Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

In vitro Evaluation of Antioxidant and Antibacterial Activities of Eco-friendly Synthesized Silver Nanoparticles using Quercus robur Bark Extract

Author(s): Andreia Corciovă, Adrian Fifere, Ioana Turin Moleavin, Cristina Tuchiluș, Cornelia Mircea, Irina Macovei* and Ana Flavia Burlec

Volume 24, Issue 3, 2023

Published on: 17 October, 2022

Page: [460 - 470] Pages: 11

DOI: 10.2174/1389201023666220926091306

Price: $65

conference banner
Abstract

Aims: This study reports a simple, cost-effective, and environmentally friendly method to obtain silver nanoparticles (AgNPs) using an aqueous extract of Quercus robur bark.

Methods: AgNPs synthesis conditions such as silver nitrate concentration, extract:AgNO3 volume ratio, pH, temperature, and reaction time have been examined. After optimizing the synthesis, the obtained AgNPs were characterized by different methods such as UV-Vis, TEM, EDX, and FTIR. The antioxidant activity was evaluated using lipoxygenase inhibition capacity and inhibition of erythrocyte hemolysis mediated by peroxyl free radicals tests. The antimicrobial potential of the samples was tested against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans.

Results: The AgNPs synthesis process is influenced by reaction conditions, the optimum established values being, in this case: concentration of 3 mM AgNO3, 1:9 extract: AgNO3 volume ratio, pH value of 6, 60 ºC temperature, and 90 minutes stirring time. The shape of the synthesized AgNPs was predominantly spherical, with an average size of 50 nm. The SPR band at 432 nm, the strong EDX signal at ~ 3 keV and the zeta potential of -13.88 mV revealed the formation of AgNPs and electrostatic stabilization of the colloidal solution. FTIR analysis confirmed the participation of molecules from the extract in the synthesis and stabilization of AgNPs. The obtained nanoparticles showed improved antioxidant, antifungal and antibacterial activities compared to the extract.

Conclusion: The results open the possibility of exploring new applications of nanoparticles obtained via green synthesis.

Keywords: antioxidant activity, antimicrobial activity, green synthesis, physicochemical characterization, Quercus robur, silver nanoparticles

« Previous
Graphical Abstract

[1]
Schröfel, A.; Kratošová, G.; Šafařík, I.; Šafaříková, M.; Raška, I.; Shor, L.M. Applications of biosynthesized metallic nanoparticles – A review. Acta Biomater., 2014, 10(10), 4023-4042.
[http://dx.doi.org/10.1016/j.actbio.2014.05.022] [PMID: 24925045]
[2]
Lakhan, M.N.; Chen, R.; Shar, A.H.; Chand, K.; Shah, A.H.; Ahmed, M.; Ali, I.; Ahmed, R.; Liu, J.; Takahashi, K.; Wang, J. Ecofriendly green synthesis of clove buds extract functionalized silver nanoparticles and evaluation of antibacterial and antidiatom activity. J. Microbiol. Methods, 2020, 173, 105934.
[http://dx.doi.org/10.1016/j.mimet.2020.105934] [PMID: 32325159]
[3]
Abass Sofi, M.; Sunitha, S.; Ashaq Sofi, M.; Khadheer Pasha, S.K.; Choi, D. An overview of antimicrobial and anticancer potential of silver nanoparticles. J. King Saud Univ. Sci., 2022, 34(2), 101791.
[http://dx.doi.org/10.1016/j.jksus.2021.101791]
[4]
Santhoshkumar, T.; Rahuman, A.A.; Rajakumar, G.; Marimuthu, S.; Bagavan, A.; Jayaseelan, C.; Zahir, A.A.; Elango, G.; Kamaraj, C. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol. Res., 2011, 108(3), 693-702.
[http://dx.doi.org/10.1007/s00436-010-2115-4] [PMID: 20978795]
[5]
Kalishwaralal, K.; Deepak, V.; Ram Kumar Pandian, S.; Kottaisamy, M. BarathManiKanth, S.; Kartikeyan, B.; Gurunathan, S. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B Biointerfaces, 2010, 77(2), 257-262.
[http://dx.doi.org/10.1016/j.colsurfb.2010.02.007] [PMID: 20197229]
[6]
Gauthami, R.; Vinitha, U.G.; Philip, A.S.; Sundaram, M.M. Cissampelous pairera mediated synthesis of silver nanoparticles and it’s invitro antioxidant, antibacterial and antidiabetic activities. Mater. Today Proc., 2021, 47, 853-857.
[http://dx.doi.org/10.1016/j.matpr.2021.01.865]
[7]
Suchithra, M.R.; Bhuvaneswari, S.; Sampathkumar, P.; Dineshkumar, R.; Chithradevi, K.; Beevi, F.N.M.; Madhumitha, R.; Kavisri, M. In vitro study of antioxidant, antidiabetic and antiurolithiatic activity of synthesized silver nanoparticles using stem bark extracts of Hybanthus enneaspermus. Biocatal. Agric. Biotechnol., 2021, 38, 102219.
[http://dx.doi.org/10.1016/j.bcab.2021.102219]
[8]
Abbasi, N.; Ghaneialvar, H.; Moradi, R.; Zangeneh, M.M.; Zangeneh, A. Formulation and characterization of a novel cutaneous wound healing ointment by silver nanoparticles containing Citrus lemon leaf: A chemobiological study. Arab. J. Chem., 2021, 14(7), 103246.
[http://dx.doi.org/10.1016/j.arabjc.2021.103246]
[9]
Kumar, K.P.; Paul, W.; Sharma, C.P. Green synthesis of gold nanoparticles with Zingiber officinale extract: Characterization and blood compatibility. Process Biochem., 2011, 46(10), 2007-2013.
[http://dx.doi.org/10.1016/j.procbio.2011.07.011]
[10]
Hashemi, S.F.; Tasharrofi, N.; Saber, M.M. Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. J. Mol. Struct., 2020, 1208, 127889.
[http://dx.doi.org/10.1016/j.molstruc.2020.127889]
[11]
David, L.; Moldovan, B.; Baldea, I.; Olteanu, D.; Bolfa, P.; Clichici, S.; Filip, G.A. Modulatory effects of Cornus sanguinea L. mediated green synthesized silver nanoparticles on oxidative stress, COX-2/NOS2 and NFkB/pNFkB expressions in experimental inflammation in Wistar rats. Mater. Sci. Eng. C, 2020, 110, 110709.
[http://dx.doi.org/10.1016/j.msec.2020.110709] [PMID: 32204021]
[12]
Wanarska, E.; Maliszewska, I. The possible mechanism of the formation of silver nanoparticles by Penicillium cyclopium. Bioorg. Chem., 2019, 93, 102803.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.028] [PMID: 30799034]
[13]
Almalki, M.A.; Khalifa, A.Y.Z. Silver nanoparticles synthesis from Bacillus sp KFU36 and its anticancer effect in breast cancer MCF-7 cells via induction of apoptotic mechanism. J. Photochem. Photobiol. B, 2020, 204, 111786.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111786] [PMID: 31982671]
[14]
Royji, A.S.S.; Malik, M.A.; Al-thabaiti, S.A. Facile biofabrication of silver nanoparticles using Salvia officinalis leaf extract and its catalytic activity towards Congo red dye degradation. J. Mater. Res. Technol., 2020, 9(5), 10031-10044.
[http://dx.doi.org/10.1016/j.jmrt.2020.06.074]
[15]
Angelini, G.; Pasc, A.; Gasbarri, C. Curcumin in silver nanoparticles aqueous solution: Kinetics of keto-enol tautomerism and effects on AgNPs. Colloids Surf. A Physicochem. Eng. Asp., 2020, 603, 125235.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125235]
[16]
Dinparvar, S.; Bagirova, M.; Allahverdiyev, A.M.; Abamor, E.S.; Safarov, T.; Aydogdu, M.; Aktas, D. A nanotechnology-based new approach in the treatment of breast cancer: Biosynthesized silver nanoparticles using Cuminum cyminum L. seed extract. J. Photochem. Photobiol. B, 2020, 208, 111902.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111902] [PMID: 32470714]
[17]
Karthiga, P.; Rajeshkumar, S.; Annadurai, G. Mechanism of larvicidal activity of antimicrobial silver nanoparticles synthesized using Garcinia mangostana bark extract. J. Cluster Sci., 2018, 29(6), 1233-1241.
[http://dx.doi.org/10.1007/s10876-018-1441-z]
[18]
Sowmyya, T.; Vijaya, L.G. Spectroscopic investigation on catalytic and bactericidal properties of biogenic silver nanoparticles synthesized using Soymida febrifuga aqueous stem bark extract. J. Environ. Chem. Eng., 2018, 6(3), 3590-3601.
[http://dx.doi.org/10.1016/j.jece.2017.01.045]
[19]
Burlacu, E.; Tanase, C.; Coman, N.A.; Berta, L. A review of barkextract-mediated green synthesis of metallic nanoparticles and their applications. Molecules, 2019, 24(23), 4354.
[http://dx.doi.org/10.3390/molecules24234354] [PMID: 31795265]
[20]
Ontong, J.C.; Paosen, S.; Shankar, S.; Voravuthikunchai, S.P. Ecofriendly synthesis of silver nanoparticles using Senna alata bark extract and its antimicrobial mechanism through enhancement of bacterial membrane degradation. J. Microbiol. Methods, 2019, 165, 105692.
[http://dx.doi.org/10.1016/j.mimet.2019.105692] [PMID: 31437555]
[21]
Kumar, D.; Kumar, G.; Das, R.; Agrawal, V. Strong larvicidal potential of silver nanoparticles (AgNPs) synthesized using Holarrhena antidysenterica (L.) Wall. bark extract against malarial vector, Anopheles stephensi Liston. Process Saf. Environ. Prot., 2018, 116, 137-148.
[http://dx.doi.org/10.1016/j.psep.2018.02.001]
[22]
Sharma, H.; Vendamani, V.S.; Pathak, A.P.; Tiwari, A. Fraxinus paxiana bark mediated photosynthesis of silver nanoparticles and their size modulation using swift heavy ion irradiation. Radiat. Phys. Chem., 2015, 117, 184-190.
[http://dx.doi.org/10.1016/j.radphyschem.2015.08.012]
[23]
Mohanty, A.S.; Jena, B.S. Innate catalytic and free radical scavenging activities of silver nanoparticles synthesized using Dillenia indica bark extract. J. Colloid Interface Sci., 2017, 496, 513-521.
[http://dx.doi.org/10.1016/j.jcis.2017.02.045] [PMID: 28259017]
[24]
Rajeshkumar, S. Synthesis of silver nanoparticles using fresh bark of Pongamia pinnata and characterization of its antibacterial activity against gram positive and gram negative pathogens. Resour. Technol., 2016, 2(1), 30-35.
[25]
Lü, S.; Wu, Y.; Liu, H. Silver nanoparticles synthesized using Eucommia ulmoides bark and their antibacterial efficacy. Mater. Lett., 2017, 196, 217-220.
[http://dx.doi.org/10.1016/j.matlet.2017.03.068]
[26]
Velayutham, K.; Rahuman, A.A.; Rajakumar, G.; Roopan, S.M.; Elango, G.; Kamaraj, C.; Marimuthu, S.; Santhoshkumar, T.; Iyappan, M.; Siva, C. Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac. J. Trop. Med., 2013, 6(2), 95-101.
[http://dx.doi.org/10.1016/S1995-7645(13)60002-4] [PMID: 23339909]
[27]
Sathishkumar, M.; Sneha, K.; Won, S.W.; Cho, C.W.; Kim, S.; Yun, Y.S. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf. B Biointerfaces, 2009, 73(2), 332-338.
[http://dx.doi.org/10.1016/j.colsurfb.2009.06.005] [PMID: 19576733]
[28]
Karthika, V.; Arumugam, A.; Gopinath, K.; Kaleeswarran, P.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Guazuma ulmifolia bark-synthesized Ag, Au and Ag/Au alloy nanoparticles: Photocatalytic potential, DNA/protein interactions, anticancer activity and toxicity against 14 species of microbial pathogens. J. Photochem. Photobiol. B, 2017, 167, 189-199.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.01.008] [PMID: 28076823]
[29]
Bharathi, D.; Diviya Josebin, M.; Vasantharaj, S.; Bhuvaneshwari, V. Biosynthesis of silver nanoparticles using stem bark extracts of Diospyros montana and their antioxidant and antibacterial activities. J. Nanostructure Chem., 2018, 8(1), 83-92.
[http://dx.doi.org/10.1007/s40097-018-0256-7]
[30]
Arya, G.; Kumari, R.M.; Gupta, N.; Kumar, A.; Chandra, R.; Nimesh, S. Green synthesis of silver nanoparticles using Prosopis juliflora bark extract: Reaction optimization, antimicrobial and catalytic activities. Artif. Cells Nanomed. Biotechnol., 2018, 46(5), 985-993.
[http://dx.doi.org/10.1080/21691401.2017.1354302] [PMID: 28720002]
[31]
Curtu, A.L.; Gailing, O.; Finkeldey, R. Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evol. Biol., 2007, 7(1), 218.
[http://dx.doi.org/10.1186/1471-2148-7-218] [PMID: 17996115]
[32]
Unuofin, J.O.; Lebelo, S.L. UHPLC-QToF-MS characterization of bioactive metabolites from Quercus robur L. grown in South Africa for antioxidant and antidiabetic properties. Arab. J. Chem., 2021, 14(3), 102970.
[http://dx.doi.org/10.1016/j.arabjc.2020.102970]
[33]
Andrenšek, S.; Simonovska, B.; Vovk, I.; Fyhrquist, P.; Vuorela, H.; Vuorela, P. Antimicrobial and antioxidative enrichment of oak (Quercus robur) bark by rotation planar extraction using ExtraChrom®. Int. J. Food Microbiol., 2004, 92(2), 181-187.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2003.09.009] [PMID: 15109795]
[34]
Zdravkovic, N.; Mladenovic, N.; Mladenovic, A.; Pavlovic, S.; Baskic, D. The aqueous extract of Quercus robur L. (Fagaceae) shows promising antibacterial activity against Klebsiella pneumoniae. Global J. Pathol. Microbiol., 2015, 2(2), 53-58.
[http://dx.doi.org/10.14205/2310-8703.2014.02.02.3]
[35]
Kalishwaralal, K. BarathManiKanth, S.; Pandian, S.R.K.; Deepak, V.; Gurunathan, S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf. B Biointerfaces, 2010, 79(2), 340-344.
[http://dx.doi.org/10.1016/j.colsurfb.2010.04.014] [PMID: 20493674]
[36]
Alshehri, A.A.; Malik, M.A. Phytomediated photo-induced green synthesis of silver nanoparticles using Matricaria chamomilla L. and its catalytic activity against rhodamine B. Biomolecules, 2020, 10(12), 1604.
[http://dx.doi.org/10.3390/biom10121604] [PMID: 33256218]
[37]
Macovei, I.; Luca, S.V.; Skalicka-Woźniak, K.; Sacarescu, L.; Pascariu, P.; Ghilan, A.; Doroftei, F.; Ursu, E.L.; Rimbu, C.M.; Horhogea, C.E.; Lungu, C.; Vochita, G.; Panainte, A.D.; Nechita, C.; Corciova, M.A.; Miron, A. Phyto-functionalized silver nanoparticles derived from conifer bark extracts and evaluation of their antimicrobial and cytogenotoxic effects. Molecules, 2021, 27(1), 217.
[http://dx.doi.org/10.3390/molecules27010217] [PMID: 35011449]
[38]
Gird, C.; Nencu, I.; Popescu, M. Chemical, antioxidant and toxicity evaluation of rosemary leaves and its dry extract. Farmacia, 2017, 65(6), 978-983.
[39]
Malterud, K.E.; Rydland, K.M. Inhibitors of 15-lipoxygenase from orange peel. J. Agric. Food Chem., 2000, 48(11), 5576-5580.
[http://dx.doi.org/10.1021/jf000613v] [PMID: 11087521]
[40]
Burlec, A.F.; Hăncianu, M.; Macovei, I.; Mircea, C.; Fifere, A.; Turin-Moleavin, I-A.; Tuchiluș, C.; Robu, S.; Corciovă, A. Ecofriendly synthesis and comparative in vitro biological evaluation of silver nanoparticles using Tagetes erecta flower extracts. Appl. Sci. , 2022, 12(2), 887.
[http://dx.doi.org/10.3390/app12020887]
[41]
Barros, L.; Falcão, S.; Baptista, P.; Freire, C.; Vilas-Boas, M.; Ferreira, I.C.F.R. Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chem., 2008, 111(1), 61-66.
[http://dx.doi.org/10.1016/j.foodchem.2008.03.033]
[42]
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing 30th ed.; Clinical and Laboratory Standard Institute: CLSI supplement M100. Wayne, PA,; , 2020.
[43]
Clinical and Laboratory Standards Institute. M44-A2: Method for antifungal disk diffusion susceptibility testing of yeasts; Approved guideline. 2nd ed. , 2009. Vol. 29, No. 17, pp. 1-13
[44]
Ahmed, Q.; Gupta, N.; Kumar, A.; Nimesh, S. Antibacterial efficacy of silver nanoparticles synthesized employing Terminalia arjuna bark extract. Artif. Cells Nanomed. Biotechnol., 2017, 45(6), 1192-1200.
[http://dx.doi.org/10.1080/21691401.2016.1215328] [PMID: 27684206]
[45]
Corciova, A.; Ivanescu, B. Biosynthesis, characterisation and therapeutic applications of plant-mediated silver nanoparticles. J. Serb. Chem. Soc., 2018, 83(5), 515-538.
[http://dx.doi.org/10.2298/JSC170731021C]
[46]
Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys., 1908, 330(3), 377-445.
[http://dx.doi.org/10.1002/andp.19083300302]
[47]
Veisi, H.; Hemmati, S.; Shirvani, H.; Veisi, H. Green synthesis and characterization of monodispersed silver nanoparticles obtained using oak fruit bark extract and their antibacterial activity. Appl. Organomet. Chem., 2016, 30(6), 387-391.
[http://dx.doi.org/10.1002/aoc.3444]
[48]
Khattak, A.; Ahmad, B.; Rauf, A.; Bawazeer, S.; Farooq, U.; Ali, J.; Patel, S.; Ramadan El-Sharkawy, E.; Ikram, R.; Linfang, H. Green synthesis, characterisation and biological evaluation of plant‐based silver nanoparticles using Quercus semecarpifolia Smith aqueous leaf extract. IET Nanobiotechnol., 2019, 13(1), 36-41.
[http://dx.doi.org/10.1049/iet-nbt.2018.5063] [PMID: 30964035]
[49]
Veerasamy, R.; Xin, T.Z.; Gunasagaran, S.; Xiang, T.F.W.; Yang, E.F.C.; Jeyakumar, N.; Dhanaraj, S.A. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Soc., 2011, 15(2), 113-120.
[http://dx.doi.org/10.1016/j.jscs.2010.06.004]
[50]
Christopher, J.G.; Saswati, B.; Ezilrani, P. Optimization of parameters for biosynthesis of silver nanoparticles using leaf extract of Aegle marmelos. Braz. Arch. Biol. Technol., 2015, 58(5), 702-710.
[http://dx.doi.org/10.1590/S1516-89132015050106]
[51]
Chahardooli, M.; Khodadadi, E.; Khodadadi, E. Green synthesis of silver nanoparticles using oak leaf and fruit extracts (Quercus) and its antibacterial activity against plant pathogenic bacteria. Int. J. Biosci., 2014, (2), 97-103.
[52]
Melkamu, W.W.; Bitew, L.T. Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) J.F. Gmel plant leaf extract and their antibacterial and anti-oxidant activities. Heliyon, 2021, 7(11), e08459.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08459] [PMID: 34901505]
[53]
Singh, A.; Gaud, B.; Jaybhaye, S. Optimization of synthesis parameters of silver nanoparticles and its antimicrobial activity. Mater. Sci. Energy Technol., 2020, 3, 232-236.
[http://dx.doi.org/10.1016/j.mset.2019.08.004]
[54]
Elemike, E.; Fayemi, O.; Ekennia, A.; Onwudiwe, D.; Ebenso, E. Silver nanoparticles mediated by Costus afer leaf extract: Synthesis, antibacterial, antioxidant and electrochemical properties. Molecules, 2017, 22(5), 701.
[http://dx.doi.org/10.3390/molecules22050701] [PMID: 28468278]
[55]
Kocadag Kocazorbaz, E.; Moulahoum, H.; Tut, E.; Sarac, A.; Tok, K.; Yalcin, H.T.; Zihnioglu, F. Kermes oak (Quercus coccifera L.) extract for a biogenic and eco-benign synthesis of silver nanoparticles with efficient biological activities. Enviro. Technol. Innov., 2021, 24, 102067.
[http://dx.doi.org/10.1016/j.eti.2021.102067]
[56]
Al-Otibi, F.; Alkhudhair, S.K.; Alharbi, R.I.; Al-Askar, A.A.; Aljowaie, R.M.; Al-Shehri, S. The antimicrobial activities of silver nanoparticles from aqueous extract of grape seeds against pathogenic bacteria and fungi. Molecules, 2021, 26(19), 6081.
[http://dx.doi.org/10.3390/molecules26196081] [PMID: 34641623]
[57]
Gökşen, N.; Kaplan, Ö. Optimization of the green synthesis of silver nanoparticle with Box-Behnken design: Using Aloe vera plant extract as a reduction agent. Sak Univ J Sci., 2021, 25(3), 774-787.
[58]
Heydari, R.; Rashidipour, M. Green synthesis of silver nanoparticles using extract of oak fruit hull (jaft): Synthesis and in vitro cytotoxic effect on mcf-7 cells. Int. J. Breast Cancer, 2015, 2015, 1-6.
[http://dx.doi.org/10.1155/2015/846743] [PMID: 25685560]
[59]
Mudalige, T.; Qu, H.; Van, H.D.; Ansar, S.M.; Paredes, A.; Ingle, T. Characterization of nanomaterials: Tools and challenges. In: Nano-materials for Food Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 313-353.
[http://dx.doi.org/10.1016/B978-0-12-814130-4.00011-7]
[60]
Kartini, K.; Alviani, A.; Anjarwati, D.; Fanany, A.F.; Sukweenadhi, J.; Avanti, C. Process pptimization for green synthesis of silver nanoparticles using Indonesian medicinal plant extracts. Processes , 2020, 8(8), 998.
[http://dx.doi.org/10.3390/pr8080998]
[61]
Padalia, H.; Moteriya, P.; Chanda, S. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab. J. Chem., 2015, 8(5), 732-741.
[http://dx.doi.org/10.1016/j.arabjc.2014.11.015]
[62]
Patra, S.; Mukherjee, S.; Barui, A.K.; Ganguly, A.; Sreedhar, B.; Patra, C.R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C, 2015, 53, 298-309.
[http://dx.doi.org/10.1016/j.msec.2015.04.048] [PMID: 26042718]
[63]
F.AL-Azawi, K.; Haleem, A.; Hussein, N. Synthesis of Agnps by plant extracts and detection of the biological application. Ann. Rom. Soc. Cell Biol., 2021, 25(5), 3112-3118.
[64]
Muñoz-Ramírez, A.; Mascayano-Collado, C.; Barriga, A.; Echeverría, J.; Urzúa, A. Inhibition of soybean 15-lipoxygenase and human 5-lipoxygenase by extracts of leaves, stem bark, phenols and catechols isolated from Lithraea caustica (Anacardiaceae). Front. Pharmacol., 2020, 11(11), 594257.
[http://dx.doi.org/10.3389/fphar.2020.594257] [PMID: 33390977]
[65]
Corciovă, A.; Mircea, C.; Tuchiluş, C. Phenolic and sterolic profile of a Phyllanthus amarus extract and characterization of newly synthesized silver nanoparticles. Farmacia, 2018, 66(5), 831-838.
[http://dx.doi.org/10.31925/farmacia.2018.5.13]
[66]
Nuruki, Y.; Matsumoto, H.; Tsukada, M.; Tsukahara, H.; Takajo, T.; Tsuchida, K.; Anzai, K. Method to improve azo-compound (AAPH)-induced hemolysis of erythrocytes for assessing antioxidant activity of lipophilic compounds. Chem. Pharm. Bull., 2021, 69(1), 67-71.
[http://dx.doi.org/10.1248/cpb.c20-00568] [PMID: 33390522]
[67]
Al Majeed, R.M.A.; Hussein, N.N. AL-Azawi KF. Detection the antimicrobial activity of AgNPs synthesized by Quercus infectoria plant. Plant Arch., 2020, 20(1), 579-584.
[68]
Anees Ahmad, S.; Sachi Das, S.; Khatoon, A.; Tahir Ansari, M.; Afzal, M.; Saquib Hasnain, M.; Kumar Nayak, A. Bactericidal activity of silver nanoparticles: A mechanistic review. Mater. Sci. Energy Technol., 2020, 3, 756-769.
[http://dx.doi.org/10.1016/j.mset.2020.09.002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy