Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

N-acetyl Cysteine Inhibits Cell Proliferation and Differentiation of LPSInduced MC3T3-E1 Cells Via Regulating Inflammatory Cytokines

Author(s): Wangyang Li, Hui Zhang, Junchi Chen, Yujie Tan, Ailing Li and Ling Guo*

Volume 24, Issue 3, 2023

Published on: 26 August, 2022

Page: [450 - 459] Pages: 10

DOI: 10.2174/1389201023666220520102001

Price: $65

Abstract

Background: Peri-implantitis is one of the most common complications in oral implantation and could lead to the loss of the function of bone tissues around implants.

Methods: This study used lipopolysaccharide (LPS) as a stimulant for MC3T3-E1 cells and N-acetyl cysteine (NAC) as an inhibitor to inhibit the effect of LPS to investigate the effect of NAC on the expression of bone formation related factors and inflammatory-related factors of osteoblasts under the action of LPS.

Results: In this study, we found that the cell proliferation and cell differentiation were significantly promoted when NAC concentrations were between 0 ~ 0.5 mM, but were inhibited when the concentration exceeded 0.5 mM. LPS had a slightly promoting effect on the cell proliferation before 20 μg/mL but inhibited the cell proliferation after 20 μg/mL. LPS reduced protein and gene expressions of Runx2, ALP and BGP and increased protein and gene expressions of NF-κB and TNF-α. NAC reversibly regulated the LPS’s regulation on the expression of MC3T3-E1 cell cytokine gene and protein.

Conclusion: The optimal NAC concentration for treating MC3T3-E1 cells is 0.5 mM, and the optimal LPS concentration for stimulating MC3T3-E1 cells is 20 μg/mL. NAC plays an active role in regulating the differentiation of MC3T3-E1 cells, and can inhibit LPS to regulate the differentiation of MC3T3-E1 cells. NAC promotes the expression of an osteogenic factor of MC3T3-E1cells and inhibits the expression of inflammatory cytokines.

Keywords: N-acetyl cysteine, MC3T3-E1, Cytokines, lipopolysaccharide, Peri-implantitis, expression.

[1]
Yu, Y.; Qiu, L.; Guo, J.; Yang, D.; Qu, L.; Yu, J.; Zhan, F.; Xue, M.; Zhong, M. TRIB3 mediates the expression of Wnt5a and activation of nuclear factor-κB in Porphyromonas endodontalis lipopolysaccharide-treated osteoblasts. Mol. Oral Microbiol., 2015, 30(4), 295-306.
[http://dx.doi.org/10.1111/omi.12094] [PMID: 25601649]
[2]
Oh, S.L. A peri-implantitis associated with a pre-existing pathology. J. Oral Implantol., 2017, 43(3), 232-236.
[http://dx.doi.org/10.1563/aaid-joi-D-16-00211] [PMID: 28156187]
[3]
Shanbhag, S.; Pandis, N.; Mustafa, K.; Nyengaard, J.R.; Stavropoulos, A. Bone tissue engineering in oral peri-implant defects in preclinical in vivo research: A systematic review and meta-analysis. J. Tissue Eng. Regen. Med., 2018, 12(1), e336-e349.
[http://dx.doi.org/10.1002/term.2412] [PMID: 28095650]
[4]
Cosoli, G.; Scalise, L.; Tricarico, G.; Tomasini, E.P.; Cerri, G. An innovative therapy for peri-implantitis based on radio frequency electric current: Numerical simulation results and clinical evidence. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2016, 2016, 5652-5655.
[http://dx.doi.org/10.1109/EMBC.2016.7592009] [PMID: 28269537]
[5]
Arab, H.; Shiezadeh, F.; Moeintaghavi, A.; Anbiaei, N.; Mohamadi, S. Comparison of two regenerative surgical treatments for peri-implantitis defect using natix alone or in combination with bio-oss and collagen membrane. J. Long Term Eff. Med. Implants, 2016, 26(3), 199-204.
[http://dx.doi.org/10.1615/JLongTermEffMedImplants.2016016396] [PMID: 28134601]
[6]
Wang, X.; Feng, Z.; Li, J.; Chen, L.; Tang, W. High glucose induces autophagy of MC3T3-E1 cells via ROS-AKT-mTOR axis. Mol. Cell. Endocrinol., 2016, 429, 62-72.
[http://dx.doi.org/10.1016/j.mce.2016.03.036] [PMID: 27068641]
[7]
Lee, D.; Kook, S.H.; Ji, H.; Lee, S.A.; Choi, K.C.; Lee, K.Y.; Lee, J.C. N-acetyl cysteine inhibits H2O2-mediated reduction in the minerali-zation of MC3T3-E1 cells by down-regulating Nrf2/HO-1 pathway. BMB Rep., 2015, 48(11), 636-641.
[http://dx.doi.org/10.5483/BMBRep.2015.48.11.112] [PMID: 26303969]
[8]
Nagao, M.; Tanabe, N.; Manaka, S.; Naito, M.; Sekino, J.; Takayama, T.; Kawato, T.; Torigoe, G.; Kato, S.; Tsukune, N.; Maeno, M.; Suzuki, N.; Sato, S. LIPUS suppressed LPS-induced IL-1α through the inhibition of NF-κB nuclear translocation via AT1-PLCβ pathway in MC3T3-E1 cells. J. Cell. Physiol., 2017, 232(12), 3337-3346.
[http://dx.doi.org/10.1002/jcp.25777] [PMID: 28063227]
[9]
Gao, A.; Wang, X.; Yu, H.; Li, N.; Hou, Y.; Yu, W. Effect of Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) on the expression of EphA2 in osteoblasts and osteoclasts. In Vitro Cell. Dev. Biol. Anim., 2016, 52(2), 228-234.
[http://dx.doi.org/10.1007/s11626-015-9965-0] [PMID: 26559065]
[10]
Cavagis, A.; Takamori, E.; Granjeiro, J.; Oliveira, R.; Ferreira, C.; Peppelenbosch, M.; Zambuzzi, W. TNFα contributes for attenuating both Y397FAK and Y416Src phosphorylations in osteoblasts. Oral Dis., 2014, 20(8), 780-786.
[PMID: 24164869]
[11]
Sato, Y.; Ishihara, N.; Nagayama, D.; Saiki, A.; Tatsuno, I. 7-ketocholesterol induces apoptosis of MC3T3-E1 cells associated with reactive oxygen species generation, endoplasmic reticulum stress and caspase-3/7 dependent pathway. Mol. Genet. Metab. Rep., 2017, 10, 56-60.
[http://dx.doi.org/10.1016/j.ymgmr.2017.01.006] [PMID: 28116245]
[12]
Yu, Y.Q.; Qu, L.; Qiu, L.H.; Guo, J.J.; Ma, N.; Zhu, L. Mechanism of TNF-α in bone defect of chronic apical periodontitis. Shanghai Kou Qiang Yi Xue J. Stomatol., 2016, 25(4), 414-419.
[PMID: 27858062]
[13]
Liu, Y.H.; Huang, D.; Li, Z.J.; Li, X.H.; Wang, X.; Yang, H.P.; Tian, S.P.; Mao, Y.; Liu, M.F.; Wang, Y.F.; Wu, Y.; Han, X.F. Toll-like receptor-4-dependence of the lipopolysaccharidemediated inhibition of osteoblast differentiation. Genet. Mol. Res., 2016, 15(2)
[http://dx.doi.org/10.4238/gmr.15027191] [PMID: 27173231]
[14]
Liu, H.; Hao, W.; Wang, X.; Su, H. miR-23b targets Smad 3 and ameliorates the LPS-inhibited osteogenic differentiation in preosteoblast MC3T3-E1 cells. J. Toxicol. Sci., 2016, 41(2), 185-193.
[http://dx.doi.org/10.2131/jts.41.185] [PMID: 26961602]
[15]
Choudhury, S.; Ghosh, S.; Gupta, P.; Mukherjee, S.; Chattopadhyay, S. Inflammation-induced ROS generation causes pancreatic cell death through modulation of Nrf2/NF-κB and SAPK/JNK pathway. Free Radic. Res., 2015, 49(11), 1371-1383.
[http://dx.doi.org/10.3109/10715762.2015.1075016] [PMID: 26189548]
[16]
Nam, Y.J.; Lee, D.H.; Lee, M.S.; Lee, C.S. Sesquiterpene lactone parthenolide attenuates production of inflammatory mediators by suppressing the Toll-like receptor-4-mediated activation of the Akt, mTOR, and NF-κB pathways. Naunyn Schmiedebergs Arch. Pharmacol., 2015, 388(9), 921-930.
[http://dx.doi.org/10.1007/s00210-015-1132-3] [PMID: 25971793]
[17]
Hou, Y.; Wang, L.; Yi, D.; Wu, G. N-acetylcysteine and intestinal health: A focus on its mechanism of action. Front. Biosci., 2015, 20(5), 872-891.
[http://dx.doi.org/10.2741/4342] [PMID: 25553484]
[18]
Wang, Y.N.; Jia, T.T.; Feng, Y.; Liu, S.Y.; Zhang, W.J.; Zhang, D.J.; Xu, X. Hyperlipidemia impairs osseointegration via the ROS/Wnt/β-catenin pathway. J. Dent. Res., 2021, 100(6), 658-665.
[http://dx.doi.org/10.1177/0022034520983245] [PMID: 33402029]
[19]
Mostofi, S.; Bonyadi Rad, E.; Wiltsche, H.; Fasching, U.; Szakacs, G.; Ramskogler, C.; Srinivasaiah, S.; Ueçal, M.; Willumeit, R.; Weinberg, A.M.; Schaefer, U. Effects of corroded and noncorroded biodegradable Mg and Mg alloys on viability, morphology and differentiation of MC3T3-E1 cells elicited by direct cell/material interaction. PLoS One, 2016, 11(7), e0159879.
[http://dx.doi.org/10.1371/journal.pone.0159879] [PMID: 27459513]
[20]
Hendesi, H.; Barbe, M.F.; Safadi, F.F.; Monroy, M.A.; Popoff, S.N. Integrin mediated adhesion of osteoblasts to connective tissue growth factor (CTGF/CCN2) induces cytoskeleton reorganization and cell differentiation. PLoS One, 2015, 10(2), e0115325.
[http://dx.doi.org/10.1371/journal.pone.0115325] [PMID: 25714841]
[21]
Valente, N.A.; Mang, T.; Hatton, M.; Mikulski, L.; Andreana, S. Effects of two diode lasers with and without photosensitization on contaminated implant surfaces: An ex vivo study. Photomed. Laser Surg., 2017, 35(7), 347-356.
[http://dx.doi.org/10.1089/pho.2016.4247] [PMID: 28253064]
[22]
Rathnayake, N.; Gieselmann, D.R.; Heikkinen, A.M.; Tervahartiala, T.; Sorsa, T. Salivary diagnostics-point-of-care diagnostics of MMP-8 in dentistry and medicine. Diagnostics (Basel), 2017, 7(1), 7.
[http://dx.doi.org/10.3390/diagnostics7010007] [PMID: 28117682]
[23]
Karimi, M.R.; Hasani, A.; Khosroshahian, S. Efficacy of antimicrobial photodynamic therapy as an adjunctive to mechanical debridement in the treatment of peri-implant diseases: A randomized controlled clinical trial. J. Lasers Med. Sci., 2016, 7(3), 139-145.
[http://dx.doi.org/10.15171/jlms.2016.24] [PMID: 28144432]
[24]
Yang, L.; Meng, H.; Yang, M. Autophagy protects osteoblasts from advanced glycation end products-induced apoptosis through intracellular reactive oxygen species. J. Mol. Endocrinol., 2016, 56(4), 291-300.
[http://dx.doi.org/10.1530/JME-15-0267] [PMID: 26903511]
[25]
Arakaki, N.; Yamashita, A.; Niimi, S.; Yamazaki, T. Involvement of reactive oxygen species in osteoblastic differentiation of MC3T3-E1 cells accompanied by mitochondrial morphological dynamics. Biomed. Res., 2013, 34(3), 161-166.
[http://dx.doi.org/10.2220/biomedres.34.161] [PMID: 23782750]
[26]
Meresta, A.; Folkert, J.; Gaber, T.; Miksch, K.; Buttgereit, F.; Detert, J.; Pischon, N.; Gurzawska, K. Plant-derived pectin nanocoatings to prevent inflammatory cellular response of osteoblasts following Porphyromonas gingivalis infection. Int. J. Nanomedicine, 2017, 12, 433-445.
[http://dx.doi.org/10.2147/IJN.S113740] [PMID: 28138240]
[27]
Folkert, J.; Meresta, A.; Gaber, T.; Miksch, K.; Buttgereit, F.; Detert, J.; Pischon, N.; Gurzawska, K. Nanocoating with plant-derived pectins activates osteoblast response in vitro. Int. J. Nanomedicine, 2016, 12, 239-249.
[http://dx.doi.org/10.2147/IJN.S99020] [PMID: 28096669]
[28]
Haneji, T. Roles of PKR in differentiation and apoptosis of bonerelated cells. Anat. Sci. Int., 2017, 92(3), 313-319.
[http://dx.doi.org/10.1007/s12565-016-0385-3] [PMID: 27987116]
[29]
Postema, M.; Gilja, O.H. Ultrasound-directed drug delivery. Curr. Pharm. Biotechnol., 2007, 8(6), 355-361.
[http://dx.doi.org/10.2174/138920107783018453] [PMID: 18289044]
[30]
Park, S.Y.; Kim, S.H.; Yoon, H.K.; Yim, C.H.; Lim, S.K. The role of nuclear factor-E2-related factor 1 in the oxidative stress response in MC3T3-E1 osteoblastic cells. Endocrinol. Metab. (Seoul), 2016, 31(2), 336-342.
[http://dx.doi.org/10.3803/EnM.2016.31.2.336] [PMID: 27118276]
[31]
Wang, J.; Wu, G.; Liu, X.; Sun, G.; Li, D.; Wei, H. A decomposable silica-based antibacterial coating for percutaneous titanium implant. Int. J. Nanomedicine, 2017, 12, 371-379.
[http://dx.doi.org/10.2147/IJN.S123622] [PMID: 28123297]
[32]
Ziebolz, D.; Schmalz, G.; Gollasch, D.; Eickholz, P.; Rinke, S. Microbiological and aMMP-8 findings depending on peri-implant disease in patients undergoing supportive implant therapy. Diagn. Microbiol. Infect. Dis., 2017, 88(1), 47-52.
[http://dx.doi.org/10.1016/j.diagmicrobio.2017.02.008] [PMID: 28274501]
[33]
Govindharajulu, J.P.; Chen, X.; Li, Y.; Rodriguez-Cabello, J.C.; Battacharya, M.; Aparicio, C. Chitosan-recombinamer layer-bylayer coatings for multifunctional implants. Int. J. Mol. Sci., 2017, 18(2), 369.
[http://dx.doi.org/10.3390/ijms18020369] [PMID: 28208793]
[34]
Mohamadyar-Toupkanlou, F.; Vasheghani-Farahani, E.; Hanaee-Ahvaz, H.; Soleimani, M.; Dodel, M.; Havasi, P.; Ardeshirylajimi, A.; Taherzadeh, E.S. Osteogenic differentiation of MSCs on fibronectin coated and nHA-modified scaffolds. ASAIO J., 2017, 63(5), 684-691.
[http://dx.doi.org/10.1097/MAT.0000000000000551] [PMID: 28234642]
[35]
You, M.; Li, K.; Xie, Y.; Huang, L.; Zheng, X. The effects of cerium valence states at cerium oxide coatings on the responses of bone mesenchymal stem cells and macrophages. Biol. Trace Elem. Res., 2017, 179(2), 259-270.
[http://dx.doi.org/10.1007/s12011-017-0968-4] [PMID: 28229387]
[36]
Xie, Q.; Wei, W.; Ruan, J.; Ding, Y.; Zhuang, A.; Bi, X.; Sun, H.; Gu, P.; Wang, Z.; Fan, X. Effects of miR-146a on the osteogenesis of adipose-derived mesenchymal stem cells and bone regeneration. Sci. Rep., 2017, 7(1), 42840.
[http://dx.doi.org/10.1038/srep42840] [PMID: 28205638]
[37]
Sumegi, K.; Fekete, K.; Antus, C.; Debreceni, B.; Hocsak, E.; Gallyas, F., Jr; Sumegi, B.; Szabo, A. BGP-15 protects against oxidative stress- or lipopolysaccharide-induced mitochondrial destabilization and reduces mitochondrial production of reactive oxygen species. PLoS One, 2017, 12(1), e0169372.
[http://dx.doi.org/10.1371/journal.pone.0169372] [PMID: 28046125]
[38]
Bin, G.; Bo, Z.; Jing, W.; Jin, J.; Xiaoyi, T.; Cong, C.; Liping, A.; Jinglin, M.; Cuifang, W.; Yonggang, C.; Yayi, X. Fluid shear stress suppresses TNF-α-induced apoptosis in MC3T3-E1 cells: Involvement of ERK5-AKT-FoxO3a-Bim/FasL signaling pathways. Exp. Cell Res., 2016, 343(2), 208-217.
[http://dx.doi.org/10.1016/j.yexcr.2016.03.014] [PMID: 27060196]
[39]
Koyama, T.; Kamemura, K. Global increase in O-linked N-acetylglucosamine modification promotes osteoblast differentiation. Exp. Cell Res., 2015, 338(2), 194-202.
[http://dx.doi.org/10.1016/j.yexcr.2015.08.009] [PMID: 26302267]
[40]
Ma, S.; Imazato, S.; Takahashi, Y.; Kiba, W.; Takeda, K.; Izutani, N.; Kitagawa, H.; Chen, J. Mechanism of detoxification of the cationic antibacterial monomer 12-methacryloyloxydodecylpyridiniumbromide (MDPB) by N-acetyl cysteine. Dent. Mater., 2013, 29(12), 1219-1227.
[http://dx.doi.org/10.1016/j.dental.2013.09.008] [PMID: 24119918]
[41]
Lee, D.H.; Lim, B.S.; Lee, Y.K.; Yang, H.C. Mechanisms of root canal sealers cytotoxicity on osteoblastic cell line MC3T3-E1. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2007, 104(5), 717-721.
[http://dx.doi.org/10.1016/j.tripleo.2007.05.018] [PMID: 17706441]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy