17259.
[http://dx.doi.org/10.1038/s41598-020-74424-y] [PMID: 33057213]
[23]
Li JK, Liu XH, Cui H, Xie XH. Radiofrequency ablation vs. surgical resection for resectable hepatocellular carcinoma: A systematic review and meta-analysis. Mol Clin Oncol 2020; 12(1): 15-22.
[PMID: 31814972]
[24]
Dimri M, Satyanarayana A. Molecular signaling pathways and therapeutic targets in hepatocellular carcinoma. Cancers (Basel) 2020; 12(2): 491.
[http://dx.doi.org/10.3390/cancers12020491] [PMID: 32093152]
[25]
Chao J, Zhao S, Sun H. Dedifferentiation of hepatocellular carcinoma: Molecular mechanisms and therapeutic implications. Am J Transl Res 2020; 12(5): 2099-109.
[PMID: 32509204]
[26]
Feng D, Wang N, Hu J, Li W. Surface markers of hepatocellular cancer stem cells and their clinical potential. Neoplasma 2014; 61(5): 505-13.
[http://dx.doi.org/10.4149/neo_2014_061] [PMID: 24712843]
[27]
Flores-Téllez TN, Villa-Treviño S, Piña-Vázquez C. Road to stemness in hepatocellular carcinoma. World J Gastroenterol 2017; 23(37): 6750-76.
[http://dx.doi.org/10.3748/wjg.v23.i37.6750] [PMID: 29085221]
[28]
Wang K, Sun D. Cancer stem cells of hepatocellular carcinoma. Oncotarget 2018; 9(33): 23306-14.
[http://dx.doi.org/10.18632/oncotarget.24623] [PMID: 29796190]
[29]
Yin X, Zhang BH, Zheng SS, et al. Coexpression of gene Oct4 and Nanog initiates stem cell characteristics in hepatocellular carcinoma and promotes epithelial-mesenchymal transition through activation of Stat3/Snail signaling. J Hematol Oncol 2015; 8(1): 23.
[http://dx.doi.org/10.1186/s13045-015-0119-3] [PMID: 25879771]
[30]
Schulte L-A, López-Gil JC, Sainz B Jr, Hermann PC. The cancer stem cell in hepatocellular carcinoma. Cancers (Basel) 2020; 12(3): 684.
[http://dx.doi.org/10.3390/cancers12030684] [PMID: 32183251]
[31]
Pangi VN. Hepatocellular carcinoma stem cells, progression and therapy.In: Theranostics and Precision Medicine for the Management of Hepatocellular Carcinoma. Elsevier 2022; pp. 97-107.
[http://dx.doi.org/10.1016/B978-0-323-98806-3.00021-0]
[32]
Tang KY, Du SL, Wang QL, Zhang YF, Song HY. Traditional Chinese medicine targeting cancer stem cells as an alternative treatment for hepatocellular carcinoma. J Integr Med 2020; 18(3): 196-202.
[http://dx.doi.org/10.1016/j.joim.2020.02.002] [PMID: 32067923]
[33]
Kiruthiga C, Devi KP, Nabavi SM, Bishayee A. Autophagy: A potential therapeutic target of polyphenols in hepatocellular carcinoma. Cancers (Basel) 2020; 12(3): 562.
[http://dx.doi.org/10.3390/cancers12030562] [PMID: 32121322]
[34]
Li Y, Martin RC. Herbal medicine and hepatocellular carcinoma: Applications and challenges. Evid-Based Complement Altern Med 2011; 2011: 541209.
[35]
Hu C-T, Wu J-R, Cheng C-C, Wu W-S. The therapeutic targeting of hgf/c-met signaling in hepatocellular carcinoma: Alternative approaches. Cancers (Basel) 2017; 9(6): 58.
[http://dx.doi.org/10.3390/cancers9060058] [PMID: 28587113]
[36]
Ali ES, Rychkov GY, Barritt GJ. Targeting Ca2+ signaling in the initiation, promotion and progression of hepatocellular carcinoma. Cancers (Basel) 2020; 12(10): 2755.
[http://dx.doi.org/10.3390/cancers12102755] [PMID: 32987945]
[37]
Lin XL, Li K, Yang Z, Chen B, Zhang T. Dulcitol suppresses proliferation and migration of hepatocellular carcinoma via regulating SIRT1/p53 pathway. Phytomedicine 2020; 66: 153112.
[http://dx.doi.org/10.1016/j.phymed.2019.153112] [PMID: 31786318]
[38]
Su C-M, Wang H-C, Hsu F-T, et al. Astragaloside IV induces apoptosis, g1-phase arrest and inhibits anti-apoptotic signaling in hepatocellular carcinoma. In vivo 2020; 34: 631-8.
[39]
Kumar S, Fayaz F, Pottoo FH, Bajaj S, Manchanda S, Bansal H. Nanophytomedicine based novel therapeutic strategies in liver cancer. Curr Top Med Chem 2020; 20(22): 1999-2024.
[http://dx.doi.org/10.2174/1568026619666191114113048] [PMID: 31724500]
[40]
Hafez DA, Elkhodairy KA, Teleb M, Elzoghby AO. Nanomedicine-based approaches for improved delivery of phyto-therapeutics for cancer therapy. Expert Opin Drug Deliv 2020; 17(3): 279-85.
[http://dx.doi.org/10.1080/17425247.2020.1723542]
[41]
Elmsellem H, Ouadi YE, Mokhtari M, Bendaif H, Steli H, Aouniti A, et al. A natural antioxidant and an environmentally friendly inhibitor of mild steel corrosion: A commercial oil of basil (Ocimum basilicum l.). J Chem Technol Metallurgy 2019; 2019: 54.
[42]
El Ouadi Y, Manssouri M, Bouyanzer A, et al. Essential oil composition and antifungal activity of Melissa officinalis originating from north-Est Morocco, against postharvest phytopathogenic fungi in apples. Microb Pathog 2017; 107: 321-6.
[http://dx.doi.org/10.1016/j.micpath.2017.04.004] [PMID: 28389346]
[43]
Bendaif H, Melhaoui A, Ramdani M, Elmsellem H, Douez C, El Ouadi Y. Antibacterial activity and virtual screening by molecular docking of lycorine from Pancratium foetidum Pom (Moroccan endemic Amaryllidaceae). Microb Pathog 2018; 115: 138-45.
[http://dx.doi.org/10.1016/j.micpath.2017.12.037] [PMID: 29253598]
[44]
El Moussaoui A, Jawhari FZ, Almehdi AM, et al. Antibacterial, antifungal and antioxidant activity of total polyphenols of Withania fru-tescens L. Bioorg Chem 2019; 93: 103337.
[http://dx.doi.org/10.1016/j.bioorg.2019.103337] [PMID: 31627061]
[45]
Macek Jilkova Z, Kurma K, Decaens T. Animal models of hepatocellular carcinoma: The role of immune system and tumor microenvironment. Cancers (Basel) 2019; 11(10): 1487.
[http://dx.doi.org/10.3390/cancers11101487] [PMID: 31581753]
[46]
Lin Y-L, Li Y. Study on the hepatocellular carcinoma model with metastasis. Genes Dis 2020; 7(3): 336-50.
[http://dx.doi.org/10.1016/j.gendis.2019.12.008] [PMID: 32884988]
[47]
Khan T, Ali M, Khan A, et al. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory as-pects. Biomolecules 2019; 10(1): 47.
[http://dx.doi.org/10.3390/biom10010047] [PMID: 31892257]
[48]
Alsayadi AI, Abutaha N, Almutairi BO, Al-Mekhlafi FA, Wadaan MA. Evaluating the efficacy of an innovative herbal formulation (HF6) on different human cancer cell lines. Environ Sci Pollut Res Int 2022; 1-10.
[http://dx.doi.org/10.1007/s11356-022-19529-9] [PMID: 35249198]
[49]
Abbas H, El-Feky YA, Al-Sawahli MM, El-Deeb NM, El-Nassan HB, Zewail M. Development and optimization of curcumin analog nano-bilosomes using 21.31 full factorial design for anti-tumor profiles improvement in human hepatocellular carcinoma: in-vitro evaluation, in-vivo safety assay. Drug Deliv 2022; 29(1): 714-27.
[http://dx.doi.org/10.1080/10717544.2022.2044938] [PMID: 35243951]
[50]
Xi S-Y, Minuk GY. Role of traditional Chinese medicine in the management of patients with hepatocellular carcinoma. World J Hepatol 2018; 10(11): 799-806.
[http://dx.doi.org/10.4254/wjh.v10.i11.799] [PMID: 30533181]
[51]
Wu Z, He L, Wang L, Peng L. Systematically exploring the antitumor mechanisms of core chinese herbs on hepatocellular carcinoma: A computational study. Evid Based Complement Alternat Med 2020; 2020: 2396569.
[http://dx.doi.org/10.1155/2020/2396569] [PMID: 33014099]
[52]
Li G, Qi L, Chen H, Tian G. Involvement of NF-κB/PI3K/AKT signaling pathway in the protective effect of prunetin against a diethylnitrosamine induced hepatocellular carcinogenesis in rats. J Biochem Mol Toxicol 2022; e23016.
[http://dx.doi.org/10.1002/jbt.23016] [PMID: 35239232]
[53]
Liao B, Luo F, Zhang S, Deng Z, Cai L. Rehmanniae radix-induced apoptosis via inhibition of pi3k/akt/mtor signaling pathways in human hepatocellular carcinoma cell lines smmc-7721. Pharmacogn Mag 2022; 18(77): 4.
[http://dx.doi.org/10.4103/pm.pm_147_21]
[54]
Castelli S, Desideri E, Ciriolo MR. rosmediated activation of p38 protects hepatocellular carcinoma cells from caspase-independent death elicited by lysosomal damage. Biochem Pharmacol 2022; 198: 114983.
[http://dx.doi.org/10.1016/j.bcp.2022.114983] [PMID: 35227643]
[55]
Singh D, Siddique HR. Targeting metabolism with herbal therapy: A preventative approach toward cancer herbal medicines.In: Herbal Medicines A Boon for Healthy Human Life. Elsevier 2022; pp. 557-78.
[56]
Zheng S, Jia Q, Shen H, et al. Treatment with the herbal formula Songyou Yin inhibits epithelial-mesenchymal transition in hepatocellular carcinoma through downregulation of TGF-β1 expression and inhibition of the SMAD2/3 signaling pathway. Oncol Lett 2017; 13(4): 2309-15.
[http://dx.doi.org/10.3892/ol.2017.5700] [PMID: 28454396]
[57]
Su Q, Fan M, Wang J, et al. Sanguinarine inhibits epithelial-mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma. Cell Death Dis 2019; 10(12): 939.
[http://dx.doi.org/10.1038/s41419-019-2173-1] [PMID: 31819036]
[58]
Wu C, Chen W, Fang M, et al. Compound Astragalus and Salvia miltiorrhiza extract inhibits hepatocellular carcinoma progression via miR-145/miR-21 mediated Smad3 phosphorylation. J Ethnopharmacol 2019; 231: 98-112.
[http://dx.doi.org/10.1016/j.jep.2018.11.007] [PMID: 30412748]
[59]
Wang N, Tan HY, Chan YT, Guo W, Li S, Feng Y. Identification of WT1 as determinant of heptatocellular carcinoma and its inhibition by Chinese herbal medicine Salvia chinensis Benth and its active ingredient protocatechualdehyde. Oncotarget 2017; 8(62): 105848-59.
[http://dx.doi.org/10.18632/oncotarget.22406] [PMID: 29285297]
[60]
Zhang Z, Liu T, Yu M, Li K, Li W. The plant alkaloid tetrandrine inhibits metastasis via autophagy-dependent Wnt/β-catenin and metastatic tumor antigen 1 signaling in human liver cancer cells. J Exp Clin Cancer Res 2018; 37(1): 7.
[http://dx.doi.org/10.1186/s13046-018-0678-6] [PMID: 29334999]
[61]
Qin Y, Lu H. In vitro evaluation of anti-hepatoma activity of brevilin a: Involvement of stat3/snail and wnt/β-catenin pathways. RSC Advances 2019; 9(8): 4390-6.
[http://dx.doi.org/10.1039/C8RA08574A]
[62]
Zhao J, Liu L, Wan Y, et al. Inhibition of hepatocellular carcinoma by total alkaloids of rubus alceifolius poir involves suppression of hedgehog signaling. Integr Cancer Ther 2015; 14(4): 394-401.
[http://dx.doi.org/10.1177/1534735415583553] [PMID: 25917815]
[63]
Li Y, Jiang M, Li M, et al. Compound phyllanthus urinaria l inhibits hbv-related hcc through hbx-shh pathway axis inactivation. Evid Based Complement Alternat Med 2019; 2019: 1635837.
[http://dx.doi.org/10.1155/2019/1635837] [PMID: 31019539]
[64]
Chen J, Chen L, Lu T, et al. ERα36 is an effective target of epigallocatechin-3-gallate in hepatocellular carcinoma. Int J Clin Exp Pathol 2019; 12(9): 3222-34.
[PMID: 31934166]
[65]
Huang YC, Chao KS, Liao HF, Chen YJ. Targeting sonic hedgehog signaling by compounds and derivatives from natural products. Evid Based Complement Alternat Med 2013; 2013: 748587.
[http://dx.doi.org/10.1155/2013/748587] [PMID: 23762158]
[66]
Hu CY, Wu HT, Su YC, Lin CH, Chang CJ, Wu CL. Evodiamine exerts an anti-hepatocellular carcinoma activity through a wwox-dependent pathway. Molecules 2017; 22(7): 22.
[http://dx.doi.org/10.3390/molecules22071175] [PMID: 28708106]
[67]
Ke X, Zhao Y, Lu X, et al. TQ inhibits hepatocellular carcinoma growth in vitro and in vivo via repression of Notch signaling. Oncotarget 2015; 6(32): 32610-21.
[http://dx.doi.org/10.18632/oncotarget.5362] [PMID: 26416455]
[68]
Wang N, Tan H-Y, Li L, Yuen M-F, Feng Y. Berberine and Coptidis Rhizoma as potential anticancer agents: Recent updates and future perspectives. J Ethnopharmacol 2015; 176: 35-48.
[http://dx.doi.org/10.1016/j.jep.2015.10.028] [PMID: 26494507]
[69]
Chen K, Zhang S, Ji Y, et al. Baicalein inhibits the invasion and metastatic capabilities of hepatocellular carcinoma cells via down-regulation of the ERK pathway. PLoS One 2013; 8(9): e72927.
[http://dx.doi.org/10.1371/journal.pone.0072927] [PMID: 24039823]
[70]
Song L, Luo Y, Wang X, et al. Exploring the active mechanism of berberine against HCC by systematic pharmacology and experimental validation. Mol Med Rep 2019; 20(5): 4654-64.
[http://dx.doi.org/10.3892/mmr.2019.10698] [PMID: 31545468]
[71]
Lin W, Zhong M, Liang S, et al. Emodin inhibits migration and invasion of MHCC-97H human hepatocellular carcinoma cells. Exp Ther Med 2016; 12(5): 3369-74.
[http://dx.doi.org/10.3892/etm.2016.3793] [PMID: 27882165]
[72]
Gao F, Deng G, Liu W, Zhou K, Li M. Resveratrol suppresses human hepatocellular carcinoma via targeting HGF-c-Met signaling pathway. Oncol Rep 2017; 37(2): 1203-11.
[http://dx.doi.org/10.3892/or.2017.5347] [PMID: 28075467]
[73]
Pan Z, Zhuang J, Ji C, Cai Z, Liao W, Huang Z. Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression. Oncol Lett 2018; 15(4): 4821-6.
[http://dx.doi.org/10.3892/ol.2018.7988] [PMID: 29552121]
[74]
Zhang HH, Zhang Y, Cheng YN, et al. Metformin incombination with curcumin inhibits the growth, metastasis, and angiogenesis of hepatocellular carcinoma in vitro and in vivo. Mol Carcinog 2018; 57(1): 44-56.
[http://dx.doi.org/10.1002/mc.22718] [PMID: 28833603]
[75]
Jang E, Kim SY, Lee NR, et al. Evaluation of antitumor activity of Artemisia capillaris extract against hepatocellular carcinoma through the inhibition of IL-6/STAT3 signaling axis. Oncol Rep 2017; 37(1): 526-32.
[http://dx.doi.org/10.3892/or.2016.5283] [PMID: 28004112]
[76]
Tan ZB, Fan HJ, Wu YT, et al. Rheum palmatum extract exerts anti-hepatocellular carcinoma effects by inhibiting signal transducer and activator of transcription 3 signaling. J Ethnopharmacol 2019; 232: 62-72.
[http://dx.doi.org/10.1016/j.jep.2018.12.019] [PMID: 30553869]
[77]
Shan L, Li Y, Jiang H, et al. Huaier restrains proliferative and migratory potential of hepatocellular carcinoma cells partially through decreased yes-associated protein 1. J Cancer 2017; 8(19): 4087-97.
[http://dx.doi.org/10.7150/jca.21018] [PMID: 29187885]
[78]
Zhao S, Xu K, Jiang R, et al. Evodiamine inhibits proliferation and promotes apoptosis of hepatocellular carcinoma cells via the Hippo-Yes-Associated Protein signaling pathway. Life Sci 2020; 251: 117424.
[http://dx.doi.org/10.1016/j.lfs.2020.117424] [PMID: 32057900]
[79]
Li Y, Lu J, Chen Q, et al. Artemisinin suppresses hepatocellular carcinoma cell growth, migration and invasion by targeting cellular bioenergetics and Hippo-YAP signaling. Arch Toxicol 2019; 93(11): 3367-83.
[http://dx.doi.org/10.1007/s00204-019-02579-3] [PMID: 31563988]
[80]
Tsang CM, Cheung KC, Cheung YC, et al. Berberine suppresses Id-1 expression and inhibits the growth and development of lung metastases in hepatocellular carcinoma. Biochim Biophys Acta 2015; 1852(3): 541-51.
[http://dx.doi.org/10.1016/j.bbadis.2014.12.004] [PMID: 25496992]
[81]
He S, Lu G, Hou H, et al. Saikosaponin-d suppresses the expression of cyclooxygenase-2 through the phospho-signal transducer and activator of transcription 3/hypoxia-inducible factor-1α pathway in hepatocellular carcinoma cells. Mol Med Rep 2014; 10(5): 2556-62.
[http://dx.doi.org/10.3892/mmr.2014.2574] [PMID: 25231214]
[82]
Bimonte S, Albino V, Piccirillo M, et al. Epigallocatechin-3-gallate in the prevention and treatment of hepatocellular carcinoma: Experimental findings and translational perspectives. Drug Des Devel Ther 2019; 13: 611-21.
[http://dx.doi.org/10.2147/DDDT.S180079] [PMID: 30858692]
[83]
Liu T, Li S, Wu L, et al. Experimental study of hepatocellular carcinoma treatment by shikonin through regulating pkm2. J Hepatocell Carcinoma 2020; 7: 19-31.
[http://dx.doi.org/10.2147/JHC.S237614] [PMID: 32110554]
[84]
Peng YT, Wu WR, Chen LR, et al. Upregulation of cyclin-dependent kinase inhibitors CDKN1B and CDKN1C in hepatocellular carcinoma-derived cells via goniothalamin-mediated protein stabilization and epigenetic modifications. Toxicol Rep 2015; 2: 322-32.
[http://dx.doi.org/10.1016/j.toxrep.2015.01.010] [PMID: 28962365]
[85]
Mansour M, Mohamed MF, Elhalwagi A, El-Itriby HA, Shawki HH, Abdelhamid IA. Moringa peregrina leaves extracts induce apoptosis and cell cycle arrest of hepatocellular carcinoma. BioMed Res Int 2019; 2019: 2698570.
[http://dx.doi.org/10.1155/2019/2698570] [PMID: 30713850]
[86]
Hsu HT, Chi CW. Emerging role of the peroxisome proliferator-activated receptor-gamma in hepatocellular carcinoma. J Hepatocell Carcinoma 2014; 1: 127-35.
[PMID: 27508182]
[87]
Dewidar B, Meyer C, Dooley S, Meindl-Beinker AN. Tgf-β in hepatic stellate cell activation and liver fibrogenesis-updated 2019. Cells 2019; 8(11): 1419.
[http://dx.doi.org/10.3390/cells8111419] [PMID: 31718044]
[88]
Mandlik DS, Mandlik SK. Herbal and natural dietary products: Upcoming therapeutic approach for prevention and treatment of hepatocellular carcinoma. Nutr Cancer 2021; 73(11-12: 2130-54.): 1-25.
[PMID: 33073617]
[89]
Wu CW, Farrell GC, Yu J. Functional role of peroxisome-proliferator-activated receptor γ in hepatocellular carcinoma. J Gastroenterol Hepatol 2012; 27(11): 1665-9.
[http://dx.doi.org/10.1111/j.1440-1746.2012.07213.x] [PMID: 22742931]
[90]
Han M, Gao H, Ju P, et al. Hispidulin inhibits hepatocellular carcinoma growth and metastasis through AMPK and ERK signaling mediated activation of PPARγ. Biomed Pharmacother 2018; 103: 272-83.
[http://dx.doi.org/10.1016/j.biopha.2018.04.014] [PMID: 29656183]
[91]
Deng Y, Li X, Li X, et al. Corilagin induces the apoptosis of hepatocellular carcinoma cells through the mitochondrial apoptotic and death receptor pathways. Oncol Rep 2018; 39(6): 2545-52.
[http://dx.doi.org/10.3892/or.2018.6396] [PMID: 29693193]
[92]
Lee SR, Kwon SW, Lee YH, et al. Dietary intake of genistein suppresses hepatocellular carcinoma through AMPK-mediated apoptosis and anti-inflammation. BMC Cancer 2019; 19(1): 6.
[http://dx.doi.org/10.1186/s12885-018-5222-8] [PMID: 30606143]
[93]
Hu S, Zhu Y, Xia X, et al. Ginsenoside rg3 prolongs survival of the orthotopic hepatocellular carcinoma model by inducing apoptosis and inhibiting angiogenesis. Anal Cell Pathol (Amst) 2019; 2019: 3815786.
[http://dx.doi.org/10.1155/2019/3815786] [PMID: 31534898]
[94]
Wang H, Ma D, Wang C, Zhao S, Liu C. Triptolide inhibits invasion and tumorigenesis of hepatocellular carcinoma mhcc-97h cells through nf-kappab signaling. Med Sci Monit 2016; 22: 1827-36.
[http://dx.doi.org/10.12659/MSM.898801] [PMID: 27239780]
[95]
Liu F, Wang F, Dong X, et al. T7 peptide cytotoxicity in human hepatocellular carcinoma cells is mediated by suppression of autophagy. Int J Mol Med 2019; 44(2): 523-34.
[http://dx.doi.org/10.3892/ijmm.2019.4231] [PMID: 31173192]
[96]
Wang YF, Li T, Tang ZH, et al. Baicalein triggers autophagy and inhibits the protein kinase b/mammalian target of rapamycin pathway in hepatocellular carcinoma hepg2 cells. Phytother Res 2015; 29(5): 674-9.
[http://dx.doi.org/10.1002/ptr.5298] [PMID: 25641124]
[97]
Zheng J, Shao Y, Jiang Y, et al. Tangeretin inhibits hepatocellular carcinoma proliferation and migration by promoting autophagy-related BECLIN1. Cancer Manag Res 2019; 11: 5231-42.
[http://dx.doi.org/10.2147/CMAR.S200974] [PMID: 31239776]
[98]
Wu L, Li J, Liu T, et al. Quercetin shows anti-tumor effect in hepatocellular carcinoma LM3 cells by abrogating JAK2/STAT3 signaling pathway. Cancer Med 2019; 8(10): 4806-20.
[http://dx.doi.org/10.1002/cam4.2388] [PMID: 31273958]
[99]
Yang J, Pi C, Wang G. Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed Pharmacother 2018; 103: 699-707.
[http://dx.doi.org/10.1016/j.biopha.2018.04.072] [PMID: 29680738]
[100]
Lv H, Wang C, Fang T, et al. Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2. NPJ Precis Oncol 2018; 2(1): 1.
[http://dx.doi.org/10.1038/s41698-017-0044-8] [PMID: 29872720]
[101]
Hwang-Bo H, Jeong JW, Han MH, et al. Auranofin, an inhibitor of thioredoxin reductase, induces apoptosis in hepatocellular carcinoma Hep3B cells by generation of reactive oxygen species. Gen Physiol Biophys 2017; 36(2): 117-28.
[http://dx.doi.org/10.4149/gpb_2016043] [PMID: 28218611]
[102]
Hwang-Bo H, Lee WS, Nagappan A, et al. Morin enhances auranofin anticancer activity by up-regulation of DR4 and DR5 and modulation of Bcl-2 through reactive oxygen species generation in Hep3B human hepatocellular carcinoma cells. Phytother Res 2019; 33(5): 1384-93.
[http://dx.doi.org/10.1002/ptr.6329] [PMID: 30887612]
[103]
Wei PL, Huang CY, Chang YJ. Propyl gallate inhibits hepatocellular carcinoma cell growth through the induction of ROS and the activation of autophagy. PLoS One 2019; 14(1): e0210513.
[http://dx.doi.org/10.1371/journal.pone.0210513] [PMID: 30653551]
[104]
Prasad S, Tyagi AK. Historical spice as a future drug: Therapeutic potential of piperlongumine. Curr Pharm Des 2016; 22(27): 4151-9.
[http://dx.doi.org/10.2174/1381612822666160601103027] [PMID: 27262330]
[105]
Zhang Q, Chen W, Lv X, et al. Piperlongumine, a novel trxr1 inhibitor, induces apoptosis in hepatocellular carcinoma cells by rosmediated er stress. Front Pharmacol 2019; 10: 1180.
[http://dx.doi.org/10.3389/fphar.2019.01180] [PMID: 31680962]
[106]
Yuan Z, Liang Z, Yi J, et al. Koumine promotes ros production to suppress hepatocellular carcinoma cell proliferation via nf-κb and erk/p38 mapk signaling. Biomolecules 2019; 9(10): 559.
[http://dx.doi.org/10.3390/biom9100559]
[107]
Huang Y, Liu G, Yang F, et al. Induction of apoptosis and proliferation inhibition of hepatocellular carcinoma by 6-chloro-2-methoxy-N-(phenylmethyl)-9-acridinamine (BA): In vitro and vivo studies. Cancer Cell Int 2017; 17(1): 66.
[http://dx.doi.org/10.1186/s12935-017-0435-5] [PMID: 28680363]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy